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Appendix A. Relevant Recent Changes in

U.S. Immigration Policy

This appendix describes eight important immigration policy changes since the 1960s

that are relevant to this paper.

1. The Immigration and Nationality Act of 1965 (the Hart-Celler Act) was one of the largest

changes in U.S. immigration policy during the sample period. The Act replaced the

Immigration Act of 1924 which largely restricts non-white immigration. The Act

created immigration categories targeting relatives of U.S. citizens and permanent

residents which are exempted from the total immigration limits. Although the Act

had small effects on the level of immigration, it drastically changed its demographic

composition. Law (2002) documents this long-run effect.

2. The Refugee Act of 1980 provided the first clear definition of refugee immigration to

the U.S. and allocated a 50,000 cap on refugee admission with an unlimited cap for

certain protocols. Benson (2016) argues that the implication of this policy change

is the marking of a wave of open-door policies. Immigration policy fluctuates be-

tween being restrictive and permissive, a perception that affects expectation on mi-

gration difficulty. Potential immigrants interpret these policy changes differently,

which may offer an unintended incentive to migrate (Hanson and Splimbergo 2001;

Correa-Cabrera and Rojas-Arenaza 2012).

3. The Immigration Reform and Control Act (IRCA) of 1986 legalized irregular immigrants

since 1982 and created a new class of working visa/visa waiver program. The IRCA

was considered the largest nationwide amnesty of irregular immigration in history

and a strong signal of an era of nonrestrictive immigration policies (Vernez 1993;

Baker 1997; Orrenius and Zavodny 2003). The amnesty was followed by a high

level of inflow and employment of immigration in the 1990s.
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4. The American Homecoming Act and the Immigration Act of 1990 (IMMACT) raised the

annual total immigration cap to 790,000 (a 290,000 addition), provided an additional

140,000 visa cap, and granted special status for immigrants of specific countries of

origin. Under the 1990 IMMACT, more than 1.5 million immigrants were granted

permanent residency with family- and employment-based sponsorship. The 1990

IMMACT also re-categorized employment-based immigration into EB-1 through

EB-5 which are still in effect to date. This legislation created the largest increase in

immigration cap since 1910. Together with the IRCA, the IMMACT generated the

largest inflow of immigration around 1990; See Borjas (1994), Friedberg and Hunt

(1995).

5. The enactment of the Illegal Immigration Reform and Immigrant Responsibility Act of

1996 is a policy reform on irregular immigration1. Hanson and Splimbergo (2001)

argue that the act was designed to disincentivize irregular immigration by increas-

ing border patrol enforcement, which had a direct effect on the inflow of irregular

immigrants.

6. The American Competitiveness and Workforce Improvement Act of 1998 increased the

annual H-1B cap from 65,000 to 115,000 and required employers to pay for H-1B

administration fees and worker benefits in accordance with the same criteria as U.S.

workers.

7. The H-1B Visa Reform Act of 2004 reduced the H-1B cap from 195,000 to 65,000 and

altered the filing structure.

8. Operation Streamline was the largest operation of aggressive enforcement against

unauthorized border-crossing to date. Operation Streamline adopted a zero-tolerance

policy in the prosecution and deportation of irregular immigration. According to

the DHS, the operation resulted in deportation of 1.54 million immigrants from 2007
1The Act lifted the trigger for immediate deportation, announced the right to detain deportees in Amer-

ican jails no less than two years at deportees’ expense, and removed the pardon waiver right for unlawful
immigrant for a given period of stay in the country.
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to 2011. Data on permanent immigration shows a number of consecutive negative

spikes post 2005, matching the development and expansion period of Operation

Streamline.

3



Appendix B. Data

B.1. Interpolation of Quarterly Immigration

Interpolation is useful in mitigating the over-fitting problems of a large parameter

space from estimating structural SVARs with time-variation. This section describes the

interpolation of the immigration series. I adopt the method of Silva and Cardoso (2001)

which is a flexible version of the regression based interpolation following Chow and Lin

(1971). I compare interpolation results from four popular methods. I show they do not

have meaningful differences for the immigration series.

Chow and Lin (1971) develop a best linear unbiased regression interpolation method

to estimate high frequency series by running a Generalized Least Squares (GLS) regres-

sion using multiple “indicator” series. They assume the regression relationship

Y q = Xβ + µ,

where Y q is 4n × 1 high frequency data of estimation, X is a 4n×p matrix that contains

p “indicator” series of high frequency, and µ is a random vector with mean zero and

variance-covariance matrix V y. The low frequency (observed) data regression relation-

ship is

Y y = C ′Xβ + C ′µ, (B.1)

where C is a n×4n frequency converter matrix that converts annual series Y y to quarterly

series Y q. Note that equation B.1 implies that the high frequency variance-covariance

matrix, denoted V q, is equal to the low frequency variance-covariance matrix, V y, pre

and post-multiplying matrix C (i.e. V q = CV yC ′).

Matrix manipulation yields the estimated coefficients

β̂ = [X ′C(C ′V yC)−1C ′X]−1X ′C(C ′V yC)−1Y y, (B.2)
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where solving equation B.2 requires knowledge of V y. The Chow-Lin method defines

random variable µ as an AR(1) process. A few extensions of the Chow-Lin method have

been done in aim to enhance the interpolation performance. Fernandez (1981) uses a

random walk µ for interpolation in order to account for potential non-stationarity and/or

serial correlation in the data. Litterman (1983) claims that Fernandez’ treatment on data

serial correlation fails to remove all serial correlation in certain data series. Litterman’s

improvement, labeled “Markov random walk”, treats µ as an ARIMA(1,1,0). According

to Litterman, the mean squared error could be reduced by up to 13%.

I use the Silva and Cardoso (2001), SSC henceforth, approach to interpolate the im-

migration data from annual to quarterly frequency. The advantage of SSC’s model is the

autoregressive term in the interpolation

Y q
t = κY q

t−1 +Xtβ + µt, (B.3)

which allows the model to account for cointegration.2 Parameter κ is numerically esti-

mated to maximize the log-likelihood function of the model. After the optimal κ is set,

the following estimation is similar to that of Chow-Lin and its extensions.

Table B.1: SSC Interpolation Statistics
Variable Name Estimated Beta St. Dev. Long Run Effect β̂/(1− κ̂)

Income 0.7930 3.6714 4.6645
Civilian Labor Force 0.6879 1.0831 4.0464
Household Survey Pop. -0.3754 0.6944 -2.2083
Number of Payrolls 0.1602 0.6872 0.9422

Note: κ̂ = 0.83. The long run effect ( β̂
1−κ̂ ) is equivalent of Chow-Lin regression coefficient.

Using (B.2) and (B.3), Y y
t is a 80 × 1 vector of the annual DHS immigration data from

1953 to 2017.3 Xt is a 260 × 4 matrix containing real disposable income, civilian labor

force, employment household survey population, and number of non-farm pay rolls from

2Note that the SSC model is equivalent to that of Fernandez when κ = 1.
3Y q

t = Y y
t C where C is the same frequency converting matrix from Chow-Lin.
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1953Q1 to 2017Q4. Income provides a benchmark on the macroeconomic connection of

immigration, while civilian labor force, household survey, and establishment survey pop-

ulation measure population change from three different perspectives. Table B.1 provides

interpolation statistics. The beta coefficients are interpreted as an estimated short-run (1

period lag) sensitivity measure of the indicator series to immigration. The autoregres-

sive coefficient κ̂ is 0.83, indicating a stationary AR(1) given the SSC model. The esti-

mated long-run effect of the indicator variables (equivalent to the interpretation of β in

the Chow-Lin method), given by β̂/(1− κ̂), are presented in column 3.

B.2. Results of Alternative Interpolation Methods

Fig. B.1. Comparison of interpolation methods.

Notes: Sample is 1953Q1 to 2017Q4. Each interpolation result is based on a set of benchmark variables
including real disposable income, civilian labor force, employment household survey population, and
non-farm payrolls.

Figure B.1 displays a comparison of different interpolation methods considered in

the construction of quarterly immigration data. The four regression-based interpolation

methods produce highly similar results. Although this paper uses the series estimated by

the method of Silva and Cardoso (2001), using other interpolation methods does not alter

the main results qualitatively.
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B.3. Unit Root Test Results

According to Table B.2, I fail to reject the existence of a unit root in immigration in log

levels but rejects the same null at 1% confidence when immigration is in growth rates.

Table B.2: Augmented Dickey-Fuller Test for Unit Root
Test Statistic p-value

Immigration in Log Levels -2.528 0.3141
Immigration in Growth Rates -4.056 0.0073

Notes: The Dickey-Fuller tests for the null that the immigration series has a unit root. The p-value corresponds to the MacKinnon
approximation of the p-value based on the test statistic.

B.4. Data Construction and Sources

Utilization-adjusted average labor productivity data is obtained from the Federal Re-

serve of San Francisco website following Basu et al. (2006). Series on hours worked come

from Cociuba et al. (2018).

To construct consumption in non-durables and services, I obtain the following series

reported by the Bureau of Economic Analysis: Per Capita Personal Consumption Expen-

diture (PCE) in non-durables (cn), Per Capita PCE series in services (cs) from NIPA Table

1.1.5, and their corresponding price indexes (pn, ps) from NIPA Table 1.1.4. The growth of

real PCE in non-durables and services is calculated as a Fisher ideal index (Fisher 1922),

ct =

√
cnt p

n
t + cstp

s
t

cnt−1p
n
t + cst−1p

s
t

×
cnt p

n
t−1 + cstp

s
t−1

cnt−1p
n
t−1 + cst−1p

s
t−1
− 1, (B.4)

to correctly account for the addition of chained aggregated NIPA data as suggested by

Whelan (2002).
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Appendix C. Identification: Details and Robustness

C.1. Galı́ (1999) Structural VAR

In this appendix, I briefly outline the fixed-parameter bivariate SVAR of Galı́ (1999)

that the baseline SVARs begin with.

Reduced-form VAR

Consider a standard reduced-form VAR with p lags:

zt =

p∑
i=1

Bizt−i + et, et ∼ (02×1,Ω2×2), (C.1)

where

zt =

∆ln(xt)

∆ln(nt)

 ,
Bi are 2 × 2 coefficient matrices, for i = 1...p, and et is a 2 × 1 reduced-form error term.

Vector zt contains data on ALP (x) and hours worked (n).

The reduced-form VMA(∞) of (C.1) is

zt = [I2 −B(L)]−1et ≡ Λ(L)et, (C.2)

where L is the lag operator and Λ(L) denotes the coefficient matrices of the reduced-form

error terms.

SVAR and Identification

Imposing long-run neutrality on ALP in the reduced-form VAR of (C.1), the SVAR(p)

becomes:

zt = Γ(L)εt, Γ(L) =
∞∑
j=0

ΓjL
j, Γj =

γ11,j γ12,j

γ21,j γ22,j

 . (C.3)
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Galı́ calls the first innovation the TFP shock and the second element the demand shock.

He assumes that only a TFP shock has a permanent effect on the level of labor productiv-

ity. Economic motivation for this long-run neutrality assumption is discussed in Section

II.A of Galı́ (1999). The cumulative effect of the demand shock on ALP is zero, or

Γ12 =
∞∑
j=0

γ12,j = 0. (C.4)

Hence, the long-run cumulative impact matrix is

Γ(1) =

Γ11 0

Γ21 Γ22

 , (C.5)

where the four elements of Γ(1) represent the cumulative impact of the TFP and demand

shocks on the level of ALP and hours worked.

C.2. Alternative Assumption in Stationarity of Hours Worked

There is a lack of consensus about the data generating process of hours worked. Com-

mon unit root tests fail to reject the existence of a unit root in U.S. hours worked data.

However, hours worked has an upper bound by construction and should not possess a

permanent trend. This suggests expressing hours worked in log levels as shown in the

main text. This appendix outlines the model selection exercise when hours worked is

assumed to be non-stationary.

Non-stationary hours worked implies

LR5 : d22,t = d24,t = 0, (C.6)

while assuming stationary hours worked leaves d22,t and d24,t unrestricted. Table C.3

displays the additional models estimated when hours worked is assumed to be non-
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stationary.

Table C.4 shows the log marginal likelihood and Bayes factor for the additional SVARs

when LR5 is in effect. The result indicates the importance of TVP and SV, because the

TVP-SV-SVAR estimates are favored by marginal likelihood regardless of the four iden-

tification schemes. Among the additional models, however, Model 1 from the main text

is still strongly favored by data, with the next smallest Bayes factor of 720 of Model 17.

Therefore, assuming non-stationary hours worked does not alter my results, qualitatively.

Table C.3: List of Model Comparison, Hours Worked in Growth Rates
Model Identification Time-Variation
Model 17 SR1, SR2, LR1, LR2, LR4 TVP-SV-SVAR
Model 18 SR1, SR2, SR3, LR1, LR2, LR4 TVP-SV-SVAR
Model 19 SR1, SR2, LR1, LR2, LR3, LR4 TVP-SV-SVAR
Model 20 SR1, SR2, SR3, LR1, LR2, LR3, LR4 TVP-SV-SVAR
Model 21 SR1, SR2, LR1, LR2, LR4 TVP-SVAR
Model 22 SR1, SR2, SR3, LR1, LR2, LR4 TVP-SVAR
Model 23 SR1, SR2, LR1, LR2, LR3, LR4 TVP-SVAR
Model 24 SR1, SR2, SR3, LR1, LR2, LR3, LR4 TVP-SVAR
Model 25 SR1, SR2, LR1, LR2, LR4 SV-SVAR
Model 26 SR1, SR2, SR3, LR1, LR2, LR4 SV-SVAR
Model 27 SR1, SR2, LR1, LR2, LR3, LR4 SV-SVAR
Model 28 SR1, SR2, SR3, LR1, LR2, LR3, LR4 SV-SVAR
Model 29 SR1, SR2, LR1, LR2, LR4 Fixed-Parameter SVAR
Model 30 SR1, SR2, SR3, LR1, LR2, LR4 Fixed-Parameter SVAR
Model 31 SR1, SR2, LR1, LR2, LR3, LR4 Fixed-Parameter SVAR
Model 32 SR1, SR2, SR3, LR1, LR2, LR3, LR4 Fixed-Parameter SVAR
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Table C.4: Log Marginal Likelihood and Bayes Factor of Additional Models
TVP-SV-SVAR TVP-SVAR SV-SVAR Fixed-Parameter SVAR

[Model 17] [Model 21] [Model 25] [Model 29]
-278.31 -351.19 -337.17 -907.86
(720) (3.22e34) (2.63e28) (>1e50)

[Model 18] [Model 22] [Model 26] [Model 30]
-299.85 -279.17 -370.19 -907.04

(1.63e12) (1.70e3) (5.76e42) (>1e50)

[Model 19] [Model 23] [Model 27] [Model 31]
-289.91 -298.67 -375.52 -906.79
(7.86e7) (5.01e11) (1.18e45) (>1e50)

[Model 20] [Model 24] [Model 28] [Model 32]
-287.61 -315.52 -327.88 -907.89
(7.88e6) (1.04e19) (2.43e24) (>1e50)

Notes: Log likelihoods are reported and calculated following Geweke (1999). Bayes factors are calculated with respect to Model 1
from the main text and are reported in parentheses.
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Appendix D. Non-fundamentalness

An econometric concern about the identification of news shocks is non-fundamentalness.

The SVAR suffers from non-fundamentalness when the information set used by the econo-

metrician is not sufficient to cover that of the economic agents. In other words, economic

agents may form decisions using more variables than what is included in the SVAR.

Therefore, the SVAR cannot reliably recover the structural shocks and impulse response

functions.

D.1. Fundamentalness Tests

In this section, I show the identification of the news shock in this paper do not suffer

nonfundamentalness by presenting (i) results from the test of sufficient information à la

Forni et al. (2014), (ii) results from the test of fundamentalness à la Forni and Gambetti

(2014), and (iii) a comparison of the IRFs of ALP and hours worked with respect to the

news shock to the news literature.

Forni et al. (2014) and Forni and Gambetti (2014) propose tests for non-fundamentalness

that base on a Factor Augmented VAR. The intuition is to use a large set of factors to

capture (mostly) all relevant information by economic agents. If the structural shock of

interest is orthogonal to the large factor set (and its lags), then the SVAR is fundamen-

tal because all relevant information about the shock is included. The two tests follow a

similar general procedure but differ in orthogonality test which I outline below.

1. Collect a large data set of all relevant macroeconomic variables. Forni et al. (2014)

adopt 107 U.S. quarterly series while Forni and Gambetti (2014) use 61.

2. Compute P principal components of the data set. Both recommend setting P=10.

3. Perform test of orthogonality. Forni et al. (2014) propose an F-test on lags of the

principal components. Forni and Gambetti (2014) suggest a Granger causality test

between the identified structural shocks and the principal components.
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4. The SVAR is fundamental if one fails to reject the null of orthogonality.

Table D.5 reports p-values from the Forni et al. (2014) fundamentalness test on the

main text SVAR. I compute the test statistics for up to 10 principal components and up to

3 lags. Recall the identification of the news shock is (i) news shock does not affect TFP on

impact and (ii) news shock permanently affects TFP. The null of the Forni et al. (2014) test

is that the SVAR is fundamental, i.e. the identified structural shock is orthogonal with

respect to the principal components. The entries of Table D.5 suggest fundamentalness of

the main text SVAR.

Table D.5: Results of the Forni et al. (2014) Fundamentalness Test
Principal Components (from 1 to 10)

1 2 3 4 5 6 7 8 9 10

Lag = 1 0.2163 0.4660 0.0688 0.1140 0.1846 0.2757 0.3771 0.4794 0.5235 0.5867
Lag = 2 0.3894 0.6369 0.1805 0.2421 0.3709 0.3409 0.4833 0.3975 0.3817 0.5011
Lag = 3 0.0636 0.1260 0.0921 0.1307 0.1931 0.1962 0.2832 0.2673 0.2216 0.2219

Notes: Following Forni et al. (2014), each entry represents the p-value of the F-test on orthogonality of the news shock with respect to
the first 1 to 10 principal components. The null is the SVAR is fundamental.

Table D.6 shows the Granger causality test results following Forni and Gambetti (2014).

When the number of principal components are larger than 4, the test consistently supports

fundamentalness in the main text SVAR.

Table D.6: Results of the Forni and Gambetti (2014) Sufficient Information Test
P=2 P=4 P=6 P=8 P=10

Lag = 1 0.0012 0.2131 0.3525 0.4269 0.9446
Lag = 2 0.0400 0.0338 0.5211 0.1273 0.1866
Lag = 3 0.3367 0.1005 0.0444 0.0991 0.1401

Notes: Following Forni and Gambetti (2014), each entry represents the p-value of the Granger causality test (global sufficiency). The
null is the SVAR is fundamental.

D.2. Robustness Check: Impulse Response Functions

Figure D.2 plots the 3-dimensional IRFs of ALP to a news shock from 1963Q1 to

2017Q4. Following identifying restriction SR2, ALP does not respond to the news shock
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Fig. D.2. IRFs of ALP to a News Shock, 1963Q1 - 2017Q4

Notes: The 3-D plots show the median responses of average labor productivity to a news shock across the
entire sample. The sample period is 1963Q1 to 2017Q4. X-axis: quarters after shock; y-axis: magnitude
of response (percentage change); z-axis: sample date. SVAR estimated with Model 1. Plots are rotated for
viewability.

on impact. The responses are negative in the short-run before turning positive eight quar-

ters after impact. The long-run responses are positive and settle at a permanently higher

state. This evidence of inverse hump-shaped responses qualitatively and quantitatively

matches the consensus of a news driven expansion, e.g., Beaudry and Portier (2014), Forni

et al. (2019), and Beaudry et al. (2019), among others.
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Appendix E. Necessary and Sufficient Conditions of

Identification Schemes

SVARs in the main text are identified with short- and long-run restrictions. Table E.7

below revisits the data favored identification scheme of Model 1. I perform the Rubio-

Ramirez et al. (2010) (RRWZ henceforth) check for global identification on Model 1.

Table E.7: Identifying Restrictions of Model 1

∆log(x)


− 0 0 0 0
− − − − −
0 0 − 0 0
− − − − −
− − − − −
− 0 − 0 −
− − − − −
− 0 − 0 −
− 0 − 0 −
− − − − −



log(n)
∆log(I)[

IR0

IR∞

]
=

∆log(c)
∆log(s)
∆log(x)
log(n)

∆log(I)
∆log(c)
∆log(s)

Notes: “-” denotes unrestricted entries; “0” denotes zero restricted entries. The columns, from left to right, denote TFP shock, labor
demand shock, immigration supply shock, transitory consumption shock, and news shock.

From Table E.7, the number of identified shocks is n = 5, the number of column re-

strictions q1 = 1, q2 = 5, q3 = 1, q4 = 5, and q5 = 2. The total number of column restrictions

(
∑4

j=1 qj = 14) is greater than n(n−1)/2 = 10. Following Rothenberg (1971) and Theorem

7 of Rubio-Ramirez et al. (2010), this set of restrictions is over-identified. Therefore, Model

1 and all other proposed identification schemes satisfy the necessary rank condition.

As an example, I verify RRWZ’s global and local identification conditions for the se-

lected identification scheme of Model 1. The intuition is to check for the rank condition

of the restriction matrix, denoted K0, to confirm that observational equivalence does not

exist. It must satisfy necessary and sufficient conditions outlined below.
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Proof. First, import K ′0:

K
′

0 =



1 0 0 0 0

1 1 1 1 1

0 0 1 0 0

1 1 1 1 1

1 1 1 1 1

1 0 1 0 1

1 1 1 1 1

1 0 1 0 1

1 0 1 0 1

1 1 1 1 1



(E.1)

Then, calculate Qi = RiK
′
0ij matrix for i = 1...4. The detailed calculation step of Q1 is

shown as example. Notice that:



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





1 0 0 0 0

1 1 1 1 1

0 0 1 0 0

1 1 1 1 1

1 1 1 1 1

1 0 1 0 1

1 1 1 1 1

1 0 1 0 1

1 0 1 0 1

1 1 1 1 1



′



1

0

0

0

0


=



0

0

0

0

0

0

0

0

0

0
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Stack RiK
′
0 on top of

[
1 0 0 0 0

]
to yield M1:

M1 =



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0



.
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Following a similar procedure, calculate M2...M5:

M2 =



1 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 1

1 0 1 0 0

0 0 0 0 0

0 0 0 0 0

1 0 1 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0



,M3 =



1 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1 0 1 0 1

1 0 1 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0



,M4 =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1 0 1 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



,
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and

M5 =



1 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


It is straightforward to verify that the ranks of matrices M1 to M5 are [2, 4, 4, 5, 5].

Therefore, K0 is locally identified.

19



Appendix F. Priors and Bayesian Sampling

F.1. Priors and Pre-estimation

Table F.8 shows the conjugate priors for three sets of initializations. Let x̄ denote the

OLS/ML estimate of parameter x. I use the first τ = 40 observations (1953Q1 - 1962Q4)

as a training sample to estimate prior values B, V B, a, and log(h) via OLS or MLE.4 Block

B’s posterior distribution is truncated to ensure stationary draws. I also choose priors

for the covariance matrices of the innovations that govern the law of motions for the

aforementioned TVP-SV-VAR parameters. They control the size of the search steps in

the MCMC samplers. Reported in Table F.8, the calibration of the tightness and re-scaling

constants is set to allow for proper acceptance rate for convergence, while accommodating

necessary time-variation.

Table F.8: Priors

B0∼N(B, κB · V B) Qi∼IW (κ2QV B, τ)
a0∼N(a, κa·I3) Si∼IW (κ2s·I3, 1 + dima)

log(h0)∼N(log(h), κh·I3) Wi∼IG(κ2W , 2)

Notes: N denotes normal; IW denotes Inverted-Wishart; IG denotes Inverse Gamma. κB = 4, κa = 4, and κh = 10 are tightness
constants. κ2Q = 0.24, κ2s = 5× 10−3, and κ2W = 1× 10−3 are re-scaling factors.

F.2. Sampling Algorithm

I provide details of the Metropolis-within-Gibbs sampler, which closely follow Canova

and Perez-Forero (2015).

Draw Reduced-form Coefficients, B The drawing of the reduced-from coefficients B

relies on the Carter-Kohn algorithm. Carter and Kohn (1994) show that the combination

of the Kalman filter and a backward recursion algorithm gives an efficient way of solving

for the states of a state-space model.
4I adopt Christopher Sims’ csminwel package with a search tolerance of 1 × 10−4 in obtaining the ML

estimator.
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Particularly, the Carter-Kohn algorithm contains the following steps:

1 The Kalman filter provides an estimate of the mean BT |T and variance PT |T .

2 Given the Kalman estimates, take a random draw of a multivariate normal with

mean BT |T and covariance PT |T .

3 At T−1, use Kalman update equations to recursively obtain BT−1|T−1,BT and PT−1|T−1,BT .

Draw BT−1 from N(BT−1|T−1,BT , PT−1|T−1,BT ).

4 Repeat step 2 for t = T − 2, T − 3, ..., 1.

Therefore, the Carter-Kohn algorithm yields a series of draws of B for t = 1, · · · , T .

Draw Structural Coefficients, B̃ Given the current draw of the reduced-form coefficient

Bi, the last draw of the contemporaneous matrix A0,i−1, and the last draw of the standard

deviations of the structural shocks Σi−1, I impose long-run restrictions. As discussed,

long-run restrictions create non-linearity in the VAR parameter space. Therefore, long-

run restrictions need to be imposed in the sampler during each draw.

Compute the long-run cumulative impact matrix

DT
i = J(I2 − BTi )−1J ′AT0,i−1Σ

T
i−1, (F.1)

where J = [I2 . . . 02] is a selection matrix. Denote djk the elements in DT
i . Setting the

respective djk to zero achieves the long-run restriction.

Let the restricted long-run cumulative matrix be Di, solve for the draws restricted

structural coefficient matrix Bi by reversing equation F.1. Lastly, evaluate the eigenvalues

of B̃ and discard the draws that have eigenvalues outside the unit circle.

Draw Impact Coefficients, A0 Given B̃t, the state-space model can be re-written as

A0,t(zt −X ′tB̃t) ≡ A0,tẑt = Σtεt.
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Let vec(At) = SAf(at) + sA, where SA and sA are selection matrices of ones and zeros.

Reparametrize the model as

(ẑt
′ ⊗ I)(SAf(at) + sA) = Σtεt.

Therefore the system of regression only contains linear restrictions, with observation

equation

(ẑt
′ ⊗ I)sA = −(ẑt

′ ⊗ I)SAf(at) + Σtεt.

and state equation

f(at) = f(at−1) + ηt.

Given initial f(at)0|0 and P0|0, the Extended Kalman Filter (EKF) gives updates of f(at)

and its covariance matrix. The smoothed estimates are denoted f(at)
∗
T |T and P ∗T |T .

The algorithm of drawing f(a) is:

1 Given (zT , V i−1), compute f(at)
∗i−1
T |T and P ∗i−1T |T .

2 For t = 1, ..., T , draw a candidate f(a+t ) from p∗[f(at)|f(ai−1t )].

3 Compute θ =
p(f(a+)T )×p∗[f(at)|f(ai−1

t )]T

p(f(a)T )×p∗[f(aT )|f(ai−1
t )]

.

4 Draw µ ∼ U(0, 1). Accept new draw as f(ai)T = f(a+)T if µ < θ; otherwise keep old

draw.

5 Given (zT , f(ai)T ), draw V i ∼ IW (v, V̄ −1), where V̄ −1 is the sum of squared errors

in the state equation of f(a).

Draw Stochastic Volatility, Σ Conditional on the current draws (B̃Ti , aTi ), the left hand

side of the model equation A(at)yt = Σtεt is known. Taking square and log each element

of this vector yields a linear state-space system

z∗t = 2log(σt) + 2log(εt);
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log(σt) = log(σt−1) + ηt,

where z∗t ≡ log(zt)
2. However, this system is not Gaussian, because each element of

2log(εt) is distributed log χ2. These shocks are approximated with a 10-component mix-

ture of normals. Following Omori et al. (2007), auxiliary variables sTi are introduced and

drawn conditional on (B̃Ti , aTi , σTi−1) to keep track of the normal mixtures. The state-space

system is Gaussian given the approximation (B̃Ti , aTi , σTi ). The draws of σTi are generated

and evaluated with the Carter-Kohn algorithm.

Draw Hyperparameter Block, V Draw the hyperparameters Vi given (B̃Ti , AT0,i,ΣT
i , z

T
i )

according to the specified distributions shown in Table F.8.
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Appendix G. Convergence Diagnosis

I adopt two methods to examine convergence of the sampling routine to the ergodic

distribution. First, I plot the sequence of retained draws in Figure G.3 for the Model 1

SVAR estimated with TVP and SV. If the sampler has converged, variation for each coeffi-

cient estimates between the retained draws should be small and does not show pattern of

memory. All three panels exhibit minimal and trendless fluctuations for recursive means

calculated with every 20 draws. This evidence supports successful convergence of the

Bayesian sampler.

Next, I evaluate the numerical accuracy of the sampler. Following Geweke (2005),

I compute Inefficiency Factor (IF) for each block of estimated coefficients. IF is a mea-

surement of serial correlation between MCMC draws. Following Primiceri (2005), the

common satisfactory range of IF values of parameters estimated with a TVP-SV-SVAR is

between 4 to 75. Table G.9 displays the descriptive statistics of IF values for each sam-

pling block. The majority of the IFs is below 75. The impact coefficients (A0,t) average

slightly higher at around 81, which is common in the TVP-SV-SVAR literature. Therefore,

the IFs suggest satisfactory convergence of the sampler.

Table G.9: Inefficiency Factors

Median Mean Min Max 10th Pct 90th Pct

Bi 54.49 58.48 24.81 92.21 43.04 76.11
A0,i 81.36 82.44 0.696 43.48 70.86 90.51
Σi 4.52 24.51 0.59 70.97 1.75 64.55
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Fig. G.3. Sequence of Retained Draws

Notes: The 3-D plots show sequence of retained draws for all estimated parameters in the benchmark SVAR (Model 1). X-axis: number
of draws; y-axis: magnitude of estimated parameters; z-axis: number of estimated vectorised parameters.
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Appendix H. Log Marginal Likelihood

This section outlines the details in computing the log marginal likelihood of a SVAR

post estimation. I adopt the harmonic mean estimator following Geweke (1999).

First, let

p(z|Mk) =

∫
p(z|θk,Mk)p(θk|Mk)dθk (H.1)

be the marginal likelihood of model k. For the class of TVP-SV-SVARs outlined in this pa-

per, an analytical expression of the marginal likelihood is unavailable due to the degree

of parameterization and non-linearity. The Gibbs sampler provides a convenient approx-

imation. Following Geweke (1999), I compute the marginal likelihoods of the competing

models using the harmonic mean method. Given any distribution g(θ), the inverse of

the marginal likelihood p(z)−1 can be written as the expected value of the product of the

likelihood p(z|θ) and the prior p(θ) for the model

p(z)−1 = E[
g(θ)

p(z|θ)p(θ)
|z]. (H.2)

In practice, I estimate log marginal likelihood of equation (H.2) as follows. First, I

use the Kalman filter to compute the log prior density. This is done by summing all log

prior densities of the latent variables (B, A0, Σ) and their respective hyperparameters (Q,

S, W ) according to the probability distribution functions (PDFs) of the priors. p(z|θ) is

evaluated by updating the measurement equation of the Kalman filter. Geweke (1999)

suggests using a truncated normal distribution for g(θ). The following sections detail the

computation of each elements in equation (H.2).
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H.1. Estimating p(z|θ)

The likelihood for a state space model p(z|θ) can be evaluated with the Kalman filter.

For a state space model of the following representation,

zt = X ′βt + (At)
−1Σtεt, εt ∼ N(0, I), (H.3)

and

βt = Fβt−1 + ut, ut ∼ N(0,V), (H.4)

the linear-Gaussian Kalman filter recursion is given by

βt|t−1 = Fβt−1|t−1 (H.5)

Pt|t−1 = FPt−1|t−1F
′ + V , (H.6)

ηt|t−1 = zt −Xtβt|t−1, (H.7)

ft|t−1 = XPt|t−1X
′ + ηtη

′
t, (H.8)

K = Pt|t−1X
′f−1t|t−1, (H.9)

βt|t = βt|t−1 +Kηt|t−1, (H.10)

and

Pt|t = Pt|t−1 −KXPt|t−1. (H.11)

The first two equations (H.5) and (H.6) are the prediction equations that provide the

value and the estimated variance of the state variable one period ahead. Equation (H.7)

computes the prediction error, whereas equation (H.8) computes the variance of the pre-

diction error. The Kalman gain, usually considered as the weight attached to the predic-

tion error, is calculated in equation (H.9). The last two equations (H.10) and (H.11) are the
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updating equations that give one period ahead estimates of the states.

Given estimates from the Kalman filter, the log likelihood is computed as

ln[p(z|θ)] = −Tk
2
ln(2π)− 1

2

T∑
t=1

|Pt| −
1

2
ηtP

−1
t η′t. (H.12)

H.2. Estimating p(θ)

The prior densities p(θ) of states and hyperparameters are computed directly from

their probability density functions. Given the Gaussian states and the inverse-Wishart

priors of hyperparameters, p(θ) is equal to the sum of all individual densities. In the case

of TVP-SVARs with no SV and SV-SVARs with no TVP, the log density of the respective

missing states is 1.

H.3. Estimating p(z)

As in equation H.2 in the main text, the marginal likelihood of a model is defined as

p(z)−1 = E[
g(θ)

p(z|θ)p(θ)
|z]. (H.13)

In practice, this is estimated as

ˆp(z)
−1

=
1

M

M∑
j=1

g(θ)

p(z|θ)p(θ)
, (H.14)

where M is the number of retained draws. The distribution of g(θ) is selected as a trun-

cated normal. Geweke (1999) discusses the selection of g(θ) in detail.
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Appendix I. Additional IRFs and Robustness Check

I.1. Additional IRFs, FEVDs, and Plots of TVPs

Figure I.4 displays the IRFs of immigration with respect to a labor demand shock with

error bands at 2, 4, 8, and 16 quarters post shock. The responses fluctuate around zero

for all horizons with large error bands. Therefore, there is no quantitatively meaningful

effect of a labor demand shock on immigration.

The IRFs of immigration with respect to a transitory consumption shock are in Figure

I.5. The hump-shaped IRFs peak at two quarters after the shock and plateau after four

years as shown in the upper and lower right panels. The effect of a transitory consump-

tion shock on immigration appears time-invariant. It does not appear to co-move with

either changes in immigration policy nor the business cycle. The evidence of a positive

but transitory response of immigration to a transitory consumption shock at the business

cycle horizons is in line with the economic theory about direct and indirect incentives of

immigration. First, an increase in aggregate demand through expenditure attracts immi-

grants because immigrants react to economic incentives (Lucas 1975). Second, a larger

aggregate demand raises output growth followed by a temporary increase in aggregate

supply. Therefore, a temporary boost in average productivity due to the demand shock

provides an added incentive to migrate, as discussed in Section 4.2.1.

Figures I.10 and I.11 plot the FEVDs of the immigration shock on all variables and the

immigration FEVD with respect to macroeconomic shocks from 1963Q1 to 2017Q4. They

are plotted on selected forecast horizons of 4, 8, 20, and 32 quarters.

Figures I.12 and I.13 illustrate the impact coefficient of hours worked with respect to

the immigration supply shock (a23,t), terms spread with respect to the immigration shock

(a53,t), consumption with respect to the immigration supply shock (α43,t), and term spread

with respect to the TFP shock (α51,t). Similar to the discussion in Section 4.2 of the main

text, the unrestricted estimates are small and do not exhibit obvious dependency with
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respect to the business cycle or the state of the immigration policy regime.

Table I.10: Additional FEVDs with respect to Immigration Supply Shock

Variable
XXXXXXXXXXXQuarter

Date
1980Q1 1986Q1 1990Q1 2004Q1 2010Q1

Hours Worked

2 0.0038 0.0038 0.0034 0.0035 0.0052
4 0.0126 0.0070 0.0102 0.0079 0.0079
20 0.0203 0.0144 0.0185 0.0201 0.0101
→∞ 0.0131 0.0110 0.0167 0.0144 0.0080

Notes: Results based on TVP-SV-SVAR estimated with Model 1. The long-run (→∞) FEVD is defined as a forecast horizon of 40
quarters. Selected immigration policy dates correspond to the Refugee Act of 1980, the IRCA of 1986, the IMMACT of 1990, the H1-B
Act of 2004, and Operation Streamline of 2010.
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Table I.11: Posterior Tunnels of FEVDs to Immigration Supply Shock

Variable
PPPPPPPPPQtr

Date
1980Q1 1986Q1 1990Q1 2004Q1 2010Q1

ALP

2 0.0065-0.0192 0.0066-0.0203 0.0060-0.0187 0.0065-0.0205 0.0052-0.0182
4 0.0088-0.0411 0.0118-0.0465 0.0146-0.0424 0.0119-0.0424 0.0148-0.0499

20 0.0204-0.1328 0.0082-0.1445 0.0193-0.0925 0.0224-0.1006 0.0150- 0.0773
→∞ 0.0201-0.1330 0.0082-0.1444 0.0193-0.0950 0.0215-0.1007 0.0150-0.0773

HW

2 0.0015-0.0070 0.0019-0.0075 0.0012-0.0067 0.0009-0.0079 0.0023- 0.0086
4 0.0044-0.0162 0.0028-0.0351 0.0058-0.0166 0.0044-0.0170 0.0040-0.0167

20 0.0061-0.0568 0.0031-0.0495 0.0061-0.0416 0.0042-0.0489 0.0039-0.0311
→∞ 0.0053-0.0397 0.0025-0.0338 0.0048-0.0352 0.0063-0.0340 0.0029- 0.0214

Immigration

2 0.4381-0.5207 0.4415-0.5276 0.4484-0.5205 0.4460-0.5242 0.4296- 0.5155
4 0.4642-0.5860 0.4578-0.6068 0.4508-0.6088 0.4709-0.5999 0.4392-0.5794

20 0.3389-0.4482 0.3082-0.4374 0.3264-0.4866 0.2949-0.4670 0.2700-0.4570
→∞ 0.2570-0.3527 0.2383-0.3399 0.2583-0.3887 0.2503-0.3688 0.2345- 0.3604

Consumption

2 0.2621-0.3715 0.2704-0.3675 0.2678-0.3872 0.2678-0.3752 0.2742-0.3673
4 0.0990-0.3278 0.1175-0.3028 0.1743-0.3264 0.1337-0.3831 0.1518-0.3442

20 0.0447-0.2027 0.0543-0.2394 0.0926-0.2464 0.0614-0.2815 0.0460-0.2407
→∞ 0.0396-0.1869 0.0497-0.2160 0.0865-0.2309 0.0561-0.2661 0.0388-0.2261

Term Spread

2 0.3074- 0.3876 0.0975-0.3829 0.3021-0.3751 0.2947-0.3778 0.3179-0.4030
4 0.2071-0.4133 0.2440-0.4517 0.2896-0.4481 0.2477-0.4422 0.3518-0.4661

20 0.1162-0.3286 0.1505-0.3349 0.2041-0.4112 0.1460-0.3881 0.0973-0.4458
→∞ 0.1080-0.2961 0.1258-0.2937 0.1696-0.3736 0.1203-0.3694 0.0761-0.4127

Notes: Results based on TVP-SV-SVAR estimated with Model 1. The posterior tunnels are 16-84%. The long-run (→∞) FEVD is
defined as a forecast horizon of 40 quarters. ALP denotes average labor productivity. HW denotes hours worked. Selected
immigration policy dates correspond to the Refugee Act of 1980, the IRCA of 1986, the IMMACT of 1990, the H1-B Act of 2004, and
Operation Streamline of 2010.
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Table I.12: Posterior Tunnels of Immigration FEVDs to Macroeconomic Shocks

Shock
PPPPPPPPPQtr

Date
1980Q1 1986Q1 1990Q1 2004Q1 2010Q1

TFP

2 0.1711-0.1958 0.1691-0.1939 0.1663-0.1910 0.1700-0.1955 0.1703-0.1927
4 0.0955-0.1175 0.0954-0.1130 0.1009-0.1169 0.0978-0.1113 0.0993-0.1155
20 0.0503-0.0826 0.0603-0.0748 0.0636-0.0774 0.0559-0.0784 0.0578- 0.0872
→∞ 0.0371-0.0681 0.0469-0.0663 0.0556-0.0665 0.0487-0.0631 0.0482-0.0700

LD

2 0.2732-0.3598 0.2729-0.3645 0.2738-0.3646 0.2718-0.3565 0.2808- 0.3713
4 0.3034-0.4140 0.2875-0.4221 0.2752-0.4313 0.2809-0.4115 0.2971-0.4400
20 0.3691-0.5863 0.4098-0.5151 0.3057-0.5059 0.3356-0.6012 0.3317-0.6319
→∞ 0.3957-0.6907 0.4461-0.5549 0.3595-0.5170 0.3914-0.5236 0.3968- 0.6708

TC

2 0.0034-0.0091 0.0033-0.0086 0.0028-0.0090 0.0039-0.0091 0.0035- 0.0100
4 0.0030-0.0083 0.0027-0.0097 0.0028-0.0094 0.0042-0.0093 0.0030-0.0093
20 0.0068-0.0146 0.0071-0.0133 0.0076-0.0157 0.0087-0.0164 0.0089-0.0124
→∞ 0.0080-0.0157 0.0087-0.0140 0.0075-0.0204 0.0103-0.0193 0.0099- 0.0156

News

2 0.0067-0.0199 0.0028-0.0148 0.0036-0.0156 0.0023-0.0145 0.0048-0.0195
4 0.0056-0.0116 0.0035-0.0107 0.0046-0.0108 0.0046-0.0095 0.0050-0.0117
20 0.0068-0.1359 0.0344-0.1523 0.0604-0.1767 0.0384-0.1518 0.0150-0.1165
→∞ 0.0069-0.2079 0.0473-0.2413 0.0847-0.1835 0.0992-0.2479 0.0199-0.1700

Notes: Results based on TVP-SV-SVAR estimated with Model 1. The posterior tunnels are 16-84%. The long-run (→∞) FEVD is
defined as a forecast horizon of 40 quarters. TFP denotes total factor productivity. LD denotes labor demand. TC denotes transitory
consumption. Selected immigration policy dates correspond to the Refugee Act of 1980, the IRCA of 1986, the IMMACT of 1990, the
H1-B Act of 2004, and Operation Streamline of 2010.
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Fig. I.4. IRFs of Immigration to a Labor Demand Shock at Selected Horizons

Notes: The solid (black) lines are median responses of immigration to a labor demand shock at 2, 4, 8, and 16
quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated with Model 1.
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Fig. I.5. IRFs of Immigration to a Transitory Consumption Shock at Selected Horizons

Notes: The solid (black) lines are median responses of immigration to a transitory consumption shock at 2,
4, 8, and 16 quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated
with Model 1.
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Fig. I.6. IRFs of Hours Worked to an Immigration Supply Shock at Selected Horizons

Notes: The solid (black) lines are median responses of hours worked to an immigration supply shock at 2,
4, 8, and 16 quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated
with Model 1.
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Fig. I.7. IRFs of Consumption to an Immigration Supply Shock at Selected Horizons

Notes: The solid (black) lines are median responses of consumption to an immigration supply shock at 2, 4,
8, and 16 quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated with
Model 1.
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Fig. I.8. IRFs of Immigration to a TFP Shock at Selected Horizons

Notes: The solid (black) lines are median responses of immigration to a TFP shock at 2, 4, 8, and 16 quarters
after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated with Model 1.
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Fig. I.9. IRFs at Four Quarters Post Selected Immigration Policy Dates

(a) ALP with respect to an immigration supply shock, estimated with Model 1

(b) Hours worked with respect to an immigration supply shock, estimated with Model 1

(c) Consumption with respect to an immigration supply shock, estimated with Model 1

(d) Immigration with respect to a TFP shock, estimated with Model 1

(e) Immigration with respect to a news shock, estimated with Model 1

Notes: The solid (black) lines are median responses at selected immigration policy dates. Gray shaded
areas are 16-84% posterior tunnels. X-axis: sample date; y-axis: magnitude of response (percentage change
in (a), (c), (d), (e), log points in (b)). Selected dates are 1981Q1, 1987Q1, 1991Q1, 2005Q1, 2011Q1.
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Fig. I.10. FEVDs of Immigration Supply Shock, 1963Q1 - 2017Q4
(a) Forecast Horizon: 4 Quarters

(b) Forecast Horizon: 8 Quarters

(c) Forecast Horizon: 20 Quarters

(d) Forecast Horizon: 32 Quarters

Notes: The solid (black) lines are median values of forecast error variance decompositions at 4, 8, 20, and 32
quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated with Model
1.
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Fig. I.11. Immigration FEVDs of Macroeconomic Shocks, 1963Q1 - 2017Q4
(a) Forecast Horizon: 4 Quarters

(b) Forecast Horizon: 8 Quarters

(c) Forecast Horizon: 20 Quarters

(d) Forecast Horizon: 32 Quarters

Notes: The solid (black) lines are median values of forecast error variance decompositions at 4, 8, 20, and 32
quarters after initial shock. Gray shaded areas are 16-84% posterior tunnels. SVAR estimated with Model
1.
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Fig. I.12. Posterior Estimates of Impact TVPs, Estimated with Model 1, 1963Q1 - 2017Q4

Notes: Median values of the posterior estimates of impact coefficients are solid (blue) lines. The dotted
(red) lines are 16-84 percent bands. The sample period is 1963Q1 to 2017Q4. X-axis: sample date; y-axis:
magnitude of estimate. Gray shades are NBER recession trough dates.
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Fig. I.13. Posterior Estimates of Impact TVPs, Estimated with Model 1, 1963Q1 - 2017Q4

Notes: Median values of the posterior estimates of impact coefficients are solid (blue) lines. The dotted
(red) lines are 16-84 percent bands. The sample period is 1963Q1 to 2017Q4. X-axis: sample date; y-axis:
magnitude of estimate. Gray shades are NBER recession trough dates.
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I.2. Robustness Check on Annual Versus Quarterly Data

To answer an anonymous reviewer’s request, I present IRFs of fixed parameters SVARs

identified withAI0,t and D̃II
t (Model 13) estimated with annual data and with quarterly in-

terpolated data as the main text. Panel (a) of Figure I.14 shows the IRF of ALP with respect

to an immigration supply shock. Panel (b) shows the IRF of immigration with respect to

a news shock. The IRFs estimated with annual data and those estimated with quarterly

data display qualitatively and quantitatively similar responses.

Fig. I.14. IRFs of Fixed Parameter SVAR, Annual Data Versus Quarterly Data

(a) Average Labor Productivity with respect to an Immigration Supply Shock

(b) Immigration with respect to a News Shock

Notes: The left panels show IRFs estimated with annual data. The right panels show IRFs estimated with
quarterly data. Median responses (in blue) and 16-84% error bands (in red). Sample is 1953 to 2017.
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