
Supplementary Material

This supplementary material contains appendices for the article ``Tax Rules to Prevent

Expectations-Driven Liquidity Traps.""

A Proofs

This Appendix provides the details of the proofs for the propositions in the main article.

A.1 Proof of proposition 1

A system is locally determinate if the eigenvalues of the matrix A lie within the unit

circle. Let us denote the eigenvalues of the matrix A as \lambda 1 and \lambda 2. Following Bullard

and Mitra (2002), the conditions can be expressed as

| \lambda 1\lambda 2| = | det(A)| < 1, (A.1)

| \lambda 1 + \lambda 2| = | trace(A)| < 1 + det(A). (A.2)

The first inequality (A.1) can be modified as

| det(A)| < 1

\leftrightarrow 
\bigm| \bigm| \bigm| 1 + \zeta 

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

\times 
\beta +

\kappa 

\sigma 
(1 - \xi \sigma )

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

 - 

\kappa 

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

\times 

1

\sigma 
(1 + \zeta )(1 - \xi \sigma ) - \beta 

\sigma 
(\phi \pi  - \xi \sigma )

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

\bigm| \bigm| \bigm| < 1

\leftrightarrow 
\bigm| \bigm| \bigm| \beta 

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

\bigm| \bigm| \bigm| < 1

\leftrightarrow 
\bigm| \bigm| \bigm| \beta 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

\bigm| \bigm| \bigm| < 1. (A.3)
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Therefore, \Lambda must satisfy the following conditions:

\Lambda <  - \beta + 1 +
\phi \pi 

\sigma 
\kappa , (A.4)

or

\Lambda > \beta + 1 +
\phi \pi 

\sigma 
\kappa . (A.5)

The second inequality (A.2) can be modified as

| trace(A)| < 1 + det(A)

\leftrightarrow 
\bigm| \bigm| \bigm| 1 + \zeta 

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

+
\beta +

\kappa 

\sigma 
(1 - \xi \sigma )

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

\bigm| \bigm| \bigm| 
<

\beta 

1 + \zeta +
\Bigl( \phi \pi 

\sigma 
 - \xi 

\Bigr) 
\kappa 

+ 1

\leftrightarrow 
\bigm| \bigm| \bigm| 1 + \beta +

\kappa 

\sigma 
 - \Lambda 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

\bigm| \bigm| \bigm| < \beta 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

+ 1. (A.6)

First, assuming \Lambda <  - \beta + 1 +
\phi \pi 
\sigma \kappa , we obtain the following relation:

1 + \beta +
\kappa 

\sigma 
 - \Lambda 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

<
\beta 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

+ 1

\leftrightarrow \phi \pi > 1. (A.7)

This is satisfied from our assumption.

Next, assuming \Lambda > \beta + 1 + \kappa 
\sigma \phi \pi , we obtain the following relation:

1 + \beta +
\kappa 

\sigma 
 - \Lambda 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

<
\beta 

1 +
\phi \pi 

\sigma 
\kappa  - \Lambda 

+ 1

\leftrightarrow \phi \pi < 1. (A.8)

This contradicts our assumption. Therefore, the condition to ensure local determinacy

2



around the targeted steady state is

\Lambda < 1 - \beta + \phi \pi 
\kappa 

\sigma 
\equiv \Psi D. (A.9)

(End of Proof)

A.2 Proof of proposition 2

The ELT equilibrium exists if and only if the following inequality is satisfied:

\^\pi U =

log \beta 

1 - pU

\kappa 

\sigma 

 - (1 - \beta pU) +
pU

1 - pU

\kappa 

\sigma 

<
log \beta 

\phi \pi 

\leftrightarrow 

\kappa 

\sigma 
\kappa 

\sigma 
pU  - (1 - \beta pU)(1 - pU)

>
1

\phi \pi 

. (A.10)

Since the right-hand side of the inequality is positive, the denominator in the left-hand

side must be also positive to satisfy the inequality. Hence the following two inequalities

are the necessary and sufficient conditions for the ELT equilibrium to exist:

\kappa 

\sigma 
pU  - (1 - \beta pU)(1 - pU) > 0, (A.11)

and

\kappa \phi \pi 

\sigma 
>
\kappa 

\sigma 
pU  - (1 - \beta pU)(1 - pU). (A.12)

Inequality (A.12) can be modified as\Bigl[ 
pU  - 1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) \Bigr] 2
+
\kappa \phi \pi 

\beta \sigma 
+

1

\beta 
 - 1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

> 0. (A.13)
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Above inequality is satisfied under standard calibration. The solution of (A.11) is

1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 
 - 

\sqrt{} 
1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

 - 1

\beta \underbrace{}  \underbrace{}  
\equiv p

< pU

<
1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 
+

\sqrt{} 
1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

 - 1

\beta \underbrace{}  \underbrace{}  
\equiv \=p

. (A.14)

Since \=p > 1 holds, the necessary and sufficient condition is

p < pU < 1. (A.15)

(End of Proof)

A.3 Proof of proposition 3

The same steps are taken as in proposition 2. The ELT equilibrium exists if and only

if the following inequality is satisfied:

\^\pi U =

log \beta 

1 - pU

\kappa 

\sigma 

\Lambda  - (1 - \beta pU) +
pU

1 - pU

\kappa 

\sigma 

<
log \beta 

\phi \pi 

\leftrightarrow 

1

1 - pU

\kappa 

\sigma 

\Lambda  - (1 - \beta pU) +
pU

1 - pU

\kappa 

\sigma 

>
1

\phi \pi 

. (A.16)

The numerator of the left-hand side is positive. Therefore, inequality (A.16) holds for

the following \Lambda :

1 - \beta pU  - pU
1 - pU

\kappa 

\sigma \underbrace{}  \underbrace{}  
\equiv \Psi 

< \Lambda < 1 - \beta pU +
\phi \pi  - pU
1 - pU

\kappa 

\sigma \underbrace{}  \underbrace{}  
\equiv \Psi N

. (A.17)
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Taking the contraposition, the ELT does not exist if and only if

\Psi N \leq \Lambda , (A.18)

or

\Lambda \leq \Psi . (A.19)

Since \Psi < \Psi D < \Psi N , the second inequality (A.19) satisfies the determinacy condition

(A.9) while the first inequality (A.18) does not.

Note that if we assume the ELT equilibrium exists without any policy intervention,

(A.11) indicates:

\Psi \equiv (1 - \beta pU) - 
pU

1 - pU

\kappa 

\sigma 
< 0. (A.20)

Therefore, the threshold \Psi is negative. (End of Proof)

A.4 Proof of proposition 4

Taking the derivative of \Psi with respect to pU shows

\partial \Psi 

\partial pU
=  - \beta  - \kappa 

\sigma 

1

(pU  - 1)2
< 0.

Therefore, the threshold level \Psi is decreasing in transition probability pU . (End of

Proof)

A.5 Proof of proposition 5

\Lambda is equal to 0 when \lambda w = 0. The ELT equilibrium exists if and only if

\^\pi U = log \beta 
\Phi 

\Upsilon 
<

log \beta 

\phi \pi 

(A.21)

\leftrightarrow \Phi 

\Upsilon 
>

1

\phi \pi 

. (A.22)

Note that \Phi is positive from our assumption. Since the right-hand side of the inequality

(A.22) is positive, \Upsilon must be also positive (\Upsilon > 0). Then, the condition can be arranged
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as

\Phi \phi \pi  - \Upsilon > 0. (A.23)

(End of Proof)

A.6 Proof of proposition 6

The ELT equilibrium does not exist if and only if the following inequality holds:

\^\pi U \geq log \beta 

\phi \pi 

. (A.24)

Equation \^\pi U = log \beta (\Phi  - \Omega \Lambda )[(1 - \Omega )\Lambda + \Upsilon ] - 1 can be regarded as a hyperbola taking

\^\pi U in the vertical axis and \Lambda in the horizontal axis. The equation can be arranged as

\^\pi U +
\Omega 

1 - \Omega 
log \beta =

\Omega 

1 - \Omega 
log \beta 

\Upsilon +
1 - \Omega 

\Omega 
\Phi 

(1 - \Omega )\Lambda + \Upsilon 
. (A.25)

Following inequality shows that the horizontal asymptote of the hyperbola is higher

than the threshold level:

log \beta 

\phi \pi 

<  - \Omega 

1 - \Omega 
log \beta . (A.26)

There are two regions of \Lambda that satisfies (A.24). The first region is

\Lambda \geq \Phi \phi \pi  - \Upsilon 

\Omega (\phi \pi  - 1) + 1
. (A.27)

However, above inequality contradicts the determinacy condition given in (A.9). The

second region is

\Lambda \leq  - \Upsilon 

1 - \Omega 
\equiv \~\Psi . (A.28)

Above region satisfies the determinacy condition. (End of Proof)
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A.7 Proof of proposition 7

An equilibrium exists in the crisis state if and only if the following inequalities are

satisfied in each case:

\^\pi L =

 - rnL
1 - p\ast L

\kappa 

\sigma 

 - (1 - \beta p\ast L) - 
\phi \pi  - p\ast L
1 - p\ast L

\kappa 

\sigma 

\geq log \beta 

\phi \pi 

, (A.29)

\^\pi L =

log \beta  - rnL
1 - p\ast L

\kappa 

\sigma 

 - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma 

<
log \beta 

\phi \pi 

. (A.30)

(i) When the ZLB does not bind

The first inequality can be modified as

\kappa 

\sigma 
\kappa 

\sigma 
(p\ast L  - \phi \pi ) - (1 - \beta p\ast L)(1 - p\ast L)

\geq  - log \beta 

\phi \pi rnL
. (A.31)

The denominator of the left-hand side in inequality (A.31) is negative under standard

calibration:

 - 
\Bigl[ 
p\ast L  - 1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) \Bigr] 2
 - \kappa \phi \pi 

\beta \sigma 
 - 1

\beta 
+

1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

< 0. (A.32)

Therefore inequality (A.31) can be modified as

\kappa 

\sigma 
(p\ast L  - \phi \pi ) - (1 - \beta p\ast L)(1 - p\ast L) \leq 

\kappa 

\sigma 

\phi \pi 

log \beta 
( - rnL). (A.33)
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The solution to the inequality is

p\ast L \leq 1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 
 - 

\sqrt{} 
1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

 - 1

\beta 
 - \kappa 

\sigma \beta 
\phi \pi +

\kappa 

\sigma \beta 

\phi \pi 

log \beta 
rnL\underbrace{}  \underbrace{}  

\equiv p\dagger 

, (A.34)

or

1

2

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 
+

\sqrt{} 
1

4

\Bigl( 
1 +

1

\beta 
+

\kappa 

\sigma \beta 

\Bigr) 2

 - 1

\beta 
 - \kappa 

\sigma \beta 
\phi \pi +

\kappa 

\sigma \beta 

\phi \pi 

log \beta 
rnL\underbrace{}  \underbrace{}  

\equiv p\dagger 

\leq p\ast L. (A.35)

Since 0 < p\dagger and 1 < p\dagger , the condition is

0 < p\ast L \leq p\dagger . (A.36)

(ii) When the ZLB binds

The second inequality can be modified as

\kappa 

\sigma 
\kappa 

\sigma 
p\ast L  - (1 - \beta p\ast L)(1 - p\ast L)

<
log \beta 

\phi \pi (log \beta  - rnL)
. (A.37)

Inequality (A.37) holds if and only if the following two inequalities are satisfied:

 - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma \underbrace{}  \underbrace{}  
\equiv  - \Psi F

< 0, (A.38)

and

\kappa 

\sigma 
p\ast L  - (1 - \beta p\ast L)(1 - p\ast L) >

\kappa 

\sigma 

\phi \pi 

log \beta 
( - rnL) +

\kappa 

\sigma 
\phi \pi . (A.39)

Inequalities (A.38) and (A.39) can be solved as

p\ast L < p or \=p < p\ast L, (A.40)

and

p\dagger < p\ast L < p\dagger . (A.41)
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Since p\dagger < p < 1 < p\dagger , the conditions can be summarized to

p\dagger <p
\ast 
L < p. (A.42)

Combining the two conditions (A.36) and (A.42), we obtain the condition as follows:

0 < p\ast L < p. (A.43)

Note that p\ast L < p < pU implies \Psi < 0 < \Psi F . (End of Proof)

A.8 Proof of proposition 8

Let us denote the equilibrium inflation and output as \^\pi NI
L and \^yNI

L (NI stands for ``No

Intervention"") in the case where the tax rate does not respond to inflation (\Lambda = 0).

Inflation rate in the crisis state is higher compared to the case without the tax rule if

the following inequality holds:

\^\pi L > \^\pi NI
L . (A.44)

Since we have restricted our focus to the case where the ZLB binds in the crisis state,

we can modify the condition as

log \beta  - rnL
1 - p\ast L

\kappa 

\sigma 

\Lambda  - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma 

>

log \beta  - rnL
1 - p\ast L

\kappa 

\sigma 

 - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma 

. (A.45)

The numerator in both sides are positive while the denominator in the right-hand side

( - \Psi F ) is negative under the assumption p\dagger \leq p\ast L < p from (A.38). Therefore, above

inequality can be solved as

\Lambda < 0 or (1 - \beta p\ast L) - 
p\ast L

1 - p\ast L

\kappa 

\sigma 
< \Lambda . (A.46)

The first condition \Lambda < 0 is satisfied when the fiscal authority sets \Lambda \leq \Psi to avoid

the ELT equilibrium since \Psi < 0. Therefore, as long as the fiscal authority targets to

prevent the ELT equilibrium, \^\pi L > \^\pi NI
L holds. (End of Proof)
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B Models with Different Tax Instruments

This Appendix provides a full description of the optimization problem and the condi-

tions to prevent the ELT equilibrium with different tax instruments. For completeness,

dividend tax and consumption tax are also included as the fiscal authority's target in

addition to the labor income tax. In the following analysis, steady state tax rates are

calibrated to \tau w = 0.2, \tau c = 0.2, and \tau d = 0.2 respectively.

B.1 Optimization problem

B.1.1 Household

A representative household maximizes its lifetime utility subject to the budget con-

straint:

U = \BbbE t

\infty \sum 
s=0

\beta s
\Bigl[ c1 - \sigma 

t+s  - 1

1 - \sigma 
 - 
l\eta +1
t+s  - 1

\eta + 1

\Bigr] 
,

(1 + \tau c,t)ct +
bt
Rt

= (1 - \tau w,t)wtlt +
bt - 1

\Pi t

+ (1 - \tau d,t)dt. (B.1)

The Lagrangian can be set up as follows:

\scrL = \BbbE t

\infty \sum 
s=0

\Bigl\{ 
\beta s
\Bigl[ c1 - \sigma 

t+s  - 1

1 - \sigma 
 - 
l\eta +1
t+s  - 1

\eta + 1

\Bigr] 
 - \mu t+s

\Bigl[ 
(1 + \tau c,t+s)ct+s

+
bt+s

Rt+s

 - (1 - \tau w,t+s)wt+slt+s  - 
bt+s - 1

\Pi t+s

 - (1 - \tau d,t+s)ft+s  - \tau t+s

\Bigr] \Bigr\} 
. (B.2)

Household takes prices \{ wt, Pt, Rt\} \infty t=0 as given. The first order conditions can be derived

as

w/r ct+s : \beta sc - \sigma 
t+s  - \mu t+s(1 + \tau c,t+s) = 0, (B.3)

w/r lt+s :  - \beta sl\eta t+s + \mu t+s(1 - \tau w,t+s)wt+s = 0, (B.4)

w/r bt+s :  - \mu t+s

Rt+s

+ \BbbE t+s
\mu t+s+1

\Pi t+s+1

= 0. (B.5)
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Equilibrium conditions are

c - \sigma 
t

1 + \tau c,t
= \beta Rt\BbbE t

\Bigl[ c - \sigma 
t+1

1 + \tau c,t+1

1

\Pi t+1

\Bigr] 
, (B.6)

c - \sigma 
t

l\eta t
=

1 + \tau c,t
1 - \tau w,t

1

wt

. (B.7)

B.1.2 Firms

The optimization problem for the final goods producer is

max
\{ yt,yi,t\} 

Ptyt  - 
\int 1

0

Pi,tyi,tdi - \lambda 
\Bigl[ 
yt  - 

\Bigl( \int 1

0

y
\theta  - 1
\theta 

i,t di
\Bigr) \theta 

\theta  - 1
\Bigr] 
. (B.8)

First order conditions are

w/r yt : Pt = \lambda , (B.9)

w/r yi,t : Pi,t = \lambda 
\Bigl[ \int 1

0

y
\theta  - 1
\theta 

i,t di
\Bigr] 1

\theta  - 1
y
 - 1

\theta 
i,t . (B.10)

Substituting out the Lagrange multiplier, we obtain

yi,t =
\Bigl( Pi,t

Pt+s

\Bigr)  - \theta 

yt, (B.11)

Pt =
\Bigl( \int 1

0

P 1 - \theta 
i,t di

\Bigr) 1
1 - \theta 
. (B.12)

The optimization problem for the intermediate goods producers are

max
\{ yi,t+s,Pi,t+s,li,t+s\} \infty t=0

\BbbE t

\infty \sum 
s=0

Qc,t+s(1 - \tau d,t+s)di,t+s, (B.13)

s.t. di,t+s =
Pi,t+s

Pt+s

yi,t+s  - wt+sli,t+s  - 
\psi 

2

\Bigl( Pi,t+s

Pi,t+s - 1

 - 1
\Bigr) 2

yt+s, (B.14)

yi,t+s = li,t+s, (B.15)

yi,t+s =
\Bigl( Pi,t+s

Pt+s

\Bigr)  - \theta 

yt+s. (B.16)

where the stochastic discount factor is defined as

Qc,t+s \equiv \beta s c - \sigma 
t+s

1 + \tau c,t+s

. (B.17)
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Note that the consumption tax rate is included in the stochastic discount factor. We

can set up the Lagrangian as

\scrL = Et

\infty \sum 
s=0

\Bigl\{ 
Qc,t+s(1 - \tau d,t+s)

\Bigl[ Pi,t+s

Pt+s

yi,t+s  - wt+sli,t+s  - 
\psi 

2

\Bigl( Pi,t+s

Pi,t+s - 1

 - 1
\Bigr) 2

yt+s

\Bigr] 
 - \mu t+s(yi,t+s  - li,t+s) - \phi t+s

\Bigl( 
yi,t+s  - 

\Bigl( Pi,t+s

Pt+s

\Bigr)  - \theta 

yt+s

\Bigr) \Bigr\} 
. (B.18)

First order conditions of the optimization problem for the firms are

w/r li,t : \mu t  - Qc,t(1 - \tau d,t)wt = 0, (B.19)

w/r yi,t : Qc,t(1 - \tau d,t)
Pi,t

Pt

 - \mu t  - \phi t = 0, (B.20)

w/r Pi,t : Qc,t(1 - \tau d,t)
\Bigl[ yi,t
Pt

 - \psi 
\Bigl( Pi,t

Pi,t - 1

 - 1
\Bigr) yt
Pi,t - 1

\Bigr] 
 - \theta \phi t

\Bigl( Pi,t

Pt

\Bigr) \theta yt
Pi,t

= \BbbE t

\Bigl[ 
Qc,t+1(1 - \tau d,t+1)\psi 

\Bigl( Pi,t+1

Pi,t

 - 1
\Bigr) \Bigl( 

 - Pi,t+1

P 2
i,t

\Bigr) 
yt+1

\Bigr] 
. (B.21)

Substituting out the Lagrange multipliers and imposing symmetry across firms, we can

derive the Philips curve as

\psi (\Pi t  - 1)\Pi t  - \theta wt + \theta  - 1 = \beta \BbbE t

\Bigl[ c - \sigma 
t+1

c - \sigma 
t

yt+1

yt

1 - \tau d,t+1

1 - \tau d,t
\psi (\Pi t+1  - 1)\Pi t+1

\Bigr] 
. (B.22)

We can observe that both consumption tax and dividend tax are included in the PC.

B.1.3 Central Bank and Fiscal Authority

The central bank sets the interest rate following the standard Taylor rule. The net

nominal interest rate is bounded below by zero:

Rt = max
\Bigl[ 
1,

1

\beta 
\Pi \phi \pi 

t

\Bigr] 
. (B.23)

The government's budget constraint with consumption tax, dividend tax, and labor

income tax is

bt
Rt

+ \tau c,tct + \tau w,twtlt + \tau d,tdt =
bt - 1

\Pi t

+ gt. (B.24)
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It is further assumed that the government spending is determined endogenously. Namely,

the total amount of tax revenue constrains the amount of goods that the fiscal authority

purchases:

\tau c,tct + \tau w,twtlt + \tau d,tdt = gt. (B.25)

Therefore, the fiscal authority does not issue bonds in the equilibrium (bt = 0).

B.2 Equilibrium conditions

The complete set of equilibrium conditions with eleven variables \{ ct, yt, lt, dt, gt,
wt,\Pi t, Rt, \tau w,t, \tau c,t, \tau d,t\} are as follows:

c - \sigma 
t

1 + \tau c,t
= \beta Rt\BbbE t

\Bigl[ c - \sigma 
t+1

1 + \tau c,t+1

1

\Pi t+1

\Bigr] 
, (B.26)

c - \sigma 
t

l\eta t
=

1 + \tau c,t
1 - \tau w,t

1

wt

, (B.27)

c - \sigma 
t

1 + \tau c,t
(1 - \tau d,t)

\Bigl[ 
\psi (\Pi t  - 1)\Pi t  - \theta wt + \theta  - 1

\Bigr] 
= \beta \BbbE t

\Bigl[ c - \sigma 
t+1

1 + \tau c,t+1

(1 - \tau d,t+1)\psi (\Pi t+1  - 1)\Pi t+1
yt+1

yt

\Bigr] 
, (B.28)

yt = lt, (B.29)

dt = yt  - wtlt  - 
\psi 

2
(\Pi t  - 1)2yt, (B.30)

Rt = max
\Bigl[ 
1,

1

\beta 
\Pi \phi \pi 

t

\Bigr] 
, (B.31)

yt = ct + gt +
\psi 

2
(\Pi t  - 1)2yt, (B.32)

gt = \tau c,tct + \tau w,twtlt + \tau d,tdt, (B.33)

\tau c,t = \tau c\Pi 
\lambda c
t , \tau w,t = \tau w\Pi 

\lambda w
t , \tau d,t = \tau d\Pi 

\lambda d
t . (B.34)
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Equilibrium conditions other than the tax rules can be summarized to the following

four equations with four variables:

c - \sigma 
t

1 + \tau c,t
= \beta Rt\BbbE t

\Bigl[ c - \sigma 
t+1

1 + \tau c,t+1

1

\Pi t+1

\Bigr] 
, (B.35)

1 - \tau d,t
1 + \tau c,t

\Bigl[ 
\psi (\Pi t  - 1)\Pi t  - \theta 

1 + \tau c,t
1 - \tau w,t

c\sigma t y
\eta 
t + \theta  - 1

\Bigr] 
= \beta \BbbE t

\Bigl[ c - \sigma 
t+1

c - \sigma 
t

1 - \tau d,t+1

1 + \tau c,t+1

yt+1

yt
\psi (\Pi t+1  - 1)\Pi t+1

\Bigr] 
, (B.36)

Rt = max
\Bigl[ 
1,

1

\beta 
\Pi \phi \pi 

t

\Bigr] 
, (B.37)

(1 - \tau d,t)yt

\Bigl[ 
1 - \psi 

2
(\Pi t  - 1)2

\Bigr] 
= (1 + \tau c,t)ct + (\tau w,t  - \tau d,t)

1 + \tau c,t
1 - \tau w,t

c\sigma t y
\eta +1
t . (B.38)

Steady state values are

RTSS =
1

\beta 
, (B.39)

yTSS = (1 + \tau c)
\sigma 

\eta +\sigma 

\Bigl[ 
1 - \tau d  - (\tau w  - \tau d)

\theta  - 1

\theta 

\Bigr]  - \sigma 
\eta +\sigma 

\Bigl( \theta  - 1

\theta 

1 - \tau w
1 + \tau c

\Bigr) 1
\eta +\sigma 

, (B.40)

cTSS = (1 + \tau c)
 - \eta 

\eta +\sigma 

\Bigl[ 
1 - \tau d  - (\tau w  - \tau d)

\theta  - 1

\theta 

\Bigr] \eta 
\eta +\sigma 

\Bigl( \theta  - 1

\theta 

1 - \tau w
1 + \tau c

\Bigr) 1
\eta +\sigma 

. (B.41)

Log-linearized equilibrium conditions are

\^ct = \BbbE t\^ct+1  - 
1

\sigma 
(\^it  - \BbbE t\^\pi t+1) - 

1

\sigma 

\tau c
1 + \tau c

(\^\tau c,t  - \BbbE t\^\tau c,t+1), (B.42)

\^\pi t = \beta \BbbE t\^\pi t+1 + \sigma 
\theta  - 1

\psi 
\^ct + \eta 

\theta  - 1

\psi 
\^yt +

\theta  - 1

\psi 

\tau c
1 + \tau c

\^\tau c,t  - 
\theta  - 1

\psi 

\tau w
1 - \tau w

\^\tau w,t, (B.43)

\^it = max[log \beta , \phi \pi \^\pi t], (B.44)

\gamma y\^yt = \gamma c\^ct + \gamma \tau ,c\^\tau c,t + \gamma \tau ,w\^\tau w,t + \gamma \tau ,d\^\tau d,t, (B.45)

\^\tau c,t = \lambda c\^\pi t, \^\tau w,t = \lambda w\^\pi t, \^\tau d,t = \lambda d\^\pi t, (B.46)

where

\gamma y \equiv 1 - \tau d  - (\eta + 1)(\tau w  - \tau d)
\theta  - 1

\theta 
, \gamma c \equiv (1 + \tau c)

cTSS

yTSS

+ \sigma (\tau w  - \tau d)
\theta  - 1

\theta 
,

\gamma \tau ,c \equiv 
\Bigl[ 
(1 + \tau c)

cTSS

yTSS

+ (\tau w  - \tau d)
\theta  - 1

\theta 

\Bigr] \tau c
1 + \tau c

, \gamma \tau ,w \equiv \theta  - 1

\theta 

\tau w
1 - \tau w

, \gamma \tau ,d \equiv 
1

\theta 
\tau d.
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Above equilibrium conditions can be further summarized to following equations:

\^yt = \BbbE t\^yt+1  - 
1

\sigma 
(max[log \beta , \phi \pi \^\pi t] - \BbbE t\^\pi t+1) +

\Bigl( \gamma \tau ,c
\gamma y

 - 1

\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

\Bigr) 
\^\tau c,t +

\gamma \tau ,w
\gamma y

\^\tau w,t

+
\gamma \tau ,d
\gamma y

\^\tau d,t +
\Bigl( 1
\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

 - \gamma \tau ,c
\gamma y

\Bigr) 
\BbbE t\^\tau c,t+1  - 

\gamma \tau ,w
\gamma y

\BbbE t\^\tau w,t+1  - 
\gamma \tau ,d
\gamma y

\BbbE t\^\tau d,t+1, (B.47)

\^\pi t = \beta \BbbE t\^\pi t+1 +
\theta  - 1

\psi 

\Bigl( 
\eta + \sigma 

\gamma y
\gamma c

\Bigr) 
\^yt +

\theta  - 1

\psi 

\Bigl( \tau c
1 + \tau c

 - \sigma 
\gamma \tau ,c
\gamma c

\Bigr) 
\^\tau c,t

 - \theta  - 1

\psi 

\Bigl( 
\sigma 
\gamma \tau ,w
\gamma c

+
\tau w

1 - \tau w

\Bigr) 
\^\tau w,t  - \sigma 

\theta  - 1

\psi 

\gamma \tau ,d
\gamma c

\^\tau d,t, (B.48)

\^\tau c,t = \lambda c\^\pi t, \^\tau w,t = \lambda w\^\pi t, \^\tau d,t = \lambda d\^\pi t. (B.49)

After substitution, the equilibrium conditions simplify to the following EE and PC with

two variables \^\pi t and \^yt:

\^yt = \xi \^\pi t + \BbbE t\^yt+1  - 
1

\sigma 
(max[log \beta , \phi \pi \^\pi t] - \BbbE t\^\pi t+1) - \xi \BbbE t\^\pi t+1, (B.50)

\^\pi t = \kappa \^yt  - \zeta \^\pi t + \beta \BbbE t\^\pi t+1, (B.51)

where \kappa \equiv \theta  - 1

\psi 

\Bigl( 
\eta + \sigma 

\gamma y
\gamma c

\Bigr) 
,

\xi \equiv 
\Bigl( \gamma \tau ,c
\gamma y

 - 1

\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

\Bigr) 
\lambda c +

\gamma \tau ,w
\gamma y

\lambda w +
\gamma \tau ,d
\gamma y

\lambda d,

\zeta \equiv \theta  - 1

\psi 

\Bigl( 
\sigma 
\gamma \tau ,c
\gamma c

 - \tau c
1 + \tau c

\Bigr) 
\lambda c +

\theta  - 1

\psi 

\Bigl( 
\sigma 
\gamma \tau ,w
\gamma c

+
\tau w

1 - \tau w

\Bigr) 
\lambda w + \sigma 

\theta  - 1

\psi 

\gamma \tau ,d
\gamma c
\lambda d.

Equations (B.50) and (B.51) are identical to equations (34) and (35) in the main article

with different definitions for \xi and \zeta . Therefore, all propositions hold for models in this

Appendix by replacing \Lambda with

\Lambda \equiv \xi \kappa  - \zeta =
\theta  - 1

\psi 

\Bigl[ 
\eta 
\Bigl( \gamma \tau ,c
\gamma y

 - 1

\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

\Bigr) 
\lambda c +

\Bigl( 
\eta 
\gamma \tau ,w
\gamma y

 - \tau w
1 - \tau w

\Bigr) 
\lambda w + \eta 

\gamma \tau ,d
\gamma y

\lambda d

\Bigr] 
.

Note that equations in the main article are particular cases with \tau c = 0, \gamma \tau ,c = 0, \tau d = 0,

and \gamma \tau ,d = 0.
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B.3 Preventing the ELT equilibrium

Proposition 3 in the main article claims that the fiscal authority prevents the ELT

equilibrium if the tax response parameters satisfy the following condition:

\Lambda \leq 1 - \beta pU  - \kappa 

\sigma 

pU
1 - pU

\equiv \Psi (B.52)

In the following subsubsections, we discuss how the use of different tax instruments

affects the equilibrium outcome.

B.3.1 Consumption tax rate adjustment

Changes in the consumption tax rate operate through the demand side, while it can

prevent the ELT equilibrium as long as the utility function of the representative house-

hold is not a logarithmic utility. Let us set \lambda w and \lambda d to zero.

(i) When \sigma = 1

The utility function takes the form of log, therefore income effect and substitution effect

perfectly offset each other. This is reflected in the coefficients:

\gamma \tau ,c
\gamma y

 - 1

\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

= 0

on \lambda c. Therefore, altering \lambda c cannot affect the equilibrium, and whether the ELT equi-

librium exists or not does not depend on the choice of \lambda c.

(ii) When \sigma \not = 1

Inequality (B.52) simplifies to

\lambda c \leq  - \psi 

(\theta  - 1)\eta 

\Bigl( 1
\sigma 

\tau c
1 + \tau c

\gamma c
\gamma y

 - \gamma \tau ,c
\gamma y

\Bigr)  - 1

\Psi \equiv \Psi c < 0 (B.53)

Since \Psi c is negative, the fiscal authority raises the consumption tax rate in response to

a decrease in the inflation rate.
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B.3.2 Dividend tax rate adjustment

The dividend tax rate operates through the demand side and affects household income.

Let us set \lambda w and \lambda c equal to zero. Then, the condition (B.52) simplifies to

\lambda d \leq 
\psi 

(\theta  - 1)\eta 

\gamma y
\gamma \tau ,d

\Psi \equiv \Psi d < 0. (B.54)

Since \Psi d is negative, the fiscal authority raises the dividend tax rate in response to a

decline in the inflation rate.

The mechanism through which the demand-side policy affects the equilibrium is

as follows. The negative \Psi d implies that an increase in inflation causes the dividend

tax rate to decline and increases household income. When the ZLB does not bind,

the increase in consumption induced by this increase in income partially offsets the

decline in consumption caused by the increase in real interest rate through intertemporal

substitution.

Alternatively, when the ZLB binds, the Taylor rule is inactive, and an increase

in inflation decreases the real interest rate, which induces the household to increase

current consumption. However, in addition to the increase in consumption according

to the household's intertemporal substitution, the increase in income caused by the

decline in the dividend tax rate also operates to increase consumption.

Changes in the dividend tax rate also affect the PC. When the inflation rate rises,

output increases, driven by the rise in household income. This induces the household

to increase its labor supply, which adds further inflationary pressure.

B.3.3 Combining different tax rates

We have confirmed that both supply-side and demand-side policies affect labor supply

and consumption in different ways. Although we have examined each tax individually,

we can combine different taxes to achieve our goal.

Let us focus on the labor income tax and the dividend tax. Any combination of \lambda w

and \lambda d that satisfies inequality (B.52) can prevent the ELT equilibrium. The condition

stated in proposition 3 of the main article can be rearranged as

\lambda d \leq 
\gamma y
\gamma \tau ,d

\Bigl( 1
\eta 

\tau w
1 - \tau w

 - \gamma \tau ,w
\gamma y

\Bigr) 
\lambda w +

\gamma y
\gamma \tau ,d

\psi 

(\theta  - 1)\eta 
\Psi . (B.55)

Figure 1 displays the area that satisfies inequality (B.55). Both the edge and the
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Figure 1: Parameter space where the ELT equilibrium does not exist.

area in gray depict the parameter space where the ELT equilibrium does not exist. Any

linear combination \mu \Psi w + (1 - \mu )\Psi d lies on the edge and therefore satisfies (B.55). For

simplicity, let us restrict our focus on the case with 0 \leq \mu \leq 1.

The mechanism through which the inflation-sensitive tax rule prevents the ELT equi-

librium can be summarized as follows. The existence of the ELT equilibrium requires

both inflation and output to fall simultaneously. However, the proposed tax rule coun-

teracts the decline in output when the inflation rate declines by inducing the household

to increase its labor supply. If the tax rule drives the household to supply more labor,

ceteris paribus, firms are operating at too low a marginal revenue product of their labor

input, and the monopolistic competitor reacts by raising prices. Therefore, the private

agents' belief that a decline in inflation and output occurs without any changes in the

fundamentals becomes inconsistent under the fiscal authority's commitment.

B.4 Endogenous government spending

In the benchmark case, the labor income tax rate was the only tax instrument available

for the fiscal authority. In such a case, whether government spending gt increases or

decreases according to changes in the inflation rate was determined by \lambda w.

However, when the fiscal policy manipulates more than two different tax rates,

whether gt increases or not depends on the combination of the tax response parameters.

This subsection investigates how the government spending gt is affected by the choice

of tax response parameters.
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B.4.1 Increasing government spending when inflation becomes lower

Let us assume that the fiscal authority adjusts both \lambda w and \lambda d as its policy instrument

and chooses \mu that satisfies \mu \Psi w + (1  - \mu )\Psi d. It is not obvious whether government

spending increases or decreases in response to a decline in inflation since spending is

determined endogenously.

On the one hand, the more the fiscal authority relies on the use of the labor income

tax rate (higher \mu ) to prevent the ELT equilibrium, the more government spending is

likely to decline due to the reduction in tax revenue. On the other hand, relying more

on the dividend tax rate (lower \mu ) increases government spending as inflation declines.

Therefore, the fiscal authority can control the variation in government spending by

combining the labor income tax and the dividend tax.

Log-linearizing the government budget constraint (B.24) around the deterministic

steady state and substituting out the rest of the endogenous variables, we obtain the

following representation:

\^gt = \Gamma \pi \^\pi t + \Gamma y\^yt, (B.56)

where \Gamma \pi \equiv 

\Bigl( \tau wwTSSlTSS

gTSS

 - 1 - 2wTSS

1 - wTSS

\tau w
1 - \tau w

\Bigr) 
\lambda w +

\tau ddTSS

gTSS

\lambda d

1 - 1 - 2wTSS

1 - wTSS

\sigma 
gTSS

cTSS

,

\Gamma y \equiv 
2 +

1 - 2wTSS

1 - wTSS

\Bigl( 
\eta  - \sigma 

yTSS

cTSS

\Bigr) 
1 - 1 - 2wTSS

1 - wTSS

\sigma 
gTSS

cTSS

.

\Gamma y is positive under standard calibration, which implies that controlling for \^\pi t, \^gt in-

creases as \^yt increases. By imposing the restriction \Gamma \pi < 0, the fiscal authority can

ensure that \^gt increases as \^\pi t declines, controlling for \^yt.

Although one of the main findings of this study is that we can prevent ELT without

increasing \^gt, the above restriction may be desirable when the fiscal authority prefers to

avoid a decrease in government spending when the economy is experiencing deflation.

For the government spending to be decreasing in inflation, fiscal authority is required

to put a larger weight on the dividend tax than the labor income tax.
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B.4.2 Increasing output in the crisis state

In the main article, we confirmed that fiscal authority cannot improve both output and

inflation in the crisis state if it adjusts only one tax instrument. Here we derive the

following condition under which both inflation and output improve in the crisis state

by allowing the fiscal authority to adjust more than two tax instruments.

Proposition. Output in the crisis state is higher than where the tax rates do not respond

to inflation if the fiscal authority chooses \lambda w and \lambda d to satisfy the following condition:

\lambda d <  - 
\Psi F

\Bigl( 
\sigma 
\gamma \tau ,w
\gamma c

+
\tau w

1 - \tau w

\Bigr) 
+ (1 - p\ast L\beta )

\Bigl( 
\eta 
\gamma \tau ,w
\gamma y

 - \tau w
1 - \tau w

\Bigr) 
\Psi F\sigma 

\gamma \tau ,d
\gamma c

+ (1 - p\ast L\beta )\eta 
\gamma \tau ,d
\gamma y

\lambda w, (B.57)

where \Psi F \equiv (1 - \beta p\ast L) - 
p\ast L

1 - p\ast L

\kappa 

\sigma 
. (B.58)

Proof. Output in the crisis state is higher compared to the case where the tax rates do

not respond to inflation (\Lambda = 0) if the following inequality holds:

\^yL > \^yNI
L . (B.59)

Since we have restricted our focus on the case where the ZLB binds in the crisis state

(\Psi F > 0), \Lambda < \Psi F holds from \Psi < 0 < \Psi F . We can modify the condition as

1 - p\ast L\beta + \zeta 

\kappa 
\times 

log \beta  - rnL
1 - p\ast L

\kappa 

\sigma 

\Lambda  - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma 

>

log \beta  - rnL
1 - p\ast L

\kappa 

\sigma 

 - (1 - \beta p\ast L) +
p\ast L

1 - p\ast L

\kappa 

\sigma 

\times 1 - p\ast L\beta 

\kappa 

\leftrightarrow 1 - p\ast L\beta + \zeta 

\Lambda  - \Psi F
>  - 1 - p\ast L\beta 

\Psi F

\leftrightarrow \zeta \Psi F <  - \Lambda (1 - p\ast L\beta ). (B.60)

The inequality can be arranged as

\lambda d <  - 
\Psi F

\Bigl( 
\sigma 
\gamma \tau ,w
\gamma c

+
\tau w

1 - \tau w

\Bigr) 
+ (1 - p\ast L\beta )

\Bigl( 
\eta 
\gamma \tau ,w
\gamma y

 - \tau w
1 - \tau w

\Bigr) 
\Psi F\sigma 

\gamma \tau ,d
\gamma c

+ (1 - p\ast L\beta )\eta 
\gamma \tau ,d
\gamma y

\lambda w. (B.61)
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Figure 2: Parameter space where the output is higher in the crisis state with policy
intervention.

Note: The blue area shows the parameter space where output is higher in the crisis state compared to

where the tax rates do not respond to inflation at all.

Figure 2 depicts the region where the proposed tax rule mitigates the decline in

output in the crisis state. The result shows that adjusting both the labor income tax

and the dividend tax is desirable when the economy suffers from real interest rate

shocks.
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C Models with Alternative Fiscal Policies

In the baseline model, we assumed that the government debt outstanding is always set

equal to zero. In this Appendix, we investigate two alternative cases: the case with

lump-sum transfer and the case with government debt targeting.

C.1 A model with lump-sum transfer

This subsection shows that introducing an inflation-sensitive tax rule prevents the ELT

equilibrium when the lump-sum transfer is available. We assume that government

spending is set proportional to the output.

Let us consider a case where the lump-sum transfer is used to balance the budget.

Household's budget constraint is

(1 + \tau c,t)ct +
bt
Rt

= (1 - \tau w,t)wtlt +
bt - 1

\Pi t

+ (1 - \tau d,t)dt  - \tau t. (C.1)

Assume that the government spending is set proportional to the output:

gt = sgyt, (C.2)

gt +
bt
Rt

=
bt - 1

\Pi t

+ \tau t + \tau c,tct + \tau w,twtlt + \tau d,tdt. (C.3)

Although Ricardian equivalence did not hold in the baseline model of the main article,

it holds with the lump-sum transfer and we can set bt = 0 without loss of generality.

The government budget simplifies to

sgyt = \tau t + \tau c,tct + \tau w,twtlt + \tau d,tdt. (C.4)

In this case, the lump-sum transfer instead of the government spending is determined
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endogenously. Equilibrium conditions can be summarized as

c - \sigma 
t

1 + \tau c,t
= \beta Rt\BbbE t

\Bigl[ c - \sigma 
t+1

1 + \tau c,t+1

1

\Pi t+1

\Bigr] 
, (C.5)

1 - \tau d,t
1 + \tau c,t

\Bigl[ 
\psi (\Pi t  - 1)\Pi t  - \theta 

1 + \tau c,t
1 - \tau w,t

c\sigma t y
\eta 
t + \theta  - 1

\Bigr] 
= \beta \BbbE t

\Bigl[ c - \sigma 
t+1

c - \sigma 
t

1 - \tau d,t+1

1 + \tau c,t+1

yt+1

yt
\psi (\Pi t+1  - 1)\Pi t+1

\Bigr] 
, (C.6)

ct =
\Bigl( 
1 - sg  - 

\psi 

2
(\Pi t  - 1)2

\Bigr) 
yt, (C.7)

Rt = max
\Bigl[ 
1,

1

\beta 
\Pi \phi \pi 

t

\Bigr] 
, (C.8)

\tau w,t = \tau w\Pi 
\lambda w
t , \tau c,t = \tau c\Pi 

\lambda c
t , \tau d,t = \tau d\Pi 

\lambda d
t . (C.9)

By log-linearizing these equations around the TSS, we obtain the following equilibrium

conditions:

\^ct = \BbbE t\^ct+1  - 
1

\sigma 
(\^it  - \BbbE t\^\pi t+1) - 

1

\sigma 

\tau c
1 + \tau c

(\^\tau c,t  - \BbbE t\^\tau c,t+1), (C.10)

\^\pi t = \beta \BbbE t\^\pi t+1 + \sigma 
\theta  - 1

\psi 
\^ct + \eta 

\theta  - 1

\psi 
\^yt +

\theta  - 1

\psi 

\tau c
1 + \tau c

\^\tau c,t  - 
\theta  - 1

\psi 

\tau w
1 - \tau w

\^\tau w,t, (C.11)

\^it = max[log \beta , \phi \pi \^\pi t], (C.12)

\^yt = \^ct, (C.13)

\^\tau w,t = \lambda w\^\pi t, (C.14)

\^\tau c,t = \lambda c\^\pi t. (C.15)

Above equations are identical to (B.42) -- (B.46) with parameters set to the following

values:

\gamma y = 1, \gamma c = 1, \gamma \tau ,w = \gamma \tau ,c = \gamma \tau ,d = 0. (C.16)

Therefore, all propositions established in the main article hold in the model discussed

in this Appendix by replacing \xi , \zeta and \Lambda to appropriate values. Note that \gamma \tau ,d = 0

indicates that the dividend tax does not affect the equilibrium outcome. This is because

changes in the dividend tax do not affect the marginal behavior of the representative

household as long as the aggregate demand is kept constant by the use of the lump-sum

transfer.
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Figure 3: Euler equation and Philips curve with lump-sum transfer.

Figure 3 shows the case where the tax response parameter is set to \lambda w = \Psi w and

others to zero. We can observe that only the supply side is affected by the introduction

of the tax rule since changes in the demand are isolated by the lump-sum transfer.

The case where the government spending is always zero (gt = 0) and the variation in

distortionary taxes is fully funded by the lump-sum transfer can be obtained by setting

sg = 0. Log-linearized equations (C.10) -- (C.15) are not affected by the choice of sg,

therefore the results remain unchanged if we assume balanced government spending.

C.2 A model with endogenous government debt

We assumed that the fiscal authority runs a balanced budget in the baseline model and

keeps government debt to zero at all periods. A natural question that arises here is

whether the results would be affected if we relax the balanced budget assumption and

allow the government debt to vary over time.

To address this question, we assume that the government spending is determined

by the following government debt targeting rule:

gt = sgyt

\Bigl( bt - 1

btarget

\Bigr) \phi b

. (C.17)

The parameter sg determines the ratio of government spending to output. The fiscal

authority sets the target level of government debt btarget equal to the steady state level

of government debt bTSS, which is determined by sg and \tau w as well as other parameters.

Let us assume that the lump-sum transfer is not available. As shown in the seminal
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paper of Leeper (1991), the parameter \phi b must be appropriately selected for a unique

equilibrium to exist. More concretely, the government spending rule must be designed

so that government debt does not follow an explosive path.

Let us further assume that \phi b < 0 is satisfied. Then, for a fixed level of output yt,

the fiscal authority reduces government expenditure gt when the government debt level

bt - 1 is higher than its target btarget.

In the rest of the analysis, the parameter is set to \phi b =  - 1. For simplicity, we

assume that the fiscal authority adjusts only the labor income tax rate and the steady

state tax rate is set to \tau w = 0.2, \tau d = 0, and \tau c = 0. In this case, equilibrium conditions

consist of the following equations:

c - \sigma 
t = \beta Rt\BbbE t

\Bigl[ 
c - \sigma 
t+1

1

\Pi t+1

\Bigr] 
, (C.18)

\psi (\Pi t  - 1)\Pi t  - 
\theta c\sigma t y

\eta 
t

1 - \tau w,t

+ \theta  - 1 = \beta \BbbE t

\Bigl[ c - \sigma 
t+1

c - \sigma 
t

yt+1

yt
\psi (\Pi t+1  - 1)\Pi t+1

\Bigr] 
, (C.19)

yt = ct + sgyt

\Bigl( bt - 1

btarget

\Bigr) \phi b

+
\psi 

2
(\Pi t  - 1)2yt, (C.20)

bt
Rt

+
\tau w,t

1 - \tau w,t

c\sigma t y
\eta +1
t =

bt - 1

\Pi t

+ sgyt

\Bigl( bt - 1

btarget

\Bigr) \phi b

, (C.21)

Rt = max
\Bigl[ 
1,

1

\beta 
\Pi \phi \pi 

t

\Bigr] 
. (C.22)

Equation (C.20) and (C.21) represent the aggregate resource constraint and the gov-

ernment budget constraint respectively. The steady state values can be calculated as

yTSS =
\Bigl[ \theta  - 1

\theta 
(1 - \tau w)

\Bigr] 1
\eta +\sigma 

(1 - sg)
 - \sigma 

\eta +\sigma , (C.23)

cTSS =
\Bigl[ \theta  - 1

\theta 
(1 - \tau w)

\Bigr] 1
\eta +\sigma 

(1 - sg)
\eta 

\eta +\sigma . (C.24)

The steady state value of the government debt can be derived from the government

budget constraint as

bTSS =
1

1 - \beta 

\Bigl[ 
\tau w
\theta  - 1

\theta 
 - sg

\Bigr] 
yTSS. (C.25)

The steady state amount of government debt outstanding is positive only if the right-

hand side of equation (C.25) is positive. In the remaining analysis, the spending ratio

is calibrated to sg = 0.16, which yields the debt-to-output ratio of bTSS/yTSS = 1.67.
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The log-linearized equilibrium conditions consist of following equations:

\^ct = \BbbE t\^ct+1  - 
1

\sigma 
(\^it  - \BbbE t\^\pi t+1), (C.26)

\^\pi t = \beta \BbbE t\^\pi t+1 + \sigma 
\theta  - 1

\psi 
\^ct + \eta 

\theta  - 1

\psi 
\^yt  - 

\theta  - 1

\psi 

\tau w
1 - \tau w

\^\tau w,t, (C.27)

\^it = max[log \beta , \phi \pi \^\pi t], (C.28)

\^\tau w,t = \lambda w\^\pi t, (C.29)

\^ct = \^yt  - 
sg

1 - sg
\phi b
\^bt - 1, (C.30)

\beta \gamma b\^bt = \gamma y,b\^yt  - \sigma 
\theta  - 1

\theta 
\tau w\^ct  - \gamma b\^\pi t + (\gamma b + sg\phi b)\^bt - 1 + \beta \gamma b\^it  - \gamma \tau ,w\^\tau t, (C.31)

where \gamma b \equiv 
bTSS

yTSS

, \gamma y,b \equiv sg  - (\eta + 1)
\theta  - 1

\theta 
\tau w.

After substitution, equilibrium conditions simplify to the following EE and PC with

three variables \^\pi t, \^yt and \^bt - 1:

\^yt = \BbbE t\^yt+1  - 
1

\sigma 
(max[log \beta , \phi \pi \^\pi t] - \BbbE t\^\pi t+1) +

sg
1 - sg

\phi b(\^bt - 1  - \^bt), (C.32)\Bigl( 
1 +

\theta  - 1

\psi 

\tau w
1 - \tau w

\lambda w

\Bigr) 
\^\pi t = (\sigma + \eta )

\theta  - 1

\psi 
\^yt + \beta \BbbE t\^\pi t+1  - \sigma 

\theta  - 1

\psi 

sg
1 - sg

\phi b
\^bt - 1, (C.33)

\beta \gamma b\^bt =
\Bigl( 
\gamma y,b  - \sigma 

\theta  - 1

\theta 
\tau w
\bigr) 
\^yt + \beta \gamma bmax[log \beta , \phi \pi \^\pi t] - (\gamma b + \gamma \tau ,w\lambda w)\^\pi t

+
\Bigl[ 
\sigma 
\theta  - 1

\theta 
\tau w

sg
1 - sg

\phi b + (\gamma b + sg\phi b)
\Bigr] 
\^bt - 1. (C.34)

Let us focus on the case where the economy fluctuates around the TSS. The ZLB

does not bind and monetary policy is active around the TSS. In this case, the equilib-

rium conditions can be expressed in the following state space representation:

B

\left[   \^bt

\BbbE t\^yt+1

\BbbE t\^\pi t+1

\right]   = C

\left[   \^bt - 1

\^yt

\^\pi t

\right]   , (C.35)
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where

B \equiv 

\left[     
 - sg
1 - sg

\phi b 1
1

\sigma 

0 0 \beta 

\beta \gamma b 0 0

\right]     ,

C \equiv 

\left[       
 - sg
1 - sg

\phi b 1
1

\sigma 
\phi \pi 

\sigma 
\theta  - 1

\psi 

sg
1 - sg

\phi b  - (\sigma + \eta )
\theta  - 1

\psi 
1 +

\theta  - 1

\psi 

\tau w
1 - \tau w

\lambda w

\sigma 
\theta  - 1

\theta 
\tau w

sg
1 - sg

\phi b + (\gamma b + sg\phi b) \gamma y,b  - \sigma 
\theta  - 1

\theta 
\tau w \beta \gamma b\phi \pi  - (\gamma b + \gamma \tau ,w\lambda w)

\right]       .

Since there are two control variables (\^yt, \^\pi t) and one predetermined variable (\^bt - 1), one

of the eigenvalues of C - 1B must lie outside the unit-circle and two of them within the

unit-circle.

The solution of the linear system can be represented as

\^yt = a1\^bt - 1, \^\pi t = a2\^bt - 1, \^bt = a3\^bt - 1. (C.36)

Assuming \lambda w = 0, the solution of the linear system can be obtained numerically1 as

follows: \left[   a1a2
a3

\right]   =

\left[    - 0.169

 - 0.005

0.910

\right]   . (C.37)

When there is no uncertainty, we can replace \BbbE t\^yt+1 = \^yt+1 = a1\^bt = a1a3\^bt - 1 = a3\^yt - 1

and \BbbE t\^\pi t+1 = \^\pi t+1 = a2\^bt = a2a3\^bt - 1 = a3\^\pi t - 1, which holds regardless of the value of

bt - 1.

To investigate how demand and supply are affected by the amount of debt out-

standing and the size of the tax response parameter, figure 4 shows the EE and PC

under different values of bt - 1 and \lambda w. As shown in the left-hand figure, fiscal authority

reduces government spending as bt - 1 becomes larger, which shifts the EE downwards

and the PC upwards. While the equilibrium inflation is little affected, the output is

depressed when there is a positive amount of government debt since the fiscal authority

1The program gensys.m by Sims (2002) is used to compute the solution.
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(a) Cases with different level of government
debt outstanding.
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(b) Cases with \^bt - 1 = 0 and different values of
\lambda w.

Figure 4: Euler equation and Philips curve with endogenous government debt around
the TSS.

cuts government spending. The key feature here is that both EE and PC shift in a

parallel manner, and the slope of these two equations are not affected by the level of
\^bt - 1.

The right-hand figure shows that changing \lambda w only affects the supply side. This

contrasts with the baseline model, where the demand curve was also affected by the

level of \lambda w. Since government spending is determined by equation (C.17), it is isolated

from the tax revenue; a marginal change in the tax revenue does not affect government

spending. Therefore, the demand curve remains unchanged. The key observation here

is that when the government debt fluctuates over time, the fiscal authority can isolate

the demand effects and the supply effects of the fiscal policy.

The above analysis has abstracted from the possibility of switching between the

targeted regime and the unintended regime. Simple models that do not include prede-

termined variables (bt - 1 in this case) are relatively straightforward to solve even with

the regime-switching structure. However, once a predetermined variable enters the

model, closed-form solutions are not available, and different algorithms are required

to solve the model (see Farmer et al. (2009)). A comprehensive study on ELTs with

government debt is left for future work.
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