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Appendix

A Symmetric equilibrium

A.1 Baseline model

Xt = C1−α
t Dα

t (A.1)
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t

1 + ϕ
(A.2)
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εdMCD
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Yt = Y C
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A.2 Two-sector model with durable goods

The symmetric equilibrium changes as follows. Durable goods follow the low of motion

Dt+1 = (1− δ)Dt + IDt . (A.23)

Equation (A.5) now reads as

Qt =
UD,t
UC,t

+ (1− δ)Et [Λt,t+1Qt+1] . (A.24)

Finally, the market clearing condition (A.21) in sector D becomes

Y D
t = IDt +

ϑd
2

(
ΠD
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)2
Y D
t . (A.25)
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A.3 Fully-fledged two-sector model

Xt = C1−α
t Dα

t (A.26)

Ct = Zt − ζSt−1 (A.27)
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1 = Et
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B Ramsey problem

In this section we outline the Ramsey problem in the stylized model of Section 2. For illus-
trative purposes, we focus on the simpler version of the model, e.g. without durable goods.
The symmetric equilibrium of the model is reported in Appendix A.1. The social planner
maximizes the present value of households’ utility subject to the equilibrium conditions of
the model, but does not have to follow an interest rate rule. We now report the Lagrangian
function of the optimization problem (B.1), the first-order conditions (B.2) and the steady
state procedure (B.3).1

B.1 Lagrangian function
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B.2 Ramsey planner’s first-order conditions

Differentiating the Lagrangian function reported in Section B.1 with respect to all the endoge-
nous variablesXt, Ct, Dt, UC,t, UD,t, Qt, UN,t,W
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1To derive the Ramsey first-order conditions we use the toolbox provided by Lopez-Salido and Levin
(2004) and Levin et al. (2006).
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t , Yt and setting the first derivatives equal to zero yields the following first-order
conditions:
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The Ramsey’s first-order conditions together with the 21 equations characterizing the sym-
metric equilibrium reported in Section A.1 (excluding the Taylor rule, the inflation aggregator
and the processes for the exogenous shocks) make a system of 43 dynamic equations in 43
unknowns (22 endogenous variables and 21 Lagrange multipliers). We approximate the so-
lution to this system by using the Dynare solver that takes a second-order Taylor expansion
around the Ramsey-optimal steady state, which we compute numerically as described in
Section B.3.

B.3 Steady-state

The steady-state values of all endogenous variables and Lagrange multipliers in the Ramsey
equilibrium are found simultaneously using a numerical procedure. In particular, the proce-
dure is designed to choose the values of C and ΠC that simultaneously solve equations (A.22)
and (B.11) evaluated at the steady state. The value of the remaining endogenous variables is
found recursively by evaluating equations in Section A.1 at the steady state, while the steady
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state values of the 21 Lagrange multipliers of the Ramsey problem are found by solving the
system of 21 equations (linear in the Lagrange multipliers) in 21 unknowns, obtained by
evaluating equations in Section (B.2) at the steady state. Note that value of ΠC defines the
optimal steady state inflation under the Ramsey policy.

C Robustness analysis in the stylized model

In Table C.1 we provide an analysis of robustness to different assumptions on the level and
sectoral distribution of price stickiness, and to different degrees of labor mobility in the
stylized model (building on cases (ii) and (iii) reported in Table 1). The inverse relationship
between the optimal τ and λ continues to hold.

λ ρr απ αy α∆y τ 100× ω

(i) Heterogeneous price stickiness ϑc = 90, ϑd = 30

∞ 1.0000 0.0081 0.0216 0.0000 0.3143 0.0003

3 1.0000 0.0080 0.0227 0.0000 0.3295 0.0003

1 1.0000 0.0084 0.0210 0.0000 0.3847 0.0005

0.5 1.0000 0.0090 0.0211 0.0000 0.4402 0.0005

0.10 1.0000 0.0102 0.0202 0.0000 0.5779 0.0009

(ii) Heterogeneous price stickiness ϑc = 60, ϑd = 0

∞ 1.0000 0.0040 0.0215 0.0000 0.0000 0.0002

3 1.0000 0.0041 0.0217 0.0000 0.0225 0.0002

1 1.0000 0.0042 0.0221 0.0000 0.0373 0.0002

0.5 1.0000 0.0043 0.0225 0.0000 0.0514 0.0003

0.10 1.0000 0.0044 0.0231 0.0000 0.0709 0.0003

(iii) Heterogeneous price stickiness ϑc = 120, ϑd = 0

∞ 1.0000 0.0076 0.0197 0.0000 0.0000 0.0002

3 1.0000 0.0077 0.0198 0.0000 0.0000 0.0003

1 1.0000 0.0079 0.0202 0.0000 0.0184 0.0003

0.5 1.0000 0.0082 0.0206 0.0000 0.0375 0.0003

0.10 1.0000 0.0085 0.0213 0.0000 0.0710 0.0003

Table C.1: Optimized monetary policy rules: robustness in the stylized model
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D Data

We define the durables sector as the a composite of durable goods and residential investments
whereas the nondurables sector comprises nondurables goods and services.

Series Definition Source Mnemonic
DURN Nominal Durable Goods BEA Table 2.3.5 Line 3
RIN Nominal Residential Investment BEA Table 1.1.5 Line 13
NDN Nominal Nondurable Goods BEA Table 2.3.5 Line 8
SN Nominal Services BEA Table 2.3.5 Line 13
PDUR Price Deflator, Durable Goods BEA Table 1.1.9 Line 4
PRI Price Deflator, Residential Investment BEA Table 1.1.9 Line 13
PND Price Deflator, Nondurable Goods BEA Table 1.1.9 Line 5
PS Price Deflator, Services BEA Table 1.1.9 Line 6
Y N Nominal GDP BEA Table 1.1.5 Line 1
PY Price Deflator, GDP BEA Table 1.1.9 Line 1
FFR Effective Federal Funds Rate FRED FEDFUNDS
NC Average Weekly Hours: Nondurable Goods and Services FRED CES3200000007-CES0800000007
ND Average Weekly Hours: Durable Goods and Construction FRED CES3100000007-CES2000000007
WC Average Hourly Earnings: Nondurable Goods and Services FRED CES3200000008-CES0800000008
WD Average Hourly Earnings: Durable Goods and Construction FRED CES3100000008-CES2000000008
POP Civilian Non-institutional Population, over 16 FRED CNP16OV
CE Civilian Employment, 16 over FRED CE16OV

Table D.1: Data Sources

D.1 Durables and Residential Investments

1. Sum nominal series: DURN +RIN = DRN

2. Calculate sectoral weights of deflators: ωD = DURN

DRN
; ωRI = RIN

DRN

3. Calculate Deflator: PD = ωDPDUR + ωRIPRI

4. Calculate Real Durable Consumption: D = DURN+RIN

PD

D.2 Nondurables and Services

1. Sum nominal series: NDN + SN = NSN

2. Calculate sectoral weights of deflators: ωND = NDN

NSN
; ωS = SN

NSN

3. Calculate Deflator: PC = ωNDPND + ωSPS

4. Calculate Real Nondurable Consumption: C = NDN+SN

PC
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D.3 Data transformation for Bayesian estimation

Variable Description Construction

POPindex Population index POP
POP2009:1

CEindex Employment index CE
CE2009:1

Y o Real per capita GDP ln

 YN

PY
POPindex

 100

IoD Real per capita consumption: durables ln
(

D
POPindex

)
100

Co Real per capita consumption: nondurables ln
(

C
POPindex

)
100

W o,j Real wage sector j = C,D ln

(
Wj

PY

)
100

N o,j Hours worked per capita sector j = C,D ln

(
Hj×CEindex
POPindex

)
100

Πo
C Inflation: nondurables sector ∆ (lnPC) 100

Πo
D Inflation: durables sector ∆ (lnPD) 100

Ro Quarterly Federal Funds Rate FFR
4

Table D.2: Data transformation - Observables

E Bayesian impulse responses in the estimated model

The estimated model exhibits well-behaved macroeconomic dynamics. For instance, Fig-
ure E.1 shows that Bayesian impulse responses of selected macroeconomic variables to an
aggregate positive technology shock are in line with the dynamics of standard models (see
e.g. Kim and Katayama, 2013, for an example of a two-sector model). Labor productivity
increases in both sectors, thus implying an expansion of sectoral production and aggregate
output, which leads to a decline in sectoral and aggregate inflation to which the central bank
responds by cutting the interest rate. Responses to the other shocks are likewise standard
and are available upon request.

F The role of durability

Erceg and Levin (2006) show why durable goods are particularly important for optimal
monetary policy. In general, in a two sector model, following a sector-specific shock, demand
in the two sectors moves in opposite direction. The central bank should therefore increase
the interest rate to stabilize the output gap in one sector while decreasing it to stabilize the
output gap in the other sector. This trade-off is particularly severe when one sector produces
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Figure E.1: Bayesian impulse responses to aggregate technology shock. Blue solid lines
represent mean responses. Red dotted lines represent 90% confidence bands.

durable goods for two reasons. First, the demand for durables is for a stock, so also small
changes in the demand for the stock generate large changes in the flow of newly produced
durables. Then, the presence of sectoral price stickiness prevents prices from adjusting and
insulate the durables sector from the shocks. Together, these two intrinsic features imply
that durables are much more sensitive to the interest rate than nondurables. Therefore the
same magnitude of the interest rate change generates a larger response of output in the
durables sector, hence the more severe trade-off. To see this, we follow the reasoning made
by Erceg and Levin (2006). The asset price equation of durables (21) requires that the
marginal rate of substitution between durables and nondurables UD,t

UC,t
= α

1−α
Ct
Dt

equals the
user cost of durable goods Θt:

UD,t
UC,t

= Θt ≡ Qt − β (1− δ)Et
[
UC,t+1

UC,t
Qt+1

]
, (F.1)

which implies that

Dt =
α

1− α
Ct
Θt

, (F.2)

or in log-linear form:
D̂t = Ĉt − Θ̂t. (F.3)
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Log-linearizing also the user cost of durables (F.1) and the Euler equation (4) around the
steady state yields, respectively

Θ̂t =
Q̂t − (1− δ) βEt

[
ÛC,t − ÛC,t+1 − Q̂t+1

]
1− (1− δ) β

, (F.4)

ÛC,t − ÛC,t+1 = R̂t − EtΠ̂C
t+1, (F.5)

combining which yields

Θ̂t =
Q̂t − (1− δ) βEt

[
R̂r,t − Q̂t+1

]
1− (1− δ) β

, (F.6)

where R̂r,t = R̂t−EtΠ̂C
t+1 is the real interest rate. Equation (F.6) shows that the user cost of

durables depends on the relative price and the real interest rate. When prices are sticky, the
relative price will adjust slowly to shocks so that the user cost and hence, for a sufficiently
low depreciation rate δ, the demand of durables is very sensitive to the real interest rate.
Note also that when there is no durability (δ = 1), the output gap in the two sectors is
entirely determined by the relative price. Finally, rearranging (F.6) yields equation (28).

G Robustness analysis in the fully-fledged model

In this section we perform several robustness checks. We first look at the role of sectoral
shocks, nominal and real frictions, and the depreciation rate of durables. Then, we replace
the monetary policy rule (13) with alternative rules and compare the results with the baseline
model (top panel of Table 4). Our main findings continue to hold under all the robustness
checks.

G.1 Sectoral shocks

Our model includes both aggregate (or symmetric) and sector-specific shocks. In particu-
lar, technology and preference shocks fall in the former category, while durables investment,
nondurables and durables price markup and wage markup and government spending shocks
fall in the latter category. In multi-sector models, aggregate shocks typically generate a
comovement across sector thus inducing little labor reallocation.2 Conversely, sectoral dis-

2The sectoral comovement in response to aggregate shocks is evident in our model from Figure E.1 (Ap-
pendix E), where we consider an economy-wide technology shock and, more generally, in the vast literature
on the sectoral responses to a monetary policy innovation (see Cantelmo and Melina, 2018, for a detailed
review).
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λ ρr απ αy α∆y τ 100× ω

Excluding price markup shocks in nondurables

∞ 0.7586 0.7578 0.0000 0.0000 0.0000 0.0091

1.2250 0.2087 2.2056 0.0000 0.0000 0.0771 0.0633

0.1 0.8920 1.2426 0.0011 0.0000 0.6090 0.2345

Excluding price markup shocks in durables

∞ 0.0237 2.3965 0.0000 0.0000 0.0935 0.0744

1.2250 0.4514 1.2501 0.0000 0.1539 0.2387 0.1165

0.1 1.0000 1.2106 0.0026 0.0000 0.7451 0.0551

Excluding wage markup shocks in nondurables

∞ 1.0000 0.0672 0.0003 0.0702 0.2000 0.0656

1.2250 1.0000 0.2849 0.0000 0.3744 0.2212 0.0506

0.1 0.9666 0.7299 0.0013 0.3498 0.9904 0.1454

Excluding wage markup shocks in durables

∞ 0.0409 2.4523 0.0000 0.5041 0.0021 0.1044

1.2250 0.7124 0.5995 0.0000 0.2049 0.1193 0.1454

0.1 0.9141 0.8887 0.0014 0.0000 0.7726 0.2755

Excluding government spending shocks

∞ 0.0004 2.3028 0.0000 0.0352 0.0189 0.0886

1.2250 0.4759 1.0841 0.0000 0.2577 0.1481 0.1353

0.1 0.9164 0.8832 0.0014 0.0000 0.7725 0.2761

Excluding durables investment specific shocks

∞ 0.0005 2.3139 0.0000 0.0411 0.0179 0.0882

1.2250 0.3614 1.2647 0.0000 0.2239 0.1652 0.1264

0.1 0.3086 0.9622 0.0000 0.0000 0.6721 0.1477

Table G.1: Optimized monetary policy rules: robustness to the absence of sectoral shocks

turbances have the potential to generate larger labor reallocation since demand or supply
in different sectors move in opposite direction. It is therefore natural to assess whether the
inverse relationship between the optimal weight on durables inflation and labor mobility is
driven by any specific sectoral disturbance. We thus eliminate each sectoral shock one at a
time and verify that our results still hold. Table G.1 shows that our findings do not hinge
on a specific sectoral disturbance. In each case, the weight placed on durables inflation is
inversely related to the degree of labor mobility, while welfare losses are comparable to the
baseline results. As already noted in Section 4.3, the price markup shock in the durables
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λ ρr απ αy α∆y τ 100× ω

Flexible wages in durables sector

∞ 0.0254 0.3397 0.0000 0.0000 0.0000 0.0722

1.2250 0.2229 1.6563 0.0000 0.2437 0.0617 0.1151

0.1 0.9832 0.1289 0.0001 0.0000 0.5143 0.1220

Flexible prices and wages in durables sector

∞ 0.0370 2.3748 0.0000 0.0000 0.0000 0.0742

1.2250 0.2204 1.6011 0.0000 0.1471 0.0000 0.1150

0.1 0.7326 0.5162 0.0000 0.1901 0.0589 0.1491

Table G.2: Optimized monetary policy rules: robustness to nominal rigidities

sector matters only for the magnitude of the welfare loss, but not for the inverse relationship
between labor mobility and the optimal durables inflation weight.

G.2 Nominal rigidities

We next verify whether our results still hold in counterfactual economies without nominal
rigidities in prices and nominal wages in the durables sector, although the estimation suggests
that both are substantially sticky. The top panel of Table G.2 shows the case of flexible
wages (ϑwd = 0) whereas in the lower panel both durables prices and wages are flexible
(ϑd = ϑwd = 0). Relative to the baseline model, at the estimated limited degree of labor
mobility, the optimal weight on durables inflation drops as wages become flexible in the
durables sector (τ falls from 0.15 to 0.0617) and it becomes zero as both nominal frictions are
removed. Nevertheless, a sufficiently low degree of labor mobility (e.g. λ = 0.10) still entails
a positive weight on durables inflation both with flexible wages and sticky prices (τ = 0.5143)
and with both flexible wages and prices (τ = 0.0589), meaning that imperfect sectoral labor
mobility creates scope for a positive weight on durables inflation even if nominal rigidities
are absent in that sector. Overall, the main conclusions drawn in the previous section are
carried over with these two counterfactual economies: i) τ and λ are negatively related,
hence a higher weight is assigned to durables inflation as labor becomes less mobile across
sectors; ii) the interaction between labor mobility and wage stickiness is key in that sticky
wages and limited labor mobility entails a higher weight on durables inflation, but flexible
wages alone do not necessarily imply a zero weight on durables inflation if labor is sufficiently
non-mobile.
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λ ρr απ αy α∆y τ 100× ω

Excluding habit formation in nondurables consumption

∞ 0.1588 2.5457 0.0000 0.0000 0.0000 0.0165

1.2250 0.1988 1.6282 0.0000 0.0000 0.1636 0.0668

0.10 0.8821 1.8159 0.0014 0.9923 0.4430 0.1257

Excluding investment adjustment costs in durables

∞ 1.0000 2.0050 0.0033 1.2715 0.1859 0.1775

1.2250 0.8790 5.0000 0.0069 2.9205 0.3918 0.2463

0.10 0.5083 5.0000 0.0004 0.0000 1.0000 0.8665

Table G.3: Optimized monetary policy rule: robustness to the absence of real frictions

G.3 Real frictions

The model employed in this paper features two sources of real frictions, important to bring it
to the data. In particular, households display habit formation in consumption of nondurable
goods, while changing investment plans in durables goods entails a quadratic cost. In this
section we verify that the inverse relationship between λ and τ continues to hold in restricted
models in which we remove one real friction at a time. Table G.3 demonstrates that all the
results are robust both to a calibration of the model which excludes habits in nondurables
consumption (ζ = ρc = 0), and to a model without investment adjustment costs in durables
(φ = 0), cases in which the inverse relationship between the optimal weight on durables and
sectoral labor mobility still exists.

G.4 Depreciation rate of durable goods

Our baseline calibration, inspired by previous studies, assumes a 1% quarterly depreciation
rate of durable goods. Barsky et al. (2016) study optimal monetary policy in a two-sector
economy with durable goods, with price stickiness as the only source of nominal rigidity,
no real frictions and a smaller set of shocks, and show how the optimal weight on durables
inflation is affected by the depreciation rate of durables. We therefore check the robustness
of our findings to alternative rates of depreciation of durable goods. Table G.4 reports the
optimized parameters and welfare losses under higher (quarterly) depreciation rates than
that assumed in the baseline calibration. We find that for higher depreciation rates, and
even if durables would fully depreciate each quarter (δ → 1), the inverse relationship between
the optimal weight on durables inflation and sectoral labor mobility survives.
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λ ρr απ αy α∆y τ 100× ω

δ = 0.025

∞ 0.7098 0.6090 0.0000 0.1303 0.0125 0.1908

1.2250 0.7084 0.5799 0.0000 0.1977 0.1358 0.1627

0.1 0.9070 1.0141 0.0016 0.1066 0.7638 0.4252

δ = 0.10

∞ 0.9962 0.0133 0.0000 0.0000 0.0137 0.0994

1.2250 0.7538 0.5580 0.0000 0.2736 0.0877 0.1701

0.1 0.7558 2.1838 0.0016 0.9159 0.5698 0.4924

δ → 1

∞ 0.7425 0.5619 0.0000 0.2548 0.0289 0.1770

1.2250 0.7469 0.5516 0.0000 0.2665 0.0523 0.1765

0.1 0.7045 0.5617 0.0000 0.2765 0.3143 0.3170

Table G.4: Optimized monetary policy rule: robustness to alternative depreciation rates of
durables

G.5 Alternative interest rate rules

Implementable rules. We replace rule (13) with an interest rate rule that responds only
to deviations of inflation and output from their respective steady states. Following Schmitt-
Grohe and Uribe (2007) this type of interest rate rule is typically labeled as implementable
rule and reads as follows:

log

(
Rt

R̄

)
= ρr log

(
Rt−1

R̄

)
+ απ log

(
Π̃t

Π̃

)
+ αy log

(
Yt
Ȳ

)
. (G.1)

The top panel of Table G.5 demonstrates that despite these modifications, the inverse rela-
tionship between labor mobility and the optimal weight on durables inflation still hold true.
In addition, the implied welfare losses are similar to the baseline model.

Responding to wages. Erceg and Levin (2006) find that rules targeting the output gap or
a weighted average of price and wage inflation represent good approximations of the optimal
rule. We therefore check whether the inverse relationship between labor mobility and the
optimal weight on durables inflation continues to hold under interest rate rules that respond
to wages.
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λ ρr απ αy α∆y αw τ 100× ω

Implementable rule

∞ 0.0004 2.3170 0.0000 / / 0.0177 0.0868

1.2250 0.2358 1.5019 0.0000 / / 0.1579 0.1264

0.1 0.9152 0.8904 0.0016 / / 0.7729 0.2753

Wage inflation

∞ 0.0667 2.0806 0.0000 0.0000 0.3821 0.0000 0.0893

1.2250 0.8426 0.7527 0.0002 0.0740 0.4096 0.1407 0.1121

0.1 1.0000 0.6682 0.0015 0.0000 0.4038 0.6441 0.0183

Real wage growth

∞ 0.5931 0.9068 0.0000 0.0000 0.2061 0.0000 0.1401

1.2250 1.0000 2.9147 0.0020 0.9829 0.8763 0.0559 0.1071

0.1 1.0000 1.0715 0.0015 0.0000 0.4037 0.4017 0.0183

Real sectoral wage growth differential

∞ / / / / / / /

1.2250 0.6612 0.8592 0.0000 0.3209 0.0231 0.1243 0.1434

0.1 1.0000 0.7169 0.0016 0.0000 0.1095 0.6200 0.1167

Table G.5: Robustness to alternative optimized monetary policy rule

We start by closely following Erceg and Levin (2006) by adding a term to the interest
rate rule (G.2) that responds to nominal wage inflation and optimize αw ∈ [0, 5] along with
the other policy parameters and the weight on durables inflation.3 In accordance with the
findings in Erceg and Levin (2006), the second panel of Table G.5 shows that responding to
wage inflation is welfare enhancing.

log

(
Rt

R̄

)
= ρr log

(
Rt−1

R̄

)
+ απ log

(
Π̃t

Π̃

)
+ αw log

(
Πw
t

Πw

)
+

+ αy log

(
Yt

Y f
t

)
+ α∆y

[
log

(
Yt

Y f
t

)
− log

(
Yt−1

Y f
t−1

)]
. (G.2)

3Following Iacoviello and Neri (2010), we define an aggregate wage index Wt =((
WC
t

) 1+λ
λ +

(
WD
t

) 1+λ
λ

) λ
1+λ

and wage inflation as Πw
t = Wt

Wt−1
ΠC
t .
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We then take a step further, following Faia (2008), by assessing whether responding to
real, rather than nominal, wage growth is welfare enhancing in our model. Specifically we
add a term to the interest rate rule (13) that responds to real wage growth:

log

(
Rt

R̄

)
= ρr log

(
Rt−1

R̄

)
+ απ log

(
Π̃t

Π̃

)
+ αw log

(
wt
wt−1

)

+ αy log

(
Yt

Y f
t

)
+ α∆y

[
log

(
Yt

Y f
t

)
− log

(
Yt−1

Y f
t−1

)]
. (G.3)

The third panel of Table G.5 shows that responding to real wage growth slightly improves
welfare relative to responding to wage inflation for limited degrees of labor mobility.

Finally, the last check we perform is optimizing a monetary rule that embeds a response
to the change in the relative wage across sectors, so that equation (G.3) becomes:

log

(
Rt

R̄

)
= ρr log

(
Rt−1

R̄

)
+ απ log

(
Π̃t

Π̃

)
+ αw

[
log

(
wdt
wct

)
− log

(
wdt−1

wct−1

)]

+ αy log

(
Yt

Y f
t

)
+ α∆y

[
log

(
Yt

Y f
t

)
− log

(
Yt−1

Y f
t−1

)]
. (G.4)

We only consider cases of limited labor mobility as, with perfect labor mobility, wages in the
two sectors are always the same by construction and the interest rate rule (G.4) collapses
to the rule (13) studied in the main analysis. It turns out that it is optimal for the central
bank to respond to some extent to the change in the wage differential.

Crucially, the main result on the negative relationship between sectoral labor mobility
and the optimal weight on durables inflation survives in all cases considered.
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