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Figure A.1: (Log) Number of Firms from Statistics of U.S. Businesses, Census



Appendix A.2. Relationship between Unemployment and Productivity
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Figure A.2: Labor productivity and unemployment, quarterly frequency. Labor productivity is measured as
GDP per worker (FRED code PRS85006163). Both series are logged and filtered via the Hamilton Method.
The first plot covers 1950− 1983 and the second plot spans 1984− 2017.

Appendix B. Additional derivations

Appendix B.1. Representation of Equilibrium in (θ, u) space

In the spirit of the labor search literature, I represent a steady-state equilibrium as a pair

(θ, u) satisfying the Beveridge curve and the following:

r + 1− λ+ ψ

ψ
[(1− u)z](ρ+ε−1)/ρp(θ) = A

[
(1 + r)(1− ρ)p

γ(r + δ)

](1−ρ)(1−ε)/ρ
/(1− ε) (B.1)

I refer to (B.1) as the cost push curve: it describes the equilibrium change in marginal costs

associated with a change in unemployment. I first derive the cost push curve and then analyze

its properties.

Provided the credit constraint binds, the steady state debt limit is

r + 1− λ+ ψ

ψ
Spq = AQ1−ε/(1− ε) (B.2)

We rewriteQ = S1/ρq = [(1−u)/n]1/ρq =
(

(1−u)z
q

)1/ρ
q = [(1−u)z]1/ρ

[
(1 + r)(1− ρ)p

γ(r + δ)

] 1−ρ
ρ

.

Thus,

r + 1− λ+ ψ

ψ
Spq = A

{
[(1− u)z]1/ρ

[
(1 + r)(1− ρ)p

γ(r + δ)

](1−ρ)/ρ}1−ε

/(1− ε) (B.3)
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Furthermore, Spq= (1−u)z
q

pq = (1− u)zp, so that

r + 1− λ+ ψ

ψ
(1− u)zp = A

{
[(1− u)z]1/ρ

[
(1 + r)(1− ρ)p

γ(r + δ)

](1−ρ)/ρ}1−ε

/(1− ε) (B.4)

This expression can be finally simplified into (B.1). Equation (B.1) implies a positive

relationship between θ and u provided that ρ+ε > 1 (which entails 2ρ+ε−ρε−1 > ρ(1−ε) >
0), or if 2ρ+ ε− ρε− 1 < 0. Hence, just in the case ρ+ ε < 1 and 2ρ+ ε− ρε− 1 > 0, there

is a negative relationship between θ and u.

Lemma 1.

• The cost-push curve is negatively sloped if and only if [(1−ρ)(1−ε)−ρ]/(ρ+ε−1) > 0.

• A sufficient condition for the cost-push curve to be positively sloped is ρ+ ε > 1. In the

knife-edge case ρ+ε = 1, the cost-push curve pins down θ uniquely, and the equilibrium

is recursive.

• If ∂θ
∂u
< 0, a sufficient condition for concavity of the cost push curve is (ρ+ ε− 1)/[(1−

ρ)(1− ε)− ρ] < 1.

Thus, the cost-push curve is negatively sloped if and only if ρ+ε < 1 and 2ρ+ε−ρε−1 > 0.

Appendix B.2. Comparative Statics

Using the steady state representation of equilibrium in (θ, u)-space from Appendix B.1,

I show the comparative statics for the two cases: (I)ρ + ε > 1 and (II)ρ + ε < 1 and

2ρ+ ε− ρε− 1 > 0.

Proposition 1. Suppose χ < (1− δ)(1− s) and (for Case I) (2ρ+ ε− ρε− 1)[s+ δ(1− s) +

1] κβ
z(1−χ) > ρ+ ε− 1. Then Table B.1 provides the comparative statics.
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Table B.1: Comparative statics: pure credit

(a) ρ+ ε > 1

Parameter θ u Q S d n p

A + − + + + − +

δ − +

s − + − − − − +

γ − + − − − + −
r − + − − − + −
ψ + − + + + − +

k − + − − − − +

z + − + + + − −

(b) ρ+ ε < 1,2ρ+ ε− ρε− 1 > 0

Parameter θ u Q S d n p

A + − + + + − +

δ − + − − − + −
s − + − − − + −
γ − + − − − + −
r − + − − − + −
ψ + − + + + − +

k − + − − − + −
z + − + + + − +

The comparative statics of A and ψ are identical, and coincide with those of z except

possibly for n and p. Productivity shocks, however, give rise to several possibilities. If

ρ + ε > 1, then a positive productivity shock involves a net reduction of prices and in firm

size (though the total number of firms unambiguously increases). Otherwise, provided that

2ρ + ε − ρε − 1 > 0, then prices increase due to the very strong feedback between credit

and aggregate demand that raises marginal costs. Similarly, a rise in vacancy posting costs

k directly raises marginal costs and prices. In case (b), demand falls sufficiently that prices

actually decrease. It helps to rewrite the cost push curve as follows:[
(1− ε)

(
r + 1− λ+ ψ

ψA

)]ρ
p(θ)ρ(1−ε)+ρ+ε−1

[
γ(r + δ)

(1 + r)(1− ρ)

]1+ρε−ε−ρ
zρ+ε−1 = (1− u)1−ε−ρ

(B.5)

• Case I: ρ+ ε > 1.

1. Suppose there is a rise in z. This reduces p(θ) for all θ proportionately greater

than the rise in zρ+ε−1, and thereby shifts the cost-push curve to the left. Hence,

u is lower and θ is higher. zp(θ), which depends only on θ, is higher. Since zp(θ)n

is constant by the free entry condition, n is lower. S = (1 − u)/n is higher as

well. d = Spq can be rewritten as d = (1 − u)zMC/ρ, which is higher. Q can

be written as Q = [(1 − u)ρz]/[n
1−ρ
ρ ], which rises since u falls, z increases, and n

falls. Notice that p ∝ [(1 − u)z]
1−ε−ρ

ρ(1−ε)+ρ+ε−1 . Since the exponent is negative, so p

falls and q rises.

2. Now consider an increase in k. This raises p(θ) and hence shifts the cost push

curve to the right, lowering θ and raising u. However, p(θ) remains higher. Thus,
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n is lower. The measure of sellers S = (1− u)/n is lower. To see this, first write

S = 1−u
γ(r+δ)

(1 + r)(1 − ρ)zp(θ), so that S ∝ (1 − u)zp(θ). From the equilibrium

conditions, one can show that (1− u)zp(θ) ∝ (1− u)ρ+εp(θ)2ρ+ε−ρε, or that [(1−
u)p(θ)]1−ρ−ε ∝ p(θ)ρ(1−ε). As p(θ) is higher and ρ + ε > 1, (1 − u)zp(θ) is lower

and hence S is lower. Q = S1/ρzn is lower as well. The debt level d = (1−u)zp(θ)

is lower.

3. Consider an increase in ψ. The shift of the cost push curve depends on
(

ψ
r+ψ

)ρ
,

which increases with ψ. Thus, the cost push curve shifts to the left, so that θ

rises and u falls. p(θ) rises, so that n falls. From S = (1 − u)/n, S clearly rises.

Q = S1/ρq can be rearranged as (1 − u)1/ρz/(n(1−ρ)/ρ), which rises. Debt limits

d = (1− u)zp(θ) rise, as p(θ) is higher and u is lower.

4. Consider an increase in r. From the cost-push curve, at a given u, p(θ) is lower.

Provided p(θ) weakly increases with r, then θ must decrease, so that the cost-push

curve shifts to the right.

We can show that ∂p
∂β

= 1
z(1−χ) [χkθ −

k(1−δ)(1−s)
f(θ)

] = kθ
z(1−χ) [χ −

(1−δ)(1−s)
h(θ)

]. As

h(θ) < 1, this quantity is bounded above by k
z(1−χ) [χ − (1 − δ)(1 − s)], which is

negative provided that (1− δ)(1− s) > χ. Hence, ∂p(θ)
∂r

= −∂p(θ)
∂β

1
(1+r)2

> 0.

Given that the Beveridge curve is unaffected, θ falls and u rises. As r is higher, it

remains to show that equilibrium MC(θ) is lower.

Using γ(r + δ) = (1 + r)(1 − ρ)zp(θ)n, n increases, as MC(θ) is lower and r

is higher. d = (1 − u)zp thus falls. Further, S = (1 − u)/n decreases. Q =

(1− u)1/ρz/(n(1−ρ)/ρ) decreases from both the increase in u and rise in n.

5. Consider an increase in γ. The cost push curve shifts to the right, so θ and p(θ)

fall, and u increases. As before, from the entry condition n rises. d = (1 − u)zp

thus falls, and so does S = (1 − u)/n. Q = (1 − u)1/ρz/(n(1−ρ)/ρ) decreases from

both the decline in u and rise in n.

6. Consider an increase in A. The cost push curve shifts to the left, so that θ increases

and u decreases. p(θ) rises, so that n falls. From S = (1 − u)/n, S clearly rises.

Q = S1/ρq can be rearranged as (1 − u)1/ρz/(n(1−ρ)/ρ), which rises. Debt limits

d = (1− u)zp(θ) rise, as p is higher and u is lower.

7. Consider an increase in s. p(θ) increases, inducing a rightward shift of the cost

push curve. Furthermore, the Beveridge curve shifts to the right. The effect of the

shift in the cost push curve is to raise u and lower θ. The effect of the rightward

shift of the Beveridge curve is to raise u and θ. Thus, u clearly rises, but θ is

ambiguous.

Through implicit differentiation, we can provide a weak necessary and sufficient
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condition for θ to fall. Rearranging the equilibrium conditions provides

(2ρ+ ε− ρε− 1) logMC(θ) = ℵ+ (1− ρ− ε) log

(
h(θ)

s+ δ(1− s) + h(θ)

)
(B.6)

in which ℵ is a function of parameters, not including s. Totally differentiating

(and using ∂MC
∂s

= kβ(1−δ)
f(θ)z(1−χ) yields

(2ρ+ε−1)

[
MC ′(θ)

MC(θ)

dθ

ds
+

kβ(1− δ)
f(θ)z(1− χ)

]
= (1−ρ−ε)

(
p′(θ)

p(θ)

dθ

ds
− p′(θ)dθ/ds+ 1− δ
s+ δ(1− s) + h(θ)

)
(B.7)

which can be further rearranged as

dθ

ds
=

(1− ρ− ε)h(θ)(1− δ) + h(θ)[s+ δ(1− s) + h(θ)](2ρ+ ε− ρε− 1) kβ(1−δ)
f(θ)z(1−χ)

(1− ρ− ε)h′(θ)[s+ δ(1− s)]− (2ρ+ ε− ρε− 1)h(θ)[s+ δ(1− s) + h(θ)]MC ′(θ)/MC(θ)
(B.8)

By presupposition, the sign of the denominator is negative, so the sign of dθ/ds

is the opposite sign of the numerator, which has the same sign as

1− ρ− ε+ [s+ δ(1− s) + h(θ)](2ρ+ ε− ρε− 1)
kβ

f(θ)z(1− χ)
(B.9)

We can derive a sufficient condition in terms of parameters for which (B.9) > 0.

Consider the expression s+δ(1−s)+h(θ)
f(θ)

. This expression is strictly increasing in

θ, and minimized as θ → 0, in which h(θ) → 0 and f(θ) → 1. The ex-

pression converges to s + δ(1 − s) + 1. Thus, (B.9) is positive provided that

(2ρ+ ε− ρε− 1)(s+ δ(1− s) + 1) kβ
z(1−χ) > ρ+ ε− 1.

Provided this condition is met, θ decreases. To figure out the net effect on MC, we

see that the total derivative has the same sign as (1−ρ−ε)[h′(θ)dθ/ds[s+δ(1−s)]−
h(θ)(1− δ)], which is positive if dθ/ds < 0. Hence, MC increases, so n decreases.

Q = (1 − u)1/ρz/(n
1−ρ
ρ ), which unambiguously decreases. The measure of firms

satisfies S = (1−u)/n, which is ambiguous. Thus, we derive the comparative static

of (1−u)/n. From the equilibrium conditions,
(
1−u
n

)1−ρ−ε
nρ(1−ε) is constant. Since

n decreases, this means (1−u)/n decreases. Hence, S decreases. Q = S1/ρzn thus

decreases as well. Writing d = 1−u
n
nzp, which decreases since 1− u decreases and

np is constant from the free entry condition.

8. Consider an increase in δ. As before, the Beveridge curve shifts to the right,

symmetrically as with an increase in s. The cost push curve shifts to the right

6



even more than in the case of s. This is because a higher δ both raises the marginal

costs of existing firms and deters entry. Thus, u clearly rises, θ is ambiguous, and

the condition (B.9) is sufficient for θ to fall.

• Case II: ρ+ ε < 1 and 2ρ+ ε(1− ρ) > 1.

1. Suppose there is a rise in z. This reduces p(θ) for all θ, and thereby shifts the

cost-push curve upward. Hence, u is lower and θ is higher. The rest is identical

to Case I, except for p and q. As p ∝ [(1 − u)z]
1−ε−ρ

ρ(1−ε)+ρ+ε−1 , and the exponent is

positive, p increases and q decreases.

2. Now consider an increase in k. p(θ) rises and hence shifts the cost push curve

downward, lowering θ and raising u. Note that the RHS of the cost push curve is

lower, so that p(θ) remains lower than initially. Thus, n is higher. The measure

of sellers S = (1 − u)/n is thus lower. Q = S1/ρzn can be rewritten as Q =

(1− u)zρ/(n1−ρ), which is lower as well. The debt level d = Spq can be rewritten

as d = S γ(r+δ)
(1+r)(1−ρ) , which is lower since S is lower.

3. Consider an increase in ψ. The shift of the cost push curve depends on
(

ψ
r+ψ

)ρ
,

which increases with ψ. Thus, the cost push curve shifts to the left, so that θ rises

and u falls. The rest follows as in Case I.

4. Consider an increase in r. From the cost-push curve, at a given u, p(θ) is lower.

Provided p(θ) weakly increases with r, then θ must be lower, so that the cost-push

curve shifts downward. As Case I, χ < (1− δ)(1− s) is a sufficient condition.

Given that the Beveridge curve is unaffected, θ falls and u rises. Since the RHS

of (B.5) falls, so must the left hand side. Hence, p(θ) is lower. Using γ(r + δ) =

(1 + r)(1−ρ)zp(θ)n, n increases, as p(θ) is lower and r is higher. d = (1−u)zp(θ)

thus falls. Further, S = (1− u)/n decreases. Q = (1− u)1/ρz/(n(1−ρ)/ρ) decreases

from both the increase in u and rise in n.

5. Consider an increase in γ. The cost push curve shifts to the right, so θ falls and u

increases. As before, from the entry condition n rises. The rest follows identically

as in Case I.

6. Consider an increase in A. The cost push curve shifts to the left, so that θ increases

and u decreases. The rest follows identically as in Case I.

7. Consider an increase in s. p(θ) increases at a given θ, inducing a downward shift

of the cost push curve. Furthermore, the Beveridge curve shifts to the right. The

effect of the shift in the cost push curve is to raise u and lower θ. Unlike in

Case I, the effect of the rightward shift of the Beveridge curve is to raise u and

lower θ. Thus, u clearly rises and θ falls. From ρ+ ε < 1, the RHS of (B.5) falls.
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Hence, p(θ) also falls. Thus, n increases. S = (1−u)/n correspondingly decreases.

d = (1− u)zp(θ) falls as well. Q = (1− u)1/ρz/(n(1−ρ)/ρ) decreases from both the

increase in u and rise in n.

8. Consider an increase in δ. As before, the Beveridge curve shifts to the right,

symmetrically as with an increase in s. The cost push curve shifts to the right

even more than in the case of s. This is because a higher δ both raises the

marginal costs of existing firms and deters entry. Thus, u rises, θ decreases, and

the condition (B.9) is sufficient for θ to fall. As with a rise in s, p(θ) falls, since

the RHS of (B.5) decreases and (r + δ)/(1 + r) rises in the LHS. The remainder

is analogous to a rise in s.

Appendix B.3. Concavity of the Cost Push Curve

We can rearrange (B.1) as

p(θ)
(1−ρ)(1−ε)−ρ

ρ = ℵ0(1− u)
ρ+ε−1
ρ

for the composite parameter ℵ0 = (1−ε) r+1−λ+ψ
ψ

z(ρ+ε−1)ρ((1+r)(1−ρ)/(γ(r+δ)))−(1−ρ)(1−ε)−ρ/A >

0. Further rearrangement yields

p(θ) = ℵ1(1− u)
ρ+ε−1

(1−ρ)(1−ε)−ρ (B.10)

for ℵ1 = ℵ[ρ/((1−ρ)(1−ε)−ρ)]0 .

Implicit differentiation with respect to u yields

∂θ

∂u
= − ℵ1

p′(θ)

ρ+ ε− 1

(1− ρ)(1− ε)− ρ
(1− u)

ρ+ε−1+ρ−(1−ρ)(1−ε)
(1−ρ)(1−ε)−ρ (B.11)

Hence ∂θ
∂u
< 0 if and only if (ρ + ε− 1)/((1− ρ)(1− ε)− ρ) > 0. The second derivative can

be simplified to

∂2θ

∂u2
=
ℵ1

p′(θ)2
ρ+ ε− 1

(1− ρ)(1− ε)− ρ
(1−u)

ρ+ε−1
(1−ρ)(1−ε−ρ)−2

[
(1− u)

∂θ

∂u
+ p′(θ)

(
ρ+ ε− 1

(1− ρ)(1− ε)− ρ
− 1

)]
(B.12)

A sufficient condition for concavity, provided ∂θ
∂u
< 0 is (ρ+ε−1)/((1−ρ)(1−ε)−ρ) < 1. In

general, this condition is stronger than necessary, but the necessary condition is a complicated

relationship involving u and ℵ1.

Appendix B.4. Proof of Lemma 1

The only nontrivial statement is the convexity of p(θ). Note that it suffices to show that

g(θ) = 1/f(θ) is convex.
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First, write g(θ) = (1 + θξ)1/ξ, so that

g′(θ) = (1 + θξ)(1−ξ)/ξθξ−1 (B.13)

and

g′′(θ) = (1− ξ)(1 + θξ)(1−2ξ)/ξ(θξ−1)2 + (1 + θξ)(1−ξ)/xi(ξ − 1)θξ−2

> (1− ξ)θ1−2ξθ2ξ−2 + θ1−ξ(ξ − 1)θξ−2

=
1− ξ
θ

+
ξ − 1

θ

= 0

where we use (1 + θξ)1/ξ > θ. Hence, g(θ) is strictly convex for all θ > 0 and all ξ > 0.

Consequently, p(θ) is convex in this range as well.

Appendix C. Parameterized Expectations Algorithm.

The use of a global solution algorithm is important for three reasons. First, ? show that

the labor search model has strong nonlinearities. The job finding rate, which is concave, falls

fast in recessions but rises only gradually in expansions. Log linearization thus understates

the mean and volatility of unemployment and overstates the volatility of market tightness.

Second, the use of a global solution algorithm enforces occasionally binding constraints, which

arise from the nonnegativity constraint on vacancies (Vt ≥ 0), debt satiation (dt ≤ d∗t ), and

nonnegativity constraint on entrants (St ≥ (1 − δ)St−1). Third, global solution methods

enable us to quantify the extent to which amplification depends on the size of the shock.

I use the parameterized expectations algorithm, which was introduced by Den Haan and

Marcet (1990). The conditional expectations, which here arise in the job creation condition

and in the debt limit, are a function of Θ. The strategy is to approximate these conditional

expectations by a polynomial function of the state variables.1 Specifically, we represent

the log of the conditional expectation with a polynomial in logs. Solving for the unknown

conditional expectations function thus simplifies to calculating the polynomial coefficients.

I start with a initial guess of coefficients for these functions, generate data from the model,

and update the conditional expectations using nonlinear least squares. Consequently, the

algorithm is interpretable as least squares learning.

1The rationale for using polynomial functions comes from the Weierstrass theorem, which asserts that for
a continuous function f(x) on [a, b], there is a polynomial function pn(x) arbitrarily close to f : ∀ε > 0 ∀x ∈
[a, b], |f(x)− pn(x)| < ε.
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Using moving bounds, proposed by Maliar and Maliar (2003), stabilizes the algorithm

with respect to the initial choice of coefficients. These initial bounds are close to the steady

state levels and are gradually removed until they no longer bind in subsequent iterations.

It turns out that the non-negativity constraint on vacancies binds less than 5% of the

time, whereas the zero lower bound on firm entry binds over 44% of the time. I detail the

solution procedure below.

1. The state space Θt = (Nt−1, St−1, zt, ψt).

2. Consider the job creation condition:

k

f(θt)
− λVt = ρztpt − wt + β(1− δ)(1− s)Et

{
k

f(θt+1)
− λVt+1

}
(C.1)

where λVt is the Lagrangian multiplier on the nonnegativity constraint on vacancies.

Rearrange the job creation condition as a function of prices and market tightness using

the wage equation:

ρztpt(1−χ) = (1−χ)(b+l)+
k

f(θt)
−λVt +[χβh(θt)−β(1−δ)(1−s)]E

[
k

f(θt+1)
− λVt+1

]
(C.2)

The debt level equals dt = Stptqt = (1 − ut)ztpt. So, pt = dt/[(1 − ut)zt], which, using

the law of motion for employment, becomes

ρdt(1− χ)

(1− s)(1− δ)(1− ut−1) + h(θt)ut−1
= (1− χ)(b+ l) +

k

f(θt)
− λVt (C.3)

+ [χβh(θt)− β(1− δ)(1− s)]E
[

k

f(θt+1)
− λVt+1

]
(C.4)

3. Consider the debt limit equation:

dt/ψt = βE
{
A(S

1/ρ
t+1qt+1)

1−ε/(1− ε)− St+1pt+1qt+1 + λdt+1/ψt+1

}
(C.5)

Write the conditional expectations as functions of the state variables and the coeffi-

cients:

G(Θt, β1) ≡ E
[

k

f(θt+1)
− λVt+1

]
= exp(X ′tβ1)

H(Θ1, β2) ≡ βE
{

Ωt+1 + λdt+1/ψt+1

}
= exp(X ′tβ2)

The following fact is useful in solving (C.3) for θ. Define F1(θ) = ρdt(1−χ)/[(1−s)(1−
δ)(1 − ut−1) + h(θt)] and define F2(θ) = (1 − χ)(b + l) + k/f(θt) + [χβh(θt) − β(1 −
δ)(1− s)]G(θt, β2). Note that F1 is the left hand side of (C.3) and F2 is the right-hand
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side of (C.3) without the Lagrangian multiplier. Observe that F1 is decreasing, with

an upper bound F1(0) = ρdt(1 − χ)/[(1 − s)(1 − δ)(1 − ut−1)] and a greatest lower

bound at ρdt(1−χ)/[(1− s)(1− δ)(1−ut−1) +ut−1]. Moreover, F2 is increasing with a

lower bound at F2(0) = (1− χ)(b+ l) + k − β(1− δ)(1− s)Gt and approaches infinite

as θ → ∞. Under these conditions, the equation F1(θ) = F2(θ) has a unique solution

θ > 0 if and only if

(1− χ)(b+ l) + k − β(1− δ)(1− s)Gt <
ρdt(1− χ)

(1− s)(1− δ)(1− ut−1)
(C.6)

Otherwise, from complementary slackness, θt = 0 and λvt can be recovered from (C.3)

evaluated at θ = 0.

4. Start at iteration i = 1.

5. Simulate a time series of length T = 30, 000− 200 as follows (burn-in of 200). Draw a

length T of zt.

(a) Initialize S1 and N1 at steady-state values.

(b) Initializing H(Θt, β2), we obtain the debt limit dt. The polynomial generating

vector Xt consists of the constant one, the first-order terms, the quadratic terms,

and the six two-way cross-products of terms, for a total of 15 terms.

(c) Conjecture that d0t = dt, λ
V
t = 0, and recover dt = Htψt

(d) Restrict Gt and dt to satisfy moving bounds: Gi ≤ Gt ≤ Gi and di ≤ dt ≤ Gi,

where

Gi =
k

f(θss)
exp(−ai)

Gi =
k

f(θss)
exp(2− exp(ai))

di = dss exp(−ai)

di = dss(2− exp(−ai))

The parameter a controls the speed of moving the bounds and dss and θss are the

steady state values of debt and market tightness.

(e) Compute θt and λVt using (C.3) and complementary slackness.

(f) Define Vt = θtut−1.

(g) Compute pt from equation (C.2)

(h) Calculate sellers: St = max{(1 + r)(1− ρ)dt/(γ(r + δ)), (1− δ)St−1}.
(i) Update unemployment: ut = [1− h(θt)]ut−1 + [1− (1− s)(1− δ)](1− ut−1)
(j) Let qt = (1− ut)zt/St.
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6. After simulating a series of length T , compute

y1t =
k

f(θt+1)
− λVt+1

y2t = β
{
A(S

1/ρ
t+1qt+1)

1−ε/(1− ε)− St+1pt+1qt+1 + λdt+1/ψt+1

}
7. Recover βnew1 and βnew2 using nonlinear least squares:

βnew1 = arg min
1

T

T∑
t=0

|y1t − exp(X ′tβ1)|2

βnew2 = arg min
1

T

T∑
t=0

|y2t − exp(X ′tβ2)|2

8. Update βi as Γβnewi + (1− Γ)βi for i = 1, 2, with Γ = 0.9.

9. Update iteration i until ||βnew1 − β1||/||β1||+ ||βnew2 − β2||/||β2|| < 1e− 6.

After convergence, I check the conjecture that the first best is never attained. After the

burn-in period, dt ≤ d∗t holds for each period of the simulation. The remaining variables are

straightforward to recover.
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Appendix D. Histograms

I simulate 30, 000 draws of data and plot the histogram for the price level, unemployment,

market tightness, the measure of sellers, real wages, debt, consumption, debt relative to

consumption, and aggregate profits.
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Figure D.3: Histograms of simulations

For this model, the lower bound on firm entry turns out to be much more important than

the non-negativity constraint on vacancies. Figure D.4 indicates that the lower bound on

entry binds 44% of the time, whereas the zero lower bound on hiring binds less than 5% of

the time. Moreover,
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Figure D.4: Firm entry and vacancies

Figure D.5 shows that whenever the non-negativity constraint on vacancies does bind,

there is no entry. Consequently, the theoretical concern with dispersion of firm size is not

quantitatively relevant.
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Figure D.5: Scatterplot: vacancies and number of entrants.

14



Appendix E. Monte Carlo Procedure for Generalized Impulse Responses

1. Fix the length of a series T = 200 and number of Monte Carlo iterations N = 150

2. Draw matrix E of normal random variables with standard deviation σz of size T ×N .

3. For each sequence j ∈ {1, . . . , N}:
(a) Let z1 = ω + E1,j and ẑ1 = E1,j for impulse ω

(b) for t = 2 : T , define zjt = ρzz
j
t−1 + Et,j and ẑjt = ρz ẑ

j
t−1 + Et,j

(c) Let Y (zj) be the simulated series under sequence zj and Y (ẑj) be the simulated

series under sequence ẑj.

(d) Compute the proportional deviation yj = (Y (zj)− Y (ẑj))/Y0(ẑ
j) where Y0(ẑ

j) is

the first element of the sequence Y (ẑj).

4. Compute the mean response IRF = 1
N

∑N
j=1 yj.

Appendix F. Nonlinear Effects of the Amplification Mechanism

We examine nonlinear effects of the amplification mechanism from two angles. The first

checks if doubling the shock more than doubles the responses (percentage-wise). The second

checks for differences in magnitudes of a negative versus positive productivity shock. Figure

F.6 compares the impulse responses of a two-standard deviation credit shock to the high and

low-product diversity economies. The percentage amplification is about 69%, compared to

about 62% under a one-standard deviation shock. Therefore, the amplification mechanism

of the model increases in importance with the size of the shock, which is consistent with ?.

Thus, the effects studied here are especially relevant for large shocks.
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A negative 2 standard deviation credit shock: role of product diversification

Figure F.6: Response of a two-standard deviation credit shock: markup comparison. Each variable is ex-
pressed in proportional deviations.

I also consider the effects of a one-standard deviation positive productivity shock. From

the congestion effects of labor market matching, it is difficult to reduce unemployment sig-

nificantly once it is already low. The concavity of the job finding rate implies that the

unemployment rate changes asymmetrically to uniform movements in market tightness. Ac-

cordingly, we expect a positive productivity shock to have more modest effects on unemploy-

ment. However, unlike Bethune et al. (2015), the rise in aggregate demand depends on the

change in product diversity, not of the matching rate in the goods market. Figure shows the

(generalized) impulse responses in this case.
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Figure F.7: Response to a positive unit standard deviation productivity shock: markup comparison. Each
variable is expressed in proportional deviations.

Conditional on the markup, the effect on unemployment is smaller than with a negative

productivity shock. Under 40% markups, there is a peak fall of 12%, compared to a peak

rise of 16%. Under 5% markups, there is a peak fall of slightly over 8%, compared to a peak

rise slightly over 10%. However, the general equilibrium effect of credit and product diversity

remains substantial even with a positive shock. Comparing the cumulative responses, there is

about 60% amplification. By comparison, Bethune et al. (2015) consider a rise in productivity

as high as 6% and still find a negligible difference in unemployment between the partial

equilibrium response holding credit fixed and the general equilibrium response.

Appendix G. Robustness Checks

Appendix G.1. Debt limit parameter ψ

I consider the change on the simulated model moments of changing the target ζ to 0.3

from 0.1, which corresponds to ψ = 0.094. I compare in two different ways. First, I take the

same financial shocks as in the baseline case but solve the business cycle model under the

new parameterization. Second, I both update the shocks and solve the model under the new

values.
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x SD Cor(x, u) Cor(x, d) Cor(x, x−1) Cor(x, x−2)

u 0.391 1.0 -0.806 0.978 0.946

d 0.0793 -0.806 1.0 0.96 0.919

S 0.0712 -0.755 0.962 0.97 0.933

V 0.203 -0.586 0.849 0.808 0.688

z 0.0252 -0.328 0.415 0.957 0.914

ψ 0.0837 -0.619 0.9 0.957 0.914

Table G.2: Moments of key variables simulated from model with ψ = 0.094, monthly. Data is transformed
by proportional deviations and filtered by the Hamilton Method. The financial shocks are the same as the
baseline specification.

From Table G.3, we see that unemployment and credit are even more volatile than the

baseline parameterization, though product variety is somewhat less. Vacancies are also

slightly more volatile.

I now consider the moments consistent with the updated financial shocks.

x SD Cor(x, u) Cor(x, d) Cor(x, x−1) Cor(x, x−2)

u 0.368 1.0 -0.811 0.978 0.946

d 0.0762 -0.811 1.0 0.96 0.919

S 0.069 -0.766 0.964 0.97 0.933

V 0.194 -0.597 0.856 0.81 0.691

z 0.0252 -0.343 0.429 0.957 0.914

ψ 0.0799 -0.626 0.896 0.957 0.913

Table G.3: Moments of key variables simulated from model, monthly. Data is transformed by proportional
deviations and filtered by the Hamilton Method. The financial shocks are constructed using the new param-
eterization.

Under the new financial shocks, the moments generally lie in between the baseline values

and those solved under the new parameterization with the original financial shocks. For

instance, the volatility of unemployment is 0.37, compared to 0.32 in the baseline and 0.39

under first robustness scenario. Similarity , the volatility of credit is 0.0762, compared to

0.062 in the baseline and 0.079 under the first robustness scenario. Similarly, the correlation

between unemployment and credit is −0.811, compared to −0.823 in the baseline and −0.806

the first robustness scenario. The same holds for other moments. The new financial shocks

have a slightly smaller standard deviation than in the baseline scenario.
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Appendix G.2. Entry cost parameter γ

I report the results for calibrating the entry cost parameter γ at 10% of the target value;

to satisfy the other targets, which leads to γ = 0.0366, and the demand parameter A drops

to 0.0745. I keep the financial shocks the same as the baseline.

x SD Cor(x, u) Cor(x, d) Cor(x, x−1) Cor(x, x−2)

u 0.332 1.0 -0.824 0.978 0.946

d 0.0672 -0.824 1.0 0.96 0.919

S 0.0618 -0.786 0.972 0.969 0.932

V 0.17 -0.604 0.847 0.804 0.682

z 0.0252 -0.386 0.492 0.957 0.914

ψ 0.0837 -0.601 0.858 0.957 0.914

Table G.4: Moments of key variables simulated from model with γ set to equal one tenth of the target (35.7%
of annualized profits), monthly. Data is transformed by proportional deviations and filtered by the Hamilton
Method.

The main difference is that the variables are slightly more volatile than in the baseline

model, but the difference is insubstantial. The non-negativity constraint on vacancies binds

slightly more often (at 5.96%), and the second-order autocorrelation of vacancies is 0.682

compared to 0.695 in the baseline.
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