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ON - LINE APPENDIX A: EQS. (18) — (20)

From Egs. (5) and (2) in the main text:
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(A1) w,,{%JL; Wj(x,,)‘ di N—f(x,,,)“ o
0

Using the symmetric equilibrium assumption —(Eq. 4°) in the text— (A1) above can be recast as:

(A2) w, =(ﬁj[%j (%} 7 N7, where ®=a[m(1-g)-1].
m

t t

From the aggregate production function (Eq. 1) and the hypothesis of symmetry (Eq. 4°):

(A3) w, =( —a)[%j [%J N?”.

t t

Using Eq. (15) in the text and equating (A2) and (A3) above yield:

L - L L
(A4) syznzm(l ajsp where s, =22 and s, = =
L, a L, L
Plugging (A4) into Eq. (14) in the main text delivers:
a L
A5 s, =| ————— |(1=s,), where s, = 2.
(A5) ! {m(l—a)Jra ( N) N L
Consequently:
-«
aw)y 5| mia) (1-s,).
m (1 - a) +a

Using Eq. (6), Eq. (9) in the text can be re-written as:
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‘ m N, N,

Along a BGP, all variables depending on time grow at constant exponential rates, which implies that » is
constant (see Eq. 13 in the text). Thus, V,, equals:

l-a a : N
-1\ L L N? L. :
S R

N, ) \N) [r=n+(i-2)y,] L N,
Note that for any « € (0;1), m>1, L, >0, L, >0 and N >0, V,, is positive V¢ >0 when:
r>n—(1—€D)}/N.

Given V,,, from Eq. (8) in the main text it follows:

1N (m-1)(L,) (L) NY
A7 il Bl | vl B v t '
i

We can now use again Eq. (15) in the main text and equalize (A2) and (A7), so obtaining:
(_x L/

(A8) s, = (E] L,AV/;‘*‘ [r=n+(1-2)y,].

From (A2), (A3) and (A7), we observe that along a BGP:

(A9) Wi _Wn _ W E&:@J/N‘

WYt WNt M//

It
This result is obtained by noticing (see Eq. 7 in the main text) that in a BGP equilibrium:
An :(1—¢)7N.
In order to find out the shares of labor allocated to the final output, intermediates and research sectors
(s,=L,/L,s =L,/L,and s, =L, /L, respectively), first of all notice that Eq. (A8) can be recast as:

-2

Z -4 L_;L -2 L 1 . .
AR) s =| —ZL—|s.8 Ll r—n+(1-@ , where s," ——=—— by using Eq. (7) in the text.
( ) i [m _1] NN N¢71 [ ( )7/1\/] N N¢71 7 y g rq ( )

Equalization of (A8’) and (AS), then, delivers:
e
m (1 - a) +a

S'N:{r—n+(1—(D)7/N+ o }

(m—l)j/N m(l—a)+a

Along a BGP, s, €(0;1) as longas r>n—(1-@®)y,,and y, >0.Given s, , we can obtain s, from (A5):

a
= 1—
& _m(l—a)-l—a_( )
and s, from (A4’):
m(l-a) ]
= ——|(1- .
. _m(l—a)+a_( )

With s, €(0;1), it is immediate to see that s, €(0;1) and s, €(0;1), too. From Eq. (10) in the text, we

have:

(A10) —=r+£w -—.
4 A



Egs. (16) in the text and (A6’) above lead to:

A
(All) y,=n+dy,, nzj-

A .
We now use (Al1), (A9), and the fact that along a BGP y, = (I—)n into (A10), and get:

(AJW)El:r—n—QWN+£gDKQQ, L(0)=1>0; a(0)=4(0)>0; w(0)>0,
4 a (O)

where L(0), w(0) and a(0) are the given initial values (i.e., at 1=0) of L, w, and a,, respectively.

Eq. (A10’) suggests that along a BGP, C, and 4, grow at the same constant rate, i.e.:

4 C

4°¢

The aggregate production function (Eq. 1), together with the hypothesis of symmetry (Eq. 4°), delivers:

I-a a
(A12) Y[:(%J [%j N

This implies that along a BGP:

(A10”)

(A12%) % =y, =n+dy,.

In this economy (see Eq. 10 in the main text), aggregate income (Y, =74 + w,L, ) can be in part consumed

(C)) and in part used to accumulate more assets ( 4, ). In other words:

Y=C+4.
The last equation implies:

K C/ AI

i R —

A4 A4 A

t

Along a BGP, % and % are constant. Therefore, it follows that (see Eqs. A10”, A11 and A12’ above):

Y, 4 C
(A13) Lt=—"L= G .

Y 4 C
Using Eq. (13) in the main text, we can write the growth rate of aggregate consumption as:

C, ¢
Al4) —L=-+
(A14) C e
From (A13), (A14) and (A12’) in this appendix we get:
(A15) r=60y, +p.

Along a BGP:

+n=%(r—p)+n.

(A16) ;/V=£Ljn, £En>0.
‘ 1-¢ L

t

From (A15) and (A16) it is immediate to obtain:



(A15) r= Hd)(/%]n +p.
1-¢
Combining (A12’), (A13) and (A16) yields:

Aa17) L=Gb_gf A,
a 1-¢
In the end of this appendix we want also to make sure that the transversality condition:
lim A,a, =0

t—>+00

holds. At this aim, note that from the (necessary) FOCs taken on the Hamiltonian function (J ):

1-6
J:(Cl_;lJe(’”)’ +2, [(r—n)a+w—c:|,

yl‘ ct t

we have:

(A18) Z—Z:—/’la = ’; =—(r—n),

a

where A, is the co-state variable associated to the state variable, a . By using the last equation, along with

(A11), the definition of a= 4/ L, and L/ L =n, the transversality condition can ultimately be recast as:

(A19) lim Z,a, =4, (0)a(0)lime """ ") =0.

t—>+o0

In (A19) a(0)>0 and 4,(0)= L -0 are the initial values (i.e., at t=0) of the state variable a and
C

o

the co-state variable A

a”’

respectively. Eq. (A19) reveals that the transversality condition is satisfied
whenever the following inequality is met:

(TC) r>n+®dy,.

After using (A15) and (A16), it is possible to conclude that condition (TC) is equivalent to:

P> n+@(1—9)(%}n.

With y = b provided by (A17) above, Assumption I in the main text allows the last condition (i.e., the
transversality condition) to be always checked.
Finally, notice that when the transversality condition (TC) is satisfied, then the condition that guarantees

that ¥, is positive at any time ¢>0 —i.e., »>n—(1—@®)y, —is also met for any y, >0, which is always

true in our model’s BGP equilibrium —see Eq. (18) in the main text. H



ON — LINE APPENDIX B

In this Appendix we highlight the main differences (in the assumptions and in the results) between our
model and the canonical semi-endogenous growth theory by Jones (JPE, 1995). In the table below, we start
by comparing the two models’ technological assumptions (for the sake of simplicity the time-index ¢ is
suppressed):

OUR MODEL JONES (JPE, 1995)
N am A
. 1 /m . a —a 7
Y=L, W.“(xi )l di| , (Eq.1) Y= LYJ.)C[.I di (Eq. A1, p. 780)
0 0
ae(0;1), m>1

“...A firm that has purchased a design can...

x =1, Vi (Eq. 3) ...transform each unit of capital into a
single unit of the intermediate input...” (p. 780)
N= lLva ‘, (Eq. 7) A=6LA" (Eq. 6, p. 765 and the following
X . .
discussion
0<A<l, p<l 0< 1<l ¢)<1

Evidently, across the two models:

A=N, and L,=L,,
where A= N denotes in the two frameworks the number of existing varieties (indexed by i) of
intermediate inputs, and L, = L, is the amount of the labor-input employed in the research sector. It is

also apparent that in Jones (1995) labor is employed solely to produce final output and to invent new ideas
(in our model, instead, labor is also an input in the production of intermediate inputs — see below).

There are two further (and, probably, more relevant) differences across the two models. The first is related
to the way the optimal gross markup is determined in the monopolistically competitive intermediate
sector. In Jones (1995), the elasticity of substitution (in absolute value) between two generic varieties of
intermediate inputs employed in the production of final output (e) is equal to

e=—.
o

This elasticity depends only on « , which is the labor-share in aggregate GDP (the sector that produces
final output is perfectly competitive and rewards rival inputs at their marginal productivity). So, in Jones
(1995), according to the usual ‘markup-rule’, the optimal markup, m, charged over the marginal
production cost (the real interest rate, 7 ) by each uncompetitive intermediate firm is
°© - ! = ! >1 (see Jones, 1995, Eq. A5, p. 780).

e—1 1—-a 1-Labor Share

Instead, in our model the elasticity of substitution between any two generic varieties of intermediate inputs
in final output production is m / (m —1) >1, which is independent of the labor-share in aggregate GDP

m=

(1—a). As a consequence, the markup (m ) of price over the marginal production cost (the wage rate, w)
in the intermediate sector is also independent of such share.

In brief, the first relevant difference between our model and Jones (1995) is that while our model does
disentangle the gross markup of price over the marginal production cost from the shares of factor-inputs in
GDP, Jones (1995) does not.



The second fundamental difference between Jones (1995) and our model is related to the production
function employed by intermediate firms. In Jones (1995), it is postulated that intermediate firms produce
by employing units of physical capital (more precisely, units of forgone consumption) as an input,
whereas in our model they produce (one-to-one) with labor.

After briefly highlighting the main differences in the assumptions of our model with respect to Jones
(1995)’s model, we are now able to show that USING THE JONES (1995)’S ASSUMPTIONS INTO OUR MODEL
this model can reproduce exactly the same BGP growth rate of per capita income of Jones (1995). In this
way it is possible to conclude that the different predictions of the two models about the long-run growth
rate of the economy are ultimately due to the main two differences (just explained) in the basic
assumptions of these models.

In a symmetric equilibrium in which:

K
X =x=sr, Vie[0; N], (Jones, 1995, p. 781, Eq. A8),

the production function of our model can be recast as

N am

—a 1 1/m . l-a i a a[m(lfﬂ)fl]
Y=L Wj(xf) di| =(1-s)"(L“K“)N

0

where
LY:(l—s)L, L,=sL, L +L, =L,

have been used (see Jones, 1995, p. 782, and Eq. 15, p. 770). Along a BGP, the decentralized economy
allocates constant shares (s and 1—s, respectively) of the available labor force/population (L) to the
invention of new ideas and to the production of final output, (Jones, 1995, Eq. 10 at p. 769).

In Jones (1995, Eq. A1, p. 780), f=0. Hence:

N am
Y= L‘Y‘a %J‘(x[ )1/’" di = (l_s)l—a (L]—aKa )Na(m—l) B1)
0
From (B1), the growth rate of aggregate GDP is:
gz(l—a)%+a§+a(m4)%:(1—a)n+a§+a(m—l)%, %En (Jones, 1995, p. 770).

Y K
By defining by y = Z the output per worker and by k = I the capital/labor ratio (Jones, 1995, p. 767),

from the previous equation we can obtain the growth rate of per capita income ( y/ ) as:

' k N

X:(l—a)nJra —+n +a(m—1)——n. (B2)

y k N
The constancy of y/k (Jones, 1995, p. 782) allows us to re-write Eq. (B2) as:

N
(l—a)yza(m—l)ﬁ, V=V =T
We have already discussed above the fact that in Jones (1995):
1

m=s——#¢.
1— Labor Share



In our model, the labor share in GDP is equal to (1 - a). Hence, in our model (under the assumptions of

Jones, 1995) the markup would be:

This in turn leads to:
N N

l-a)y=a(m-1)—=(1-a)—.

(=) =a(m-12 =(1-2)
In other words,

— f— —_— N —

Vo =Vi=VNn=7> N:%\/'

Finally, from our model’s R&D technology we conclude that in a BGP equilibrium in which the growth
rates of all variables are constant (Jones, 1995, p. 782):

N An

PN =g T

This is the (common) growth rate of per capita variables in Jones (1995, Eq. 8, p. 767). In this case, it is
evident that “...The growth rate of the economy...depends only on the growth rate of the labor force and
the parameters ¢ and A, which determine the external returns (as well as the returns to scale) in the

R&D sector...” (Jones, 1995, p. 767).

Clearly, WITHOUT USING THE JONES’ (1995) ASSUMPTIONS IN OUR MODEL, we observe that in a
L .
symmetric equilibrium in which x, =x = N[ , Vi (Eq. 4’ in the body-text of our paper), the aggregate

production function would read as:

N am
—-a 1 m. q. —a a a|m(1-4)-
Y=L le(xi)]/ di| =(s s,)LN[(l/j)l], SYETY

0

L L
and s, =—.

L
Along a BGP, the shares of labor going to each sector that employs such an input (s, =L, /L,

s,=L,/L,and s, =L, /L) are constant — see On-line Appendix A. Hence, the growth rate of aggregate
GDP is:

Yy L L N
?:z+a[m(l—ﬂ)—l}yN:n+a[m(l—ﬂ)—l]7jv, = v

Y .
By defining by y = 7 output per capita, y/y will be equal to:

<.

=a[m(1—ﬂ)—1])/N =Qy,.

Notice that in our model the markup () is independent of the factor-input shares in GDP. From our
R&D technology, we see that in the BGP equilibrium




Therefore,

Z:a[m(l_ﬂ)_% =d¥n.
y

It is apparent that in our model (Eq. 19 in the text) the growth rate of the economy depends not only on the
growth rate of the labor force (7) and the parameters of the R&D technology ¢ and A (as in Jones,
1995), but also on « (the share of GDP that goes to intermediate inputs), the markup (m ), and, more
importantly, the parameter /5, which represents the main novelty of our work.

All in all, from above it can be inferred that the difference between our economy’s growth rate (Eq. 19 in
the text),

%:a[m(l—ﬁ)—lj[ﬁjn,

and that obtained by Jones (1995, Eq. 8, p. 767),
y A

—_—=—n

y (1-¢)
can be entirely explained by the presence of two different assumptions across the two approaches, namely
by the fact that in our model:

2

(1) Intermediate firms produce with labor (rather than physical capital), and

(2) The gross markup of price over the marginal cost of production has been disentangled from the
factor-input shares in GDP. W



ON — LINE APPENDIX C:  VERSION OF THE MODEL WITH HOUSEHOLD’S INVESTMENT IN
PHYSICAL CAPITAL (THE ONLY INPUT IN THE PRODUCTION OF
INTERMEDIATE INPUTS)

In this Appendix we formally show that our model’s basic results do not qualitatively change if physical
capital (as opposed to labor), accumulated through households’ savings, is assumed to be the only input in
the production of intermediate inputs. At this aim, we start from Eq. (1) in the text:

7 am
N,

Y =L" %J‘(xﬂ)mdi , O<ac<l, m>1. (1)

0

Using Eq. (1), it is possible to compute the inverse demand function for the i-t/ intermediate:

N, am—1
m:aan%j@j“m iﬂ%rm“. @)
0
Following Romer (1990), we now postulate that monopolistically competitive firms have access to the
same technology employing solely physical capital (namely, forgone output), &, as an input:
x, =k, vie[0;N,], N, €[0;00), (3)
Thus, the marginal cost of production is now the real interest rate, ». For given N,, Eq. (3) implies that
the total amount of capital employed in the intermediate sector at time ¢ ( K, ) is:

j%m:j@ng. ()
0 0

Under the assumption that there exists no strategic interaction across intermediate firms,! maximization of
the generic i-¢h firm’s instantaneous profit with respect to x, leads to the canonical mark-up rule:
Vie[O;N,]. (%)
We follow the literature (see, among others, Bucci and Raurich, 2017, p. 188) in focusing on a symmetric
equilibrium where:

p, =mrn

it 2

=k

t°

Vie[0;N,],

with k, denoting the average amount of physical capital input employed by existing intermediate firms.

Ty =1 k;

Hence,
p.=p, and  x,=x,, Vie[O;N,].
The hypothesis of symmetry leads to:
K
X =x =—°t, Vie|O;N, 4’
it t ]\[’ [ ] ( )
I-a a
-1\ L K m(1-p)- .
7, =a(m—1) = — N,a[ (-] =r, Vie[O;N,]. (6)
m N, N,
The aggregate R&D technology is still:
No=Lre, N(0)>0, 7>0, Ae(0], p<1 7
X

Because the R&D sector is competitive, there is free entry into this market:

N,

1
. . . . . 1 . .
1 More precisely, we assume that each of these intermediate firms is so small that it takes {Nﬁ I( X, )1 di as given.

0

9



| N
Wy = ;Lpl VM > (8)

Nt

where V), is given by

T
)

7[7'(5)([5
vo- J' re'  dr, >4, )

t

and satisfies the no-arbitrage condition: V x. =rV,, —7,.

HOUSEHOLDS
The representative household uses savings to accumulate physical capital, an input into the production
of intermediate inputs:
K. =(rK,+wL)-C,, K(0)>0, (10
\_ﬁ/_—/

=Y,

Household's Savings

In Eq. (10) K, C and L denote, respectively, aggregate physical capital, aggregate consumption and
the aggregate labor-input,2 and r is the real rate of return on K . According to this equation, household’s
investment in physical capital (the left hand side) equals household’s savings (the right hand side). In turn,
household’s savings are equal to the difference between household’s income (the sum of interest income,
rK , and labor income, wL ) and household’s consumption (C ). For the sake of simplicity, physical
capital does not depreciate (see Romer, 1990, p. S82, Eq. 2). Given the above expression, the law of
motion of per-capita capital is:

k =(r,—n)k, +w, —c, k(0)>0, =n>0, (11)

t

|t~

with k=K /L and c¢=C/L representing per-capita physical capital and per-capita consumption,
respectively. With a constant inter-temporal elasticity of substitution (CIES) instantaneous utility
function, the objective of the household is to maximize, under constraint, the discounted utility of per
capita consumption of all its members:

J-0
MQXYUEJ[CEHI}(””)’&, (p—n)>(1-6)y., 6>0, (12)

{"r ki }1:0

s.t.: /;fz(rf—n)kt-kw[—c[, k(0)>0.
In Eq. (12) we have normalized population at time 0 to one, L(0)=1. The condition (p—n)>(1-6)y,
(where y,_ is the long-run constant growth rate of per-capita consumption) ensures that the attainable
utility, U , is bounded and that the transversality condition holds (see below). The representative dynastic

family chooses the optimal path of per-capita consumption {c}" ", taking the real interest rate 7 and the
wage rate w, as given. The solution to this problem gives the usual Ramsey-Keynes rule:

(rn=p). (13)

2 In this setting, the labor-force coincides with population, hence per-capita and per-worker variables are the same. Moreover, all
labor is employed and at equilibrium obtains the same wage, w .

10



THE LABOR MARKET AND THE BGP EQUILIBRIUM

Since labor is fully employed and distributed across production of consumption goods and invention of
new ideas, at equilibrium the following equalities must hold:
L=L,+L,,, Vt>0 (14)

Wy = Wy - (15)

DEFINITION: BGP EQUILIBRIUM
A BGP Equilibrium in this economy is an equilibrium-path along which:
(1) All variables depending on time grow at constant exponential rates;
(i) The sectoral shares of labor employment (s, =L, / L, with j=Y,N ) are constant.

In order to characterize the BGP equilibrium of the model, we proceed as follows. From Eq. (1), under the
hypothesis of symmetry (Eq. 4°):

W, =(1—a)[%ja[%]a N7, D=a[m(1-p)-1]. (16)

t t

Using Eq. (6), Eq. (9) can be re-written as:

“ 1-a a r
_ L K —J‘r(.c)dx
VN,,:J’a(m—lji 2| N% ' dr. (17)
' m N. N,

Along the BGP, due to the fact that all variables depending on time grow at constant exponential rates, r
is also constant (see Eq. 13). Thus, after some algebra, V,, can ultimately be recast as:

" 1 L)/ l-a K a N[d’ )
A (o

L N, 1'<,
I’ZEZ, 7N5Ft’ 71(5?"
Note that for any ae(O;l), m>1, L, >0, K>0,and N >0, V,, is positive at any time ¢ >0 when:
r>(1—a)n+a7/K—(1—(D)yN. (18)

Given V.

Nt 2

1 N¢ e 1 1-a K a N(i)
AN (met ‘ ‘ 19
WM Z L]‘;f a( m J( j ( ] [r 1 a n- a}/K (1 _@)}/N:l ( )

We can now use Eq. (15) and equalize (16) and (19), so obtaining:
L, l-a\ m \ L
v ZZZ[ . j( jLN"”[r (I—a)n—ay, + (1—@))/N]. (20)
From (16) and (19) we also observe that along a BGP:

from Eq. (8) it follows:

N

Tn B —ﬁzan—anw% Q1)

WY t WJV)‘ Wr

This result has been obtained by noticing (see Eq. 7) that in the BGP equilibrium:

[Lj
7N_ 1_¢

Under the hypothesis of symmetry, and using Egs. (5), (2) and (4’), we can express 7 as:

11



al,"K'N?
r=—m————.

: (22)
m
Because » and the sectoral labor-shares are constant along a BGP, Eq. (22) implies that:
Dy, =(1—a)(}/K —n). (23)
Using (23) into (18) and into (21) delivers, respectively:
P>V =7y (18%)
Py, @r)

WY[ WN! t

After combining (20), (23), (7) and (14), in the end we can determine the share of labor allocated to the
production of final goods as:

syzﬂz m(l—a)(r+7/N—;/K) ‘ (24)
L m(l—a)(r+;/N—}/K)+a(m—l)7N
From (14):
sy =1-s,,

where s, is given by (24).

With ae(0;1), m>1, y,>0 and r>y, -y, (Eq. 18°), it is immediate to see that s, €(0;1) and
s, €(0:1), too. Using Eq. (10):

C, w,L

—L=r+——L-y,. 25
X K x (25)

t

L. . .
We now use (21), (23), and n= T into (25) and obtain:

A sk S S L(0)=1; K(0)>0; (257)

w(0)>0,
where L(0), w(0), and K(0) are the given initial values (i.e., at =0) of L, w,,and K,, respectively.
Eq. (25’) is important because it suggests that along a BGP, C, and K, grow at the same constant rate:

C K ,
657(722571(' (25)
The aggregate production function (Eq. 1), together with the hypothesis of symmetry (Eq. 4°), delivers:
1-a a

L K
Yo=| 2t || N (26)

NI Nt
After taking logs and deriving with respect to time, and using (23) into it, Eq. (26) allows us to conclude
that along a BGP:
Y, ,
7[ =Yy =Vk- (26 )
Therefore, by combining (26°) and (25”), we see that:
C. K, 4
FEyC:EE?/KZYEJ/Y‘ (27)

t t 1

12



Using Eq. (13) and the definition of ¢, =C, / L,, we can write the growth rate of aggregate consumption

as:
g:CZ+n:;(r—p)+n. (28)
From (27), (28) and (23) we get:
6D
r= 2y tp. 29)
(i-a)
Along a BGP:
A
=l . 7
Y (1_¢Jn (7)
Hence:
PN O P 29°)
(I-—a)1-¢
Combining (27), (13) and (29°) yields:
¢ k » o (2
L=y =—t=y =t=y =y=— | " |n, 30
Cl 7/0 kl 7/k yl 7/3/ 7/ (l—a)[l—(bjn ( )

where y=Y / L is per-capita GDP.
By comparing Egs. (7’), (30) and (29°) in this appendix with the corresponding Egs. (18), (19) and (20) in
the main text, it is immediate to see that, qualitatively, results do not change at all if one considers
explicitly the hypothesis that the representative household saves and invests savings in the accumulation
of physical capital, an input in the production of intermediate goods [in Romer, 1990, intermediate firms
are postulated to employ physical capital (i.e., forgone consumption), as opposed to labor, as the only
input].
In the end of this appendix we want also to make sure that the transversality condition:

lim A,k =0

>+

does hold in the BGP equilibrium. From the (necessary) FOCs taken on the Hamiltonian function (J ):

176_1 oy
J:(Cl—ﬁ Je (o) +/1,([(r—n)k+w—c],

we have:
a_ ;5 o 2o (r=n), 31)
ok A,

where 4, is the co-state variable associated to the state variable, k. By using the last equation, the
transversality condition can be recast as:

lim 2k, = 2, (0)k(0) lime "7 =0. (32)
t—>+0

ket
t—>+0

>0 are the initial values (i.e., at £ =0) of the state variable, k, and the

In (32) £(0)>0 and 4 (0)=—
C

co-state variable, 4, . Eq. (32) reveals that the transversality condition is satisfied when the following
inequality is met:

r>n+y,,
that is to say when: F> Y, as y, =yg—n. (TC)
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Notice that when the transversality condition (TC) is satisfied, then the condition that guarantees that V/,

is positive at any time >0 —i.e.,, >y, —y, (see Egs. 18 and 23)— is simultaneously met for any », >0,
which is always true in the BGP equilibrium of our model.
Making use of (29) and (30), the transversality condition (TC) leads to the following inequality:

R N

=0y +p =y.+n

This inequality is always checked when (p—n)>(1-0)y,, see Eq. 12 above. W
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ON - LINE APPENDIX D: BALASSA DENSITY INDEX, LAFAY DENSITY
INDEX AND NETWORK TRADE INDEX

Following Ferrarini and Scaramozzino [20], we provide now the definitions of the complexity indexes
employed in our regressions.

Let X (i, j) denote country i's exports of product j and M (i, j) denote country ¢'s imports of product i.

The Balassa index is essentially a normalized export share, i.e.

XN/ 2;X0))
3o X(0,))
nilZ]X(l’])

BI(i,j) =

where the numerator is the share of industry j in country i's export and the denominator is the share of
industry j in the total exports of the countries in the sample. If BI(i,j) > 1, indutry j is more important for
country i's exports than for the exports of the other countries in the sample. Hence, country i has a revealed
comparative advantage in the production of good j.

The normalized trade balance Z (i, j)can be defined as:

_ X(l,j) - M(l'])
X@p+MGjH)

X))

The trade specialization index, TS(i, j) for each sector j is computed as the difference between a country's
Z(i,j) and its total trade balance, across sectors:

TSGJ) = 26 )~ ). 2G))
J

The Lafay index, LI(i, ), is obtained by weighing the TS(i, j) by the sector j contribution to trade:

X(, )+ M3, j)

LI(i,j) =TS(,j)

If country i specializes in sector j, then LI(i,j) > 0.
We can use the BI(i, j) or the LI(i, j)to build the following indicator of trade specialization q(i, j):
q(i,j) = Irqjy>o

where A(i, j) can be either the BI(i, j)or the LI(i, j) and I is an indicator function giving 1 if A(i,j) > 0 and
0 otherwise.

The degree of closeness of any two production sectors j and k in the global product space is measured by
the index of proximity 0(j, k):

6@, k) = min{Prob[q(i,j) = 1|q(i, k) = 1], Prob[q(i, k) = 1|q(i,j) = 1]}



The density index for sector j is the weighted average of the trade specialization indicators, in which the
weights are the proximities of sector j with all the other sectors:

2k 00, kg, k)
Zk e(]' k)

w(i,j) =

The average density of country i is obtained as an average of the density indexes across all sectors:

&= ij(i,j)

The average density refers to the number of paths out of all possible paths within the product space that lead
to the products that are already part of a country's export basket.

As Ferrarini and Scaramozzino point out, this concept of product space and the related density measure
account for intra-industry trade within coarse-grained sector balances. To account also for vertical trade in
the empirical investigation of a complexity-growth model, they suggest to employ the Network Trade Index
(NTI) as a measure of the intensity of trade among countries participating in the international production
network (Ferrarini [16]). The NTI(i, z) of country i with respect to its trade partner z is defined as follows:

i

NTI(, Z)Z ZMZZMUZ,;‘

where: M Z is the value of imports to country i of components of industry j from country z, M/ "] Xy M is

the share of country z's components of industry j on total imports of j in i and X LIy iX; Eis the share of sector

j on total exports from country i. The higher NTI, the greater the importance of country z in the network of
productive relations of country i. In its aggregate form, the index is derived as a geometric average across
sectors.

Throughout the paper, NTI, @g; and @;; have been normalized in the interval [0,1].



ON - LINE APPENDIX E

Table 7: Estimated intermediate sector’s markup

Country m

Australia 1.665
Austria 1.510
Belgium 1.650
Canada 1.755
Cyprus 1.796
Czech Republic 1.420
Denmark 1.572
Estonia 1.793
Finland 1.668
France 1.569
Germany 1.665
Greece 1.751
Hungary 1.620
Ireland 1.518
Italy 1.599
Japan 1.540
Latvia 1.368
Lithuania 1.678
Malta 1.510
Netherlands 1.688
Poland 1.596
Portugal 1.683
Slovak Republic 1.717
Slovenia 1.906
Spain 1.608
Sweden 1.538
United Kingdom 1.686
United States 1.713
mean 1.635

Note: all parameters are significant at 1%.





