
Online Appendix

Appendix A: Model Solution To simplify the exhibition, we substitute the policy rules

(3.3)–(3.4) for pR̂t, ŝtq in the model and rewrite the remaining trivariate LRE system in the

canonical form (2.1)
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and the solution xt “ CpLqεt to (A.1) is taken to be covariance stationary. Below we closely

follow the solution procedure laid out in Section 2.1 and the notations established therein to
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derive the content of Cp¨q.

Determinacy First, transform the time-domain system (A.1) into its equivalent frequency-

domain representation. Appealing to the Wiener-Kolmogorov optimal prediction formula, we can

evaluate the vector of expectational errors as ηt`1 “ C0L
´1εt. Define ΓpLq ” Γ´1L

´1`Γ0`Γ1L

and substitute xt, ηt`1, and (A.2) into (A.1)

ΓpLqCpLqεt “ pΨ0ApLq ` Γ´1C0L
´1
qεt

which must hold for all realizations of εt. Therefore, the coefficient matrices are related by the

z-transform identities

zΓpzqCpzq “ zΨ0Apzq ` Γ´1C0

where Cpzq needs to have only non-negative powers of z and be analytic inside the unit circle so

that its coefficients are square-summable by covariance stationarity.

Second, apply the Smith canonical factorization to the polynomial matrix zΓpzq

zΓpzq “ Upzq´1
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with

λ1 “
γ1 `

a

γ2
1 ´ 4γ0

2γ0

, λ2 “
γ1 ´

a

γ2
1 ´ 4γ0

2γ0

, λ3 “
β

1´ γp1´ βq

where γ0 “ p1 ` ασκq{β and γ1 “ p1 ` β ` σκq{β. The zero root arises whenever the model is

forward-looking, i.e., Γ´1 ‰ 0.25 The root λ3 emerges as the reciprocal of the eigenvalue from the

government budget constraint (3.5) viewed as a difference equation in b̂. To see where the pair of

roots pλ1, λ2q comes from, combine the dynamic IS equation (3.1) and the new Keynesian Phillips

curve (3.2) and substitute out ŷ to obtain a second order expectational difference equation for

inflation

Etπ̂t`2 ´
1` β ` σκ

β
Etπ̂t`1 `

1` ασκ

β
π̂t “ ´

σκ

β
εM,t

The eigenvalues governing the dynamics of this equation are exactly p1{λ1, 1{λ2q.

Lastly, examine the existence and uniqueness of solution. Under regime-M with α ą 1 and

γ ą 1, it follows that 0 ă λ2 ă λ1 ă 1 ă λ3. Collect the roots inside the unit circle in Spzq and

multiply both sides of the z-transform identities by Spzq´1
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pzΨ0Apzq ` Γ´1C0q

These identities are valid for all z on the open unit disk except for z “ 0, λ1, λ2. But since
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Cpzq must be well-defined for all |z| ă 1, this condition places the following restrictions on the

unknown coefficient matrix C0

U3¨pzqpzΨ0Apzq ` Γ´1C0q|z“0,λ1,λ2 “ 0

Stacking the above restrictions yields
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A

Apparently, the solution exists because spanpAq Ď spanpRq is satisfied here. In order for the

solution to be unique, we must be able to pin down the terms

QC0 “ U3¨pλ3qΓ´1C0 “

˜
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p1`ασκqβ
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C0

from the knowledge of RC0. This is tantamount to verifying spanpQ1q Ď spanpR1q, which is also

satisfied here.
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Now the unique solution can be computed as
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Setting ρM “ ρF “ 0 gives the expression for C0 in Section 3.2.1.

Under regime-F with 0 ď α ă 1 and γ “ 0, it follows that 0 ă λ2 ă λ3 “ β ă 1 ă λ1. Collect

the roots inside the unit circle in Spzq and multiply both sides of the z-transform identities by
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Spzq´1
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These identities are valid for all z on the open unit disk except for z “ 0, λ2, λ3. But since

Cpzq must be well-defined for all |z| ă 1, this condition places the following restrictions on the

unknown coefficient matrix C0

U3¨pzqpzΨ0Apzq ` Γ´1C0q|z“0,λ2,λ3 “ 0

Stacking the above restrictions yields
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Apparently, the solution exists because spanpAq Ď spanpRq is satisfied here. In order for the

solution to be unique, we must be able to pin down the terms

QC0 “ U3¨pλ1qΓ´1C0 “
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from the knowledge of RC0. This is tantamount to verifying spanpQ1q Ď spanpR1q, which is also
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satisfied here.

Now the unique solution can be computed as
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Setting ρM “ ρF “ 0 gives the expression for C0 in Section 3.2.2.

Indeterminacy Dropping the fiscal policy (3.4) and government budget constraint (3.5) and

introducing the inflation forecast error ηπ,t “ π̂t´Et´1π̂t into the equilirium system, (A.1)–(A.2)
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can be modified as
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and we treat ηπ,t as a new fundamental shock.

Next, apply the Smith canonical factorization to the polynomial matrix zΓpzq

zΓpzq “ Upzq´1
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where the roots pλ1, λ2q are identical to those under determinacy.

Finally, examine the existence and uniqueness of solution. Under indeterminacy with 0 ď α ă

1, it follows that 0 ă λ2 ă 1 ă λ1. Collect the roots inside the unit circle in Spzq and multiply
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both sides of the z-transform identities by Spzq´1
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These identities are valid for all z on the open unit disk except for z “ 0, λ2. But since Cpzq must

be well-defined for all |z| ă 1, this condition places the following restrictions on the unknown

coefficient matrix C0

U2¨pzqpzΨ0Apzq ` Γ´1C0q|z“0 “ 0
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Apparently, the solution exists because spanpAq Ď spanpRq is satisfied here. In order for the

solution to be unique, we must be able to pin down the terms

QC0 “ U3¨pλ1qΓ´1C0 “
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´ λ1κ
1`ασκ

0 0
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from the knowledge of RC0. This is tantamount to verifying spanpQ1q Ď spanpR1q, which is also
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satisfied here.

Now the unique solution can be computed as
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where the contemporaneous responses are given by

C0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´ σλ2
1´ρMλ2

´
p1`ασκqλ2´1

κ

0 1

σκ
p1´ρMλ2qp1`ασκqλ1

1
λ1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

Setting ρM “ 0 gives the expression for C0 in Section 3.2.3.

Appendix B: Data Set Unless otherwise stated, the following data are drawn from the

National Income and Product Accounts (NIPA) released by the Bureau of Economic Analysis.

All data in levels from NIPA are nominal values and divided by 4. The quarterly observable

sequences in the text are constructed as follows.

1. Per capita real output growth rate, YGR. Per capita real output is obtained by dividing
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the gross domestic product (Table 1.1.5, line 1) by the civilian noninstitutional population

(series “CNP16OV”, Federal Reserve Economic Data, St. Louis Fed) and deflating using

the implicit price deflator for gross domestic product (Table 1.1.9, line 1). Growth rates

are computed using quarter-to-quarter log difference and converted into percentage by

multiplying by 100.

2. Annualized inflation rate, INF, is defined as the quarter-to-quarter log difference of the

implicit price deflator for gross domestic product and converted into percentage by multi-

plying by 400.

3. Annualized nominal interest rate, INT, corresponds to the effective federal funds rate

(Board of Governors of the Federal Reserve System) and is in percentage.

4. Per capita real debt growth rate, BGR. Per capita real debt is obtained by dividing the

market value of privately held gross federal debt (Federal Reserve Bank of Dallas) by the

civilian noninstitutional population and deflating using the implicit price deflator for gross

domestic product. Growth rates are computed using quarter-to-quarter log difference and

converted into percentage by multiplying by 100.

Appendix C: Supplementary Tables and Figures Table 6 reports the posterior estimates

of model parameters based on the full band. Figures 1–4 compare the cross-correlograms of the

data (black solid line with cross) with those of regime-M (blue dashed line) and regime-F (red

solid line) evaluated with the posterior mean over partial bands.
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Table 6: Full Band Posterior Estimates

Pre-Volcker Era Post-Volcker Era

Regime-M Regime-F Regime-M Regime-F

Para Mean 90% HPD Mean 90% HPD Mean 90% HPD Mean 90% HPD

1{σ 4.92 [4.42,5.41] 5.26 [4.77,5.77] 4.93 [4.44,5.42] 5.14 [4.62,5.66]

κ 0.51 [0.42,0.59] 0.45 [0.38,0.53] 0.51 [0.42,0.59] 0.39 [0.33,0.46]

r̄ 0.50 [0.33,0.66] 0.50 [0.33,0.65] 0.50 [0.34,0.66] 0.51 [0.36,0.67]

α 1.80 [1.57,2.01] 0.56 [0.44,0.69] 2.24 [1.98,2.48] 0.47 [0.35,0.59]

γ 1.51 [1.18,1.82] – – 1.50 [1.16,1.82] – –

ρM 0.93 [0.91,0.95] 0.97 [0.95,0.98] 0.95 [0.94,0.97] 0.95 [0.93,0.97]

ρF 0.49 [0.34,0.67] 0.50 [0.34,0.67] 0.51 [0.35,0.67] 0.50 [0.34,0.67]

100σM 0.34 [0.27,0.42] 0.25 [0.21,0.29] 0.27 [0.22,0.32] 0.21 [0.18,0.24]

100σF 0.43 [0.28,0.57] 0.42 [0.28,0.57] 0.43 [0.28,0.57] 0.43 [0.29,0.57]

Ave Ineff 2.3 2.3 2.2 10.1

Notes: See Table 2.
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Figure 1: Pre-Volcker cross-correlogram estimated on high-pass band.
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Figure 2: Pre-Volcker cross-correlogram estimated on low-pass band.
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Figure 3: Post-Volcker cross-correlogram estimated on high-pass band.
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