Online Appendix to "Inflation and Growth: A Non-Monotonic Relationship in an Innovation-Driven Economy"

Zhijie Zheng*
Southwestern University of Finance and Economics
Yibai Yang ${ }^{\ddagger}$
University of Macau

Chien-Yu Huang ${ }^{\dagger}$
Nanjing Audit University

January 28, 2019

Online Appendix A : Proofs of propositions

A. 1 Proof of Propositions 1, 2 and 3

To analytically prove these propositions, first, we follow Segerstrom (2000) to establish the mutual R\&D condition. This condition is derived from the first-order conditions of R\&D profit maximizing problem, (14) and (19), for vertical and horizontal R\&D firms. Substituting (11) into (14) yields the steady-state expected profit for each successful vertical innovative firm such that

$$
\begin{equation*}
\Pi_{v t}=\int_{t}^{\infty} e^{-\int_{t}^{\tau}\left(r+\phi_{s}\right) d s} \hat{\pi}_{t \tau} d \tau=\frac{\alpha(1-\alpha) L_{y} A_{t}^{\frac{1}{1-\alpha}}}{\rho+g_{L}+\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right) g_{A}} \tag{A.1}
\end{equation*}
$$

Hence the two R\&D conditions are written as

$$
\begin{equation*}
\frac{\delta \Gamma \alpha \lambda_{v} l_{y} \iota}{\rho+g_{L}+\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right) g_{A}} l_{v}^{\delta-1}=1+\xi_{v} i \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\gamma \alpha \lambda_{h} l_{y} \iota}{\rho+g_{L}+\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right) g_{A}} l_{h}^{\gamma-1}=1+\xi_{h} i . \tag{A.3}
\end{equation*}
$$

[^0]Combining (A.2) and (A.3) yields

$$
\begin{equation*}
\frac{\delta \lambda_{v} \Gamma l_{v}^{\delta-1}}{1+\xi_{v} i}=\frac{\gamma \lambda_{h} l_{h}^{\gamma-1}}{1+\xi_{h} i} . \tag{A.4}
\end{equation*}
$$

Furthermore, using (27) and (28), (A.4) can be re-expressed as a relationship with two innovation growth rates, which is the mutual $R \mathcal{B} D$ condition, given by

$$
\begin{equation*}
g_{N}=\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} g_{A}, \tag{A.5}
\end{equation*}
$$

where $\Omega=\frac{1+\xi_{h} i}{1+\xi_{v} i} \Psi$ and $\Psi=\frac{\delta \Gamma \lambda_{v}}{\gamma \lambda_{h}}$. Substituting (24), (26) and $c_{t}=C_{t} / L_{t}$ into the individual's consumption-leisure condition (5) yields

$$
\begin{equation*}
l=1-\theta(1+\alpha)\left(1+\xi_{c} i\right) l_{y} . \tag{A.6}
\end{equation*}
$$

Using (A.4), (A.6) and the labor market-clearing condition $l_{y}+l_{v}+l_{h}=l$ to express l_{y} as a function of l_{v} such that

$$
\begin{equation*}
l_{y}=\frac{1-l_{v}-\Omega^{\frac{1}{\gamma-1}} l_{v}^{\frac{1-\delta}{1-\gamma}}}{\Upsilon}, \tag{A.7}
\end{equation*}
$$

where $\Upsilon=1+\theta(1+\alpha)\left(1+\xi_{c} i\right)$. Substituting (A.7) into (A.2) yields the general R\&D condition

$$
\begin{equation*}
g_{A}\left\{\frac{1-l_{v}}{\left(1+\xi_{v} i\right) l_{v}}-\frac{\Omega^{\frac{1}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}}{1+\xi_{v} i}-\frac{\Upsilon\left[1+\sigma\left(\frac{1}{1-\alpha}-1\right)\right]}{\Gamma \delta \alpha}\right\}=\frac{\sigma \Upsilon\left(\rho+g_{L}\right)}{\Gamma \delta \alpha} . \tag{A.8}
\end{equation*}
$$

In addition, substituting (A.5) into the population-growth condition (30) results in the populationgrowth condition

$$
\begin{equation*}
g_{L}=g_{A}\left[1+\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\right] \tag{A.9}
\end{equation*}
$$

Consequently, (A.8) and (A.9) represent a system of two equations in two unknowns (l_{v} and g_{A}) that can be solved for a balanced-growth equilibrium.

Lemma A.1. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint on consumption only, a permanent increase in the nominal interest rate i (a) decreases the fraction of labor allocated to vertical $R \mathcal{B} l_{v}$ and increases the long-run product-quality growth rate g_{A} if $\gamma>\delta$, and (b) decreases l_{v} and g_{A} if $\gamma<\delta$.

Proof of Lemma A.1. Imposing $\xi_{v}=\xi_{h}=0$ to reduce (A.5), (A.8) and (A.9) to

$$
\begin{gather*}
g_{N}=\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\gamma}{1-\gamma}} g_{A} \tag{A.10}\\
g_{A}\left\{1-l_{v}-\Psi^{\frac{1}{\gamma-1}} l_{v}^{\frac{1-\delta}{1-\gamma}}-\frac{\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right](\Gamma-\sigma)}{\Gamma \delta \alpha} l_{v}\right\}=\frac{\sigma\left(\rho+g_{L}\right)\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]}{\Gamma \delta \alpha} l_{v} \tag{A.11}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{L}=\left[1+\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\right] g_{A} . \tag{A.12}
\end{equation*}
$$

The last two equations are graphed in Fig.1a assuming that $\gamma>\delta$. The R\&D condition curve (A.11) is unambiguously upward sloping and goes through the origin, whereas the population-growth condition curve (A.12) is unambiguously downward sloping and has a strictly positive vertical intercept. As illustrated in Fig.1a, there is a unique intersection of these two curves at point A, which pins down the balanced-growth equilibrium values of l_{v} and g_{A}. With these values determined, (A.10) pins down $g_{N},(27)$ pins down ι, and (28) pins down l_{h}. Thus, the model has a unique balanced-growth equilibrium when $\gamma>\delta$.

The effect of permanently increasing the nominal interest rate i is illustrated in Fig.1a by the movement from point A to B . An increase in i unambiguously causes the $R \xi D$ condition curve (A.11) to shift up, whereas it has no effect on the population-growth condition curve (A.12). Thus, a higher nominal interest rate decreases l_{v} but increases g_{A} if $\gamma>\delta$.

Fig. 1. The effect of a higher nominal interest rate with CIA constraint on consumption.
Equations (A.11) and (A.12) are graphed in Fig.1b assuming $\gamma<\delta$. For $\gamma<\delta$, the slope of the population-growth condition curve turns to be positive because a higher l_{v} is correlated with a higher g_{A}, whereas the positiveness of the slope of the general $R \mathcal{E} D$ condition curve remains unchanged. Again, there is a unique intersection of these two curves at point A, ${ }^{1}$ which pins down

[^1]

Fig. 2. The growth effect of a higher i with CIA constraint on consumption.
the balanced-growth equilibrium values of l_{v} and g_{A} in addition to other variables. The model also has a unique balanced-growth equilibrium if in this case.

The effect of permanently increasing i is illustrated in Fig.1b by moving the equilibrium from point A to B. An increase in i unambiguously shifts the general $R \xi D$ condition curve (A.11) upward, whereas it has no effect on the population-growth condition curve (A.12). Therefore, an increase in i decreases l_{v} and g_{A} if $\gamma<\delta$.

Proof of Proposition 1. Based on the above results, we now proceed to the analysis of the overall effects of monetary policies on g_{A} and g_{N}. In the (g_{A}, g_{N}) space, the slope of each iso-growth line(i.e., $1 /(1-\alpha))$ exceeds the slope of the population-growth condition (i.e.,1) (in absolute value). The effects of a higher nominal interest rate are illustrated in Fig. 2 accordingly. The mutual $R \mathcal{B} D$ condition given by (A.10) is an upward-sloping line that goes through the origin in the (g_{A}, g_{N}) space, when l_{v} is fixed at the initial equilibrium value. An increase in i shifts down the mutual $R \forall B D$ condition to a new intersection C if $\gamma>\delta$, leading to an increase in g_{A} according to Lemma A.1. In contrast, an increase in i shifts up the mutual R $\mathcal{E} D$ condition to another new intersection B if $\gamma<\delta$, leading to an decrease in g_{A}. Combining (29) with (30), one can express the aggregate economic growth rate exclusively as the vertical innovation growth rate such that $g=g_{L}+[1 /(1-\alpha)-1] g_{A}$. It implies that an increase in i, which leads to an decrease in g_{A} when $\gamma<\delta$, decreases the long-run growth rate g (i.e., the movement from A to B); while an increase in i, which results in an increase in g_{A} when $\gamma>\delta$, increases the long-run growth rate g (i.e., the movement from A to C).

Lemma A.2. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint on vertical RED only, a permanent increase in i decreases l_{v} and g_{A} for both $\gamma>\delta$ and $\gamma<\delta$.
population growth condition. Consequently, there is a unique intersection of these two curves and a unique solution (equilibrium) of these two equations. Given the unique solution of l_{h} and $g_{N}, l_{v}=\Psi^{\frac{1}{1-\delta}} l_{h}^{\frac{1-\gamma}{1-\delta}}$ from (A.4), and (A.5) immediately imply a unique l_{h} and g_{N}, respectively. Hence, the curves illustrated in Fig. 1 b must intersect once.

Proof of Lemma A.2. Making use of $\xi_{c}=\xi_{h}=0$ to reduce (A.5), (A.8) and (A.9) to

$$
\begin{gather*}
g_{N}=\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}}\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} g_{A} \tag{A.13}\\
g_{A}\{\underbrace{\frac{1-l_{v}}{\left(1+\xi_{v} i\right) l_{v}}-\Psi^{\frac{1}{\gamma-1}}\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}}_{-}-\frac{(1+\theta+\theta \alpha)(\Gamma-\sigma)}{\Gamma \delta \alpha}\}=\frac{\sigma(1+\theta+\theta \alpha)\left(\rho+g_{L}\right)}{\Gamma \delta \alpha} \tag{A.14}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{L}=\left[1+\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}}\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\right] g_{A} \tag{A.15}
\end{equation*}
$$

Equations (A.14) and (A.15) are graphed in Fig.3a given $\gamma>\delta$. There is a unique intersection of these two curves at point A, which pins down the balanced-growth equilibrium values of all endogenous variables as in the previous case (in which only the CIA constraint on consumption is present). Again, the model has a unique balanced-growth equilibrium when $\gamma>\delta$. The effect of permanently increasing i is illustrated in Fig.3a by the movement from point A to B. A higher i unambiguously causes the general $R \varepsilon D$ condition curve (A.14) (the negative sign means that the value of those terms overall decreases as i increases) to shift upward and the population-growth condition curve (A.15) to shift downward. Thus, a higher i surely decreases l_{v}.

(a) $\gamma>\delta$

(b) $\gamma<\delta$

Fig. 3. The effect of a higher nominal interest rate with CIA constraint on vertical R\&D.
As for the effect on g_{A}, suppose that for some $\gamma>\delta$, an increase in i increases (or has no effect on) g_{A}. According to (A.15), $\left(1+\xi_{v} i\right)^{\frac{\gamma}{1}-\gamma} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ must decrease (or remain unchanged) when i increases, which means that $\left[\left(1+\xi_{v} i\right) l_{v}\right]^{-1} l_{v}^{\frac{\delta}{\gamma}}$ must increase (or remain unchanged). Given that l_{v} decreases as i increases, $\left[\left(1+\xi_{v} i\right) l_{v}\right]^{-1}$ must increase in response. Therefore, (A.14) implies that $\left(1-l_{v}\right) /\left[\left(1+\xi_{v} i\right) l_{v}\right]-\Psi^{\frac{1}{\gamma-1}}\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ must increase and thus g_{A} must decrease. This yields a contradiction, so g_{A} must always decrease in a higher i when $\gamma>\delta$.

Fig. 4. The growth effect of a higher i with CIA constraint on vertical R\&D.

Equations (A.14) and (A.15) for $\gamma<\delta$ are graphed in Fig.3b. ${ }^{2}$ There is still a unique intersection of these two curves at point A, so the model has a unique balanced-growth equilibrium when $\gamma<\delta$. The effect of permanently increasing i is illustrated in Fig. 3 b by the movement from point A to B. An increase in i unambiguously causes the general RGD condition curve (A.14) to shift upward, while the population-growth condition curve (A.15) to shift downward. Hence, a higher i decreases l_{v}. A similar proof applies for the change in g_{A}.

Proof of Proposition 2. The effects of a higher rate of nominal interest on the aggregate rate of economic growth g are displayed in Fig.4. From Lemma A. 2 and (A.15), a decreased g_{A} due to a rise in i means an increased $\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$. As a result, an increase in i shifts up the mutual $R \xi D$ condition line according to (A.13), implying a lower vertical R\&D growth rate for both $\gamma>\delta$ (namely the movement from A to C) and $\gamma<\delta$ (from A to B), with a larger magnitude for the latter case. The difference arises because given a lowered l_{v} for a rise in $i, \gamma<\delta$ leads $l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ to be increasing in i and makes the overall positive effect of a higher i in the term of $\left(1+\xi_{v} i\right)^{\frac{\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ dominate the one under $\gamma>\delta$ in which $l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ is decreasing in i. In other words, the overall effect of a higher nominal interest rate is to increase the product-variety growth rate at the expense of the product-quality growth rate, with a larger sacrifice in vertical innovation growth rate when $\gamma<\delta$. The relation of $g=g_{L}+[1 /(1-\alpha)-1] g_{A}$ from (29) and (30) states that a movement on the population-growth condition in the northwest direction (g_{N} increases and g_{A} decreases) is growth-retarding due to $1<1 /(1-\alpha)$. Therefore, a larger sacrifice in the product-quality growth rate g_{A} in the case of $\gamma<\delta$ means a larger decrease in the economic growth rate than that in the case of $\gamma>\delta$.

[^2]Lemma A.3. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint on horizontal RED only, a permanent increase in i increases l_{v} and g_{A} for both $\gamma>\delta$ and $\gamma>\delta$.

Proof of Lemma A.3. In an analogous fashion of the proof of Lemma A.2, imposing $\xi_{c}=\xi_{v}=0$ enables us to reduce (A.5), (A.8) and (A.9) to

$$
\begin{gather*}
g_{N}=\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}}\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} g_{A}, \tag{A.16}\\
g_{A}[\frac{1-l_{v}}{l_{v}}-\underbrace{\Psi^{\frac{1}{\gamma-1}}\left(1+\xi_{h} i\right)^{\frac{-1}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}}_{+}-\frac{(1+\theta+\theta \alpha)(\Gamma-\sigma)}{\Gamma \delta \alpha}]=\frac{\sigma(1+\theta+\theta \alpha)\left(\rho+g_{L}\right)}{\Gamma \delta \alpha}, \tag{A.17}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{L}=\left[1+\frac{1}{\sigma}\left(\frac{\lambda_{h}}{\lambda_{v}}\right) \Psi^{\frac{\gamma}{\gamma-1}}\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\right] g_{A} . \tag{A.18}
\end{equation*}
$$

Equations (A.17) and (A.18) are graphed in Fig.5a given $\gamma>\delta$. There is a unique intersection of these two curves at point A, which pins down the balanced-growth equilibrium values of all endogenous variables. The model also has a unique balanced-growth equilibrium when $\gamma>\delta$. The effect of permanently increasing i is illustrated in Fig.5a by the movement from point A to B. An increase in i unambiguously causes the general $R \mathcal{E} D$ condition curve (A.17) to shift downward and the population-growth condition curve (A.18) to shift upward. Hence, a higher i increases l_{v}.

As for the effect on g_{A}, suppose that for some $\gamma>\delta$, an increase in i decreases (or does not change) g_{A}. Then, (A.18) implies that $\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ increases (or remain constant) when i increases, from which it follows that $\left[\left(1+\xi_{h} i\right) l_{v}^{-1}\right]^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{-\delta}{1-\gamma}}$ increases (or remain constant). Since l_{v} increases in response to an increase in i, thus $\left[\left(1+\xi_{h} i\right) l_{v}^{-1}\right]^{\frac{-\gamma}{1-\gamma}}$ should increase and $\left[\left(1+\xi_{h} i\right) l_{v}^{-1}\right]$ decrease. From (A.17), $\frac{1-l_{v}}{l_{v}}-\Psi^{\frac{1}{\gamma-1}}\left(1+\xi_{h} i\right)^{\frac{-1}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}=\frac{1}{1+\xi_{h} i}\left\{\frac{\left(1+\xi_{h} i\right)\left(1-l_{v}\right)}{l_{v}}-\Psi^{\frac{1}{\gamma-1}}\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\right\}$ must decrease and g_{A} must increase. This yields a contradiction. Therefore, g_{A} must always increase in response to an increase i when $\gamma>\delta$.

Equations (A.17) and (A.18) for $\gamma<\delta$ are graphed in Fig.5b. There is also a unique intersection of these two curves at point A, and the model has a unique balanced-growth equilibrium when $\gamma<\delta .{ }^{3}$ The effect of a permanent increase in i is illustrated in Fig. 5 b by the movement from point A to B. An increase in i unambiguously causes the general $R \xi D$ condition curve (A.17) to shift downward and the population-growth condition curve (A.18) upward. Thus, a higher i increases l_{v}. A similar proof applies for the change in g_{A}.

Proof of proposition 3. The effects of a higher rate of nominal interest on the aggregate rate of economic growth g are displayed in Fig.6. From Lemma A. 3 and (A.18), an increased g_{A} means a decreased $\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$. As a result, an increase in i shifts down the mutual R\&D condition

[^3]

Fig. 5. The effect of a higher nominal interest rate when CIA constraint on horizontal R\&D.

Fig. 6. The growth effect of a higher i with CIA constraint on horizontal $\mathrm{R} \& \mathrm{D}$.
line according to (A.16), and then increases the vertical R\&D growth rate for both $\gamma>\delta$ (the movement from A to C) and $\gamma<\delta$ (from A to B), with a larger magnitude for the latter case again. The difference occurs because given an increased l_{v} for a higher $i, \gamma<\delta$ leads $l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ to be decreasing in i and makes the overall decreasing effect in the term of $\left(1+\xi_{h} i\right)^{\frac{-\gamma}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ dominate the one under $\gamma>\delta$ in which $l_{v}^{\frac{\gamma-\delta}{1-\gamma}}$ is increasing in i. In other words, the overall effect of a higher i is to increase the product-quality growth rate at the cost of the product-variety growth rate, with a larger sacrifice in g_{N} when $\gamma<\delta$. Again, $g=g_{L}+[1 /(1-\alpha)-1] g_{A}$ implies that a movement on the population-growth condition in the southeast direction (g_{A} increases and g_{N} decreases) is growth-promoting due to $1<1 /(1-\alpha)$. Therefore, a larger sacrifice in the product-variety growth rate means a larger increase in the aggregate economic growth rate when $\gamma<\delta$.

A. 2 Proof of Proposition 4

To prove Proposition 4, we move one step forward to solve l_{v} and then the economic growth rate. Given (A.7), (A.2) is used to set up another relation between l_{y} and l_{v} to solve for l_{v}. To do this, ι in (A.2) needs to be eliminated. Rewriting the economic growth rate solely as the vertical innovation growth rate by combining (29) and (30) yields

$$
g=g_{L}+\left(\frac{1}{1-\alpha}-1\right) g_{A}
$$

Substituting $g_{A}=\sigma \lambda_{v} l_{v}^{\delta} \iota$ and $g_{N}=\lambda_{h} l_{h}^{\gamma} \iota$ into the above equation yields

$$
\begin{equation*}
g_{L}=\iota\left[\sigma \lambda_{v} l_{v}^{\delta}+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma(\delta-1)}{\gamma-1}}\right] \tag{A.19}
\end{equation*}
$$

By substituting (A.19) and (A.2), we can reduce ι and express l_{y} as a function of l_{v} such that

$$
\begin{align*}
l_{y} & =\frac{\left(1+\xi_{v} i\right)\left[\rho+g_{L}+\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right) g_{A}\right]}{\delta \alpha \Gamma \lambda_{v} \iota} l_{v}^{1-\delta} \\
& =\frac{\left(1+\xi_{v} i\right)\left(\rho+g_{L}\right)}{\delta \alpha \Gamma \lambda_{v} g_{L}}\left[\sigma \lambda_{v} l_{v}^{\delta}+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{(\delta-1) \gamma}{\gamma-1}}\right] l_{v}^{1-\delta}+\frac{\left(1+\xi_{v} i\right)\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right) \sigma \lambda_{v} l_{v}^{\delta} \iota}{\delta \alpha \Gamma \lambda_{v} \iota} l_{v}^{1-\delta} \tag{A.20}\\
& =\frac{\left(1+\xi_{v} i\right) l_{v}}{\delta \alpha \Gamma g_{L}}\left[\sigma\left(\rho+g_{L}\right)+\sigma g_{L}\left(\frac{1}{1-\alpha}-1+\frac{1}{\sigma}\right)\right]+\frac{\left(1+\xi_{v} i\right)\left(\rho+g_{L}\right) \lambda_{h}}{\delta \alpha \Gamma g_{L} \lambda_{v}} \frac{\gamma}{\gamma-1} l_{v}^{\frac{\delta-1}{\gamma-1}} \\
& =\left(1+\xi_{v} i\right)\left(\Theta l_{v}+\frac{\lambda_{h} \Lambda \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\delta-1}{\gamma-1}}}{\lambda_{v}}\right)
\end{align*}
$$

where $\Theta=\frac{\rho \sigma+g_{L} \Gamma}{\delta \alpha \Gamma g_{L}}, \Lambda=\frac{\rho+g_{L}}{\delta \alpha \Gamma g_{L}}$. Substituting (A.20) into (A.6), together with (A.7), to rewrite the labor market-clearing condition as

$$
\begin{equation*}
l_{v}\left[\Upsilon \Theta\left(1+\xi_{v} i\right)+1\right]+\Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{1-\delta}{1-\gamma}}\left[\lambda_{h} \Upsilon \Lambda\left(1+\xi_{v} i\right) / \lambda_{v}+\Omega^{-1}\right]=1 \tag{A.21}
\end{equation*}
$$

Hence, (A.21) implicitly solves l_{v}.
To find the relation between i and g, we need to derive a function of g exclusively on l_{v}. Combining (29) with (30), and using the expression of ι yield

$$
\begin{equation*}
g=g_{L}+\frac{\sigma g_{L}\left(\frac{1}{1-\alpha}-1\right)}{\sigma+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} / \lambda_{v}} . \tag{A.22}
\end{equation*}
$$

Differentiating g with respect to i yields

$$
\left.\begin{array}{rl}
\frac{\partial g}{\partial i} & =\frac{-\sigma g_{L}\left(\frac{1}{1-\alpha}-1\right)}{\left(\sigma+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\delta-\delta}{1-\gamma}} / \lambda_{v}\right)^{2}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)\left(\frac{\gamma}{\gamma-1} \Omega^{\frac{1}{\gamma-1}} \frac{\partial \Omega}{\partial i} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}+\Omega^{\frac{\gamma}{\gamma-1}} \frac{\gamma-\delta}{1-\gamma} \frac{\partial l_{v}}{\partial i} l_{v}^{\frac{\gamma-\delta}{1-\gamma}-1}\right) \\
& =\frac{\sigma g_{L} \lambda_{h}\left(\frac{1}{1-\alpha}-1\right) \Omega^{\frac{1}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}}{\lambda_{v}(1-\gamma)\left(\sigma+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} / \lambda_{v}\right)^{2}}\left[\gamma \Psi \frac{\xi_{h}-\xi_{v}}{\left(1+\xi_{v} i\right)^{2}}+(\delta-\gamma) \Psi \frac{1+\xi_{h} i}{1+\xi_{v} i} \frac{\partial l_{v}}{\partial i}\right. \\
l_{v} \tag{A.23}
\end{array}\right] \quad \underbrace{(1-\gamma)\left(1+\xi_{v} i\right)^{2}\left(\sigma+\lambda_{h} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}} / \lambda_{v}\right)^{2}}_{>0}\left[\left(\xi_{h}-\xi_{v}\right)+(\delta-\gamma)\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\frac{\partial l_{v}}{\partial i}}{\gamma l_{v}}\right])
$$

Therefore, the sign of $\partial g / \partial i$ depends on the sign of $\left[\left(\xi_{h}-\xi_{v}\right)+(\delta-\gamma)\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\partial l_{v} / \partial i}{\gamma l_{v}}\right]$. Differentiating (A.21) with respect to i to derive $\partial l_{v} / \partial i$ (note that Ψ, Θ and Λ are unrelated to i) yields

$$
\begin{align*}
& \underbrace{\left\{\left[\Upsilon \Theta\left(1+\xi_{v} i\right)+1\right]+\frac{1-\delta}{1-\gamma} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\left[\frac{\lambda_{h} \Upsilon \Lambda\left(1+\xi_{v} i\right)}{\lambda_{v}}+\Omega^{-1}\right]\right\}}_{\chi_{1}>0} \frac{\partial l_{v}}{\partial i} \\
& =\{\left(\xi_{h}-\xi_{v}\right) \underbrace{\left[\frac{\gamma \lambda_{h} \Upsilon \Lambda}{\lambda_{v}(1-\gamma)\left(1+\xi_{h} i\right)}+\frac{1}{\Psi(1-\gamma)\left(1+\xi_{h} i\right)^{2}}\right]}_{\chi_{2}>0}-\underbrace{\frac{\lambda_{h} \Lambda}{\lambda_{v}}\left[\theta \xi_{c}(1+\alpha)\left(1+\xi_{v} i\right)+\Upsilon \xi_{v}\right]}_{\chi_{3}>0} \underbrace{\Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{1-\delta}{1-\gamma}}}_{\chi_{4}>0} \\
& -\underbrace{\Theta\left[\theta \xi_{c}(1+\alpha)\left(1+\xi_{v} i\right)+\Upsilon \xi_{v}\right]}_{\chi_{1}} l_{v} \\
& \Leftrightarrow \frac{\partial l_{v}}{\partial i}=\frac{\left[\left(\xi_{h}-\xi_{v}\right) \chi_{2}-\chi_{3}\right] \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{1-\delta}{1-\gamma}}-\chi_{4} l_{v}}{\chi_{1}} \tag{A.24}
\end{align*}
$$

To see how $\left[\left(\xi_{h}-\xi_{v}\right)+(\delta-\gamma)\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\partial l_{v} / \partial i}{\gamma l_{v}}\right]$ changes in response to i is equivalent to see how the following term changes with i,

$$
\begin{equation*}
\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\partial l_{v} / \partial i}{\gamma l_{v}}=\frac{\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right)}{\chi_{1}}\left\{\frac{\left[\left(\xi_{h}-\xi_{v}\right) \chi_{2}-\chi_{3}\right] \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}-\chi_{4}}{\gamma}\right\} . \tag{A.25}
\end{equation*}
$$

We now show that as $i \rightarrow \infty$, (A.25) goes to negative infinity because $\lim _{i \rightarrow \infty}\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) / \chi_{1}$ is finite and $\lim _{i \rightarrow \infty}\left\{\left[\left(\xi_{h}-\xi_{v}\right) \chi_{2}-\chi_{3}\right] \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}-\chi_{4}\right\} / \gamma=-\infty$.

Firstly, we show that

$$
\begin{align*}
& \lim _{i \rightarrow \infty} \frac{\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right)}{\chi_{1}} \\
&= \lim _{i \rightarrow \infty} \frac{\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right)}{\left\{\Theta\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]\left(1+\xi_{v} i\right)+1\right\}+\frac{1-\delta}{1-\gamma} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}\left[\frac{\lambda_{h}}{\lambda_{v}} \Lambda\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]\left(1+\xi_{v} i\right)+\Omega^{-1}\right]} \\
&= \lim _{i \rightarrow \infty} \frac{1}{1} \tag{A.26}\\
& \quad \underbrace{\frac{\Theta\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]}{1+\xi_{h} i}}_{\kappa_{1}}+\underbrace{\frac{1}{\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right)}}_{\kappa_{2}}+\underbrace{\frac{1-\delta}{1-\gamma} \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}}_{\kappa_{3}}[\underbrace{\frac{\lambda_{h} \Lambda}{\lambda_{v}} \frac{1+\theta(1+\alpha)\left(1+\xi_{c} i\right)}{1+\xi_{h} i}}_{\kappa_{4}}+\underbrace{\frac{1}{\left(1+\xi_{h} i\right)^{2} \Psi}}_{\kappa_{5}}]
\end{align*}
$$

is finite because as $i \rightarrow \infty, \kappa_{2}$ and κ_{5} monotonically decrease to zero; κ_{1} and κ_{4} monotonically approach to constant terms of $\theta(1+\alpha) \xi_{c} / \xi_{h}$ and $\lambda_{h} \Lambda \theta(1+\alpha) \xi_{c} / \xi_{h}$, respectively, according to L'Hospital's rule; and κ_{3} also approaches to a constant.

Secondly, since χ_{2} is a monotonically decreasing function of i, and χ_{3} and χ_{4} are monotonically increasing functions of $i, \lim _{i \rightarrow \infty}\left\{\left[\left(\xi_{h}-\xi_{v}\right) \chi_{2}-\chi_{3}\right] \Omega^{\frac{\gamma}{\gamma-1}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}-\chi_{4}\right\} / \gamma=-\infty$. Therefore, $\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\partial l_{v}}{\partial i}$ in (A.25) is monotonically decreasing to a negative infinity and $\lim _{i \rightarrow \infty} \partial g / \partial i$ is negative (positive) if $\gamma<(>) \delta$. (i): As for $\gamma>\delta$, together with $\xi_{h}>\xi_{v}, \partial g / \partial i$ is always positive for any $i \geq 0$. (ii): As for $\gamma<\delta$, to see whether there exist some i leading to $\partial g / \partial i>0$, one can substitute (A.24) into $\left[\left(\xi_{h}-\xi_{v}\right)+(\delta-\gamma)\left(1+\xi_{v} i\right)\left(1+\xi_{h} i\right) \frac{\partial l_{v} / \partial i}{\gamma l_{v}}\right]$ to show that

$$
\begin{align*}
& \left(\frac{\partial g}{\partial i}\right)_{i=0}>0 \\
\Leftrightarrow & \left(\xi_{h}-\xi_{v}\right)+(\delta-\gamma)\left\{\frac{\Psi^{\frac{\gamma}{\gamma-1}} l^{\frac{\gamma-\delta}{1-\gamma}}}{\gamma \chi_{1}}\left[\left(\xi_{h}-\xi_{v}\right) \chi_{2}-\chi_{3}\right]-\frac{\chi_{4}}{\gamma \chi_{1}}\right\}_{i=0}>0 \tag{A.27}\\
\Leftrightarrow & \left(\xi_{h}-\xi_{v}\right)>\left\{\frac{(\delta-\gamma)\left(\chi_{4}+\chi_{3} \Psi^{\frac{\gamma}{\gamma-1}} l^{\frac{\gamma-\delta}{1-\gamma}}\right)}{\gamma \chi_{1}+(\delta-\gamma) \chi_{2} \Psi^{\frac{\gamma}{\gamma-1}} l^{\frac{\gamma-\delta}{1-\gamma}}}\right\}_{i=0}>0,
\end{align*}
$$

where l_{v} is determined in (A.21) evaluated at $i=0$. Accordingly, a sufficiently large ($\xi_{h}-\xi_{v}$) is a sufficient and necessary condition for the existence of a local maximum of $g(i)$ for $i \geq 0$. In other words, g is increasing in i for $i<i^{*}$ and decreasing for $i>i^{*}$, where i^{*} can be solved from

$$
\begin{equation*}
\left(\xi_{h}-\xi_{v}\right)=\frac{(\delta-\gamma)\left(\chi_{4}+\chi_{3} \Omega^{\frac{\gamma}{\gamma-1}} l^{\frac{\gamma-\delta}{1-\gamma}}\right)}{\gamma \chi_{1}+(\delta-\gamma) \chi_{2} \Omega^{\frac{\gamma}{\gamma-1}} l^{\frac{\gamma-\delta}{1-\gamma}}} \tag{A.28}
\end{equation*}
$$

Online Appendix B : Calibration strategy

In this section, we illustrate the strategy of calibrating the model. Given all predetermined parameters and values, the remaining parameters $\left\{\lambda_{v}, \lambda_{h}, \xi_{v}, \xi_{h}, \sigma, \theta\right\}$ must be assigned. In obtaining these values, ${ }^{4}$ we match: (i) the economic growth rate; (ii) the Poisson arrival rate of vertical innovations; (iii) the R\&D intensity; (iv) the standard time of employment $l=1 / 3$; (v) the population growth rate. The procedures are illustrated as follow.

We first calibrate σ. The equation of economic growth rate is

$$
\begin{equation*}
g=g_{L}+\left(\frac{1}{1-\alpha}-1\right) g_{A} . \tag{B.1}
\end{equation*}
$$

Upon selecting the economic growth rate, the population growth rate and α, we then have

$$
\begin{equation*}
g_{A}=\frac{g-g_{L}}{\frac{1}{1-\alpha}-1} . \tag{B.2}
\end{equation*}
$$

Once having determined g_{A}, we use the Poisson arrival rate of vertical innovations to pin down σ such that

$$
\begin{equation*}
\sigma=g_{A} / \phi \tag{B.3}
\end{equation*}
$$

We next calibrate $\left\{\xi_{v}, \xi_{h}\right\}$. According to (A.21), l_{v} is an implicit function of these parameters, so we need to build up three equations and use corresponding empirical moments for calibration. First, we use the R\&D intensity indicator. The total R\&D expenditure is

$$
\begin{equation*}
\mathrm{R} \& \mathrm{D} \text { expenditure }=w_{t} L_{v t}\left(1+\xi_{v} i\right)+w_{t} L_{h t}\left(1+\xi_{h} i\right) . \tag{B.4}
\end{equation*}
$$

The aggregate GDP is

$$
\begin{align*}
G D P & =C(\text { consumption expenditure })+I(\mathrm{R} \& \mathrm{D} \text { expenditure }) \\
& =c_{t} L_{t}\left(1+\xi_{c} i\right)+w_{t} L_{v t}\left(1+\xi_{v} i\right)+w_{t} L_{h t}\left(1+\xi_{h} i\right) \tag{B.5}\\
& =(1+\alpha)\left(1+\xi_{c} i\right) w_{t} L_{y t}+w_{t} L_{v t}\left(1+\xi_{v} i\right)+w_{t} L_{h t}\left(1+\xi_{h} i\right)
\end{align*}
$$

Using (B.4) and (B.5) together results in the expression of R\&D intensity given by

$$
\begin{equation*}
2.6 \%=\frac{l_{v}\left(1+\xi_{v} i\right)+l_{h}\left(1+\xi_{h} i\right)}{(1+\alpha)\left(1+\xi_{c} i\right) l_{y}+l_{v}\left(1+\xi_{v} i\right)+l_{h}\left(1+\xi_{h} i\right)} . \tag{B.6}
\end{equation*}
$$

Rewrite this equation as

$$
\begin{equation*}
l_{y}=\Psi_{1}\left[l_{v}\left(1+\xi_{v} i\right)+l_{h}\left(1+\xi_{h} i\right)\right] \tag{B.7}
\end{equation*}
$$

where

$$
\Psi_{1}=\frac{1-2.6 \%}{2.6 \%(1+\alpha)\left(1+\xi_{c} i\right)}
$$

[^4]is known for α, ξ_{c} and the benchmark nominal interest rate i have been chosen. Another equation making use of the empirical moment of the standard time of employment is given by
\[

$$
\begin{equation*}
l=1 / 3=l_{y}+l_{v}+l_{h} . \tag{B.8}
\end{equation*}
$$

\]

Equations (B.7) and (B.8) show that

$$
\begin{equation*}
l_{h}=\frac{1 / 3-\left[1+\Psi_{1}\left(1+\xi_{v} i\right)\right] l_{v}}{1+\Psi_{1}\left(1+\xi_{h} i\right)} . \tag{B.9}
\end{equation*}
$$

Together with

$$
\begin{equation*}
l_{h}=\left(\frac{1+\xi_{v} i}{1+\xi_{h} i}\right)^{\frac{1}{1-\gamma}}\left(\frac{\gamma}{\delta \Gamma}\right)^{\frac{1}{1-\gamma}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)^{\frac{1}{1-\gamma}} l_{v}^{\frac{1-\delta}{1-\gamma}}, \tag{B.10}
\end{equation*}
$$

the first equation used for pinning down the unknowns $\left\{\xi_{v}, \xi_{h}, l_{v}\right\}$ is given by

$$
\begin{equation*}
\frac{1 / 3-\left[1+\Psi_{1}\left(1+\xi_{v} i\right)\right] l_{v}}{1+\Psi_{1}\left(1+\xi_{h} i\right)}=\left(\frac{1+\xi_{v} i}{1+\xi_{h} i}\right)^{\frac{1}{1-\gamma}}\left(\frac{\gamma}{\delta \Gamma}\right)^{\frac{1}{1-\gamma}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)^{\frac{1}{1-\gamma}} l_{v}^{\frac{1-\delta}{1-\gamma}} \tag{B.11}
\end{equation*}
$$

The second equation for solving $\left\{\xi_{v}, \xi_{h}, l_{v}\right\}$ is

$$
\begin{equation*}
\frac{g_{N}}{g_{A}}=\frac{1}{\sigma}\left(\frac{1+\xi_{v} i}{1+\xi_{h} i}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\gamma}{\delta \Gamma}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)^{\frac{1}{1-\gamma}} l_{v}^{\frac{\gamma-\delta}{1-\gamma}}, \tag{B.12}
\end{equation*}
$$

where $\Gamma=1+\frac{\sigma}{1-\alpha}$ is now known once σ and α are determined. The last equation is

$$
\begin{align*}
& \quad l_{y}=\left(1+\xi_{v} i\right)\left[\left(\frac{\rho \sigma+g_{L} \Gamma}{\delta \alpha \Gamma g_{L}}\right) l_{v}+\left(\frac{\rho+g_{L}}{\delta \alpha \Gamma g_{L}}\right)\left(\frac{1+\xi_{v} i}{1+\xi_{h} i}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\gamma}{\delta \Gamma}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)^{\frac{1}{1-\gamma}} l_{v}^{\frac{1-\delta}{1-\gamma}}\right] \\
& \quad=\Psi_{1}\left[l_{v}\left(1+\xi_{v} i\right)+\left(1+\xi_{h} i\right) \frac{1 / 3-\left[1+\Psi_{1}\left(1+\xi_{v} i\right)\right] l_{v}}{1+\Psi_{1}\left(1+\xi_{h} i\right)}\right] \tag{B.13}\\
& \Leftrightarrow\left[\left(\frac{\rho \sigma+g_{L} \Gamma}{\delta \alpha \Gamma g_{L}}\right) l_{v}+\left(\frac{\rho+g_{L}}{\delta \alpha \Gamma g_{L}}\right)\left(\frac{1+\xi_{v} i}{1+\xi_{h} i}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\gamma}{\delta \Gamma}\right)^{\frac{\gamma}{1-\gamma}}\left(\frac{\lambda_{h}}{\lambda_{v}}\right)^{\frac{1}{1-\gamma}} l_{v}^{\frac{1-\delta}{1-\gamma}}\right] \\
& \\
& \quad=\Psi_{1}\left[1-\frac{1+\Psi_{1}\left(1+\xi_{v} i\right)}{1+\Psi_{1}\left(1+\xi_{h} i\right)} \frac{1+\xi_{h} i}{1+\xi_{v} i}\right] l_{v}+\Psi_{1} \frac{1+\xi_{h} i}{1+\xi_{v} i} \frac{1 / 3}{1+\Psi_{1}\left(1+\xi_{h} i\right)} .
\end{align*}
$$

Eventually, we have three equations (B.11), (B.12) and (B.13), and three unknowns $\left\{\xi_{v}, \xi_{h}, l_{v}\right\}$.
Having found these calibrated values, we thereafter obtain l_{y} and then θ by solving

$$
\begin{equation*}
w_{t}(1-l)=\theta(1+\alpha)\left(1+\xi_{c} i\right) c_{t} \Leftrightarrow 1-l=2 / 3=\theta(1+\alpha)\left(1+\xi_{c} i\right) l_{y} . \tag{B.14}
\end{equation*}
$$

Online Appendix C : Stability analysis

C. 1 Characterization of the dynamic system

Before establishing the dynamic system, we claim that the relative productivity parameter $z_{i t} \equiv$ $A_{i t} / A_{t}$ in equation (22) in our paper follows the distribution of $\operatorname{Pr}\left\{z_{i t} \leq z\right\} \equiv F(z)=z^{1 / \sigma}$ at any time. As shown in Howitt (1999) and Segerstrom (2000), the leading-edge productivity parameter A_{t} is sufficiently large at the initial steady-state so that the relative productivity parameter converges to the invariant distribution, which implies $\Pi_{h t}=\Pi_{v t} / \Gamma$. Thereafter, to characterize the dynamic system, we first redefine ι_{t}, which represents the aggregate quality-adjusted labor force, as

$$
z_{1} \equiv \frac{L_{t}}{A_{t} N_{t}}
$$

We next define the aggregate technology level $T_{t}=A_{t}^{1 /(1-\alpha)} N_{t}$ and then have

$$
z_{2} \equiv \frac{a_{t}}{T_{t}} ; \quad z_{3} \equiv \frac{c_{t}}{T_{t}}=\frac{1-\alpha^{2}}{\Gamma} l_{y t},
$$

where we have used $c_{t}=\frac{\left(1-\alpha^{2}\right) l_{y t} A_{t}^{\frac{1}{1-\alpha}} N_{t}}{\Gamma}$ from (25). Denote the economic growth rate $g_{t} \equiv \dot{T}_{t} / T_{t}$. Thus, taking \log of z_{3} and differentiating it with respect to time yields the motion of z_{3} given by

$$
\begin{equation*}
\frac{\dot{z}_{3}}{z_{3}}=r_{t}-g_{L}-\rho-g_{t}=\frac{\dot{y}_{y t}}{l_{y t}}, \tag{C.1}
\end{equation*}
$$

where the Euler equation is applied. Moreover, recall from the households' budget constraint

$$
\begin{equation*}
\dot{a}_{t}+\dot{m}_{t}=\left(r_{t}-g_{L}\right) a_{t}+w_{t} l_{t}+i b_{t}+\zeta_{t}-\left(\pi_{t}+g_{L}\right) m_{t}-c_{t}+d_{t} . \tag{C.2}
\end{equation*}
$$

Using the asset market-clearing condition, the bond market-clearing condition, the government budget constraint, the CIA constraint, the households' optimal decision on leisure, and the expression of d_{t} :

$$
\begin{gathered}
a_{t} L_{t}=N_{t} \Pi_{h t} ; \quad b_{t} L_{t}=\xi_{v} w_{t} L_{v t}+\xi_{h} w_{t} L_{h t} ; \quad \dot{m}_{t}+\left(\pi_{t}+g_{L}\right) m_{t}=\zeta_{t} ; \quad \xi_{c} c_{t}+b_{t}=m_{t}, \\
w_{t}\left(1-l_{t}\right)=\theta c_{t}\left(1+\xi_{c} i\right) ; \quad d_{t} L_{t}=(1-\delta) \phi_{t} \Pi_{v t} N_{t}+(1-\gamma) \dot{N}_{t} \Pi_{h t},
\end{gathered}
$$

(C.2) is reduced to

$$
\begin{equation*}
\dot{a}_{t}=\left(r_{t}-g_{L}\right) a_{t}+w_{t}\left[1+i\left(\xi_{v} l_{v t}+\xi_{h} l_{h t}\right)\right]-c_{t}\left[1+\theta\left(1+\xi_{c} i\right)\right]+d_{t} . \tag{C.3}
\end{equation*}
$$

With (C.3), taking \log of z_{2} and differentiating it with respect to time yields the motion of z_{2} :

$$
\begin{align*}
\frac{\dot{z}_{2}}{z_{2}} & =\frac{\dot{a}_{t}}{a_{t}}-g_{t} \\
& =r_{t}-g_{L}-g_{t}+\frac{w_{t}\left[1+i\left(\xi_{v} l_{v t}+\xi_{h} l_{h t}\right)\right]}{a_{t}}-\frac{c_{t}\left[1+\theta\left(1+\xi_{c} i\right)\right]}{a_{t}}+\frac{d_{t}}{a_{t}} \\
& =\rho+\frac{\dot{z}_{3}}{z_{3}}+\frac{(1-\alpha)\left[1+i\left(\xi_{v} l_{v t}+\xi_{h} l_{h t}\right)\right]}{\Gamma z_{2}}-\frac{z_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]}{z_{2}}+\frac{(1-\delta) \phi_{t} \Pi_{v t} N_{t}+(1-\gamma) \dot{N}_{t} \Pi_{h t}}{N_{t} \Pi_{h t}} \\
& =\rho+\frac{\dot{z}_{3}}{z_{3}}+\frac{(1-\alpha)\left[1+i\left(\xi_{v} l_{v t}+\xi_{h} l_{h t}\right)\right]}{\Gamma z_{2}}-\frac{z_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]}{z_{2}}+\left[\Gamma(1-\delta) \lambda_{v} l_{v t}^{\delta}+(1-\gamma) \lambda_{h} l_{h t}^{\gamma}\right] z_{1}, \tag{C.4}
\end{align*}
$$

where we have used (C.1) and the relations

$$
\begin{gathered}
\frac{w_{t}}{a_{t}}=\frac{w_{t}}{T_{t}} \frac{T_{t}}{a_{t}}=\frac{1-\alpha}{\Gamma z_{2}}, \quad \frac{c_{t}}{a_{t}}=\frac{c_{t}}{T_{t}} \frac{T_{t}}{a_{t}}=\frac{z_{3}}{z_{2}}, \quad \phi=\lambda_{v} \iota_{t} l_{v t}^{\delta}=\lambda_{v} z_{1} l_{v t}^{\delta}=\lambda_{h} \iota_{t} l_{h t}^{\gamma}=\lambda_{h} z_{1} l_{h t}^{\gamma}, \quad a_{t} L_{t}=N_{t} \Pi_{h t}, \quad \Pi_{h t}=\Gamma^{-1} \Pi_{v t} .
\end{gathered}
$$

Similarly, the motion of z_{1} is

$$
\begin{equation*}
\frac{\dot{z}_{1}}{z_{1}}=g_{L}-\frac{\dot{A}_{t}}{A_{t}}-\frac{\dot{N}_{t}}{N_{t}}=g_{L}-\left(\sigma \lambda_{v} l_{v t}^{\delta}+\lambda_{h} l_{h t}^{\gamma}\right) z_{1} \tag{C.5}
\end{equation*}
$$

where we have used the equation $A_{t}=\sigma \phi_{t}=\sigma \lambda_{v} l_{v t}^{\delta} \iota_{t}$ in the derivation of the second equality.
The economic system is now preliminarily established by the differential equations (C.1), (C.4) and (C.5). The next step is to replace the endogenous variables $l_{v t}, l_{h t}$ and $l_{y t}$. Firstly, using the first-order conditions determining the optimal labor allocations in both vertical and horizontal R\&D sectors

$$
\begin{equation*}
\frac{\lambda_{v} \delta \Pi_{v t}}{A_{t}} l_{v t}^{\delta-1}=w_{t}\left(1+\xi_{v} i\right) \tag{C.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{h} \gamma \Pi_{h t}}{A_{t}} l_{h t}^{\gamma-1}=w_{t}\left(1+\xi_{h} i\right), \tag{C.7}
\end{equation*}
$$

we can express $l_{h t}$ as a function of $l_{v t}$ given by

$$
\begin{equation*}
l_{h t}=\Omega^{\frac{1}{\gamma-1}} l_{v t}^{\frac{1-\delta}{1-\gamma}} . \tag{C.8}
\end{equation*}
$$

Secondly, using the $a_{t} L_{t}=N_{t} \Pi_{h t}, w_{t}=\frac{(1-\alpha) A^{\frac{1}{1-\alpha}} N_{t}}{\Gamma}=\frac{(1-\alpha) T_{t}}{\Gamma}$, (C.6) and (C.7), we have

$$
\begin{align*}
& \quad a_{t}=\frac{N_{t} \Pi_{h t}}{L_{t}}=\frac{N_{t} \Pi_{v t}}{\Gamma L_{t}}=\frac{N_{t}}{L_{t}} \frac{A_{t} w_{t}\left(1+\xi_{v} i\right)}{\delta \lambda_{v} \Gamma} l_{v t}^{1-\delta}=\frac{1+\xi_{v} i}{\delta \lambda_{v} \Gamma} \frac{w_{t}}{z_{1}} l_{v t}^{1-\delta} \\
& \Leftrightarrow l_{v t}^{1-\delta}=\frac{a_{t}}{w_{t}} \frac{\delta \lambda_{v} \Gamma z_{1}}{1+\xi_{v} i}=\frac{T_{t} z_{2}}{w_{t}} \frac{\delta \lambda_{v} \Gamma z_{1}}{1+\xi_{v} i}=\frac{z_{2}}{\frac{1-\alpha}{\Gamma}} \frac{\delta \lambda_{v} \Gamma z_{1}}{1+\xi_{v} i} \tag{C.9}\\
& \Leftrightarrow \\
& \Leftrightarrow l_{v t}=\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}},
\end{align*}
$$

where

$$
\Xi_{1}=\frac{\lambda_{v} \delta \Gamma^{2}}{(1-\alpha)\left(1+\xi_{v} i\right)}
$$

Use (C.9) to rewrite (C.8) more compactly as

$$
\begin{equation*}
l_{h t}=\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}} \tag{C.10}
\end{equation*}
$$

where

$$
\Xi_{2}=\frac{\Xi_{1}}{\Omega}=\frac{\lambda_{h} \gamma \Gamma}{(1-\alpha)\left(1+\xi_{h} i\right)}
$$

By substituting (C.9) and (C.10) into (C.5), we obtain the first differential equation governing the dynamic system given by

$$
\begin{equation*}
\frac{\dot{z}_{1}}{z_{1}}=g_{L}-\left[\sigma \lambda_{v} \Xi_{1}^{\frac{\delta}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{\delta}{1-\delta}}+\lambda_{h} \Xi_{2}^{\frac{\gamma}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{\gamma}{1-\gamma}}\right] . \tag{C.11}
\end{equation*}
$$

To derive the second differential equation, we again substitute (C.9) and (C.10) into (C.4) and multiply both sides of it with z_{2}, which yields

$$
\begin{align*}
& \dot{z}_{2}+\left[1+\theta\left(1+\xi_{c} i\right)\right] z_{3}-\rho z_{2}-\frac{\dot{z}_{3}}{z_{3}} z_{2} \\
= & \frac{1-\alpha}{\Gamma}\left\{1+i\left[\xi_{v} \Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\xi_{h} \Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]\right\} \\
& +\left[\Gamma(1-\delta) \lambda_{v} \Xi^{\frac{\delta}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{\delta}{1-\delta}}+\lambda_{h}(1-\gamma) \Xi_{2}^{\frac{\gamma}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{\gamma}{1-\gamma}}\right]\left(z_{1} z_{2}\right) \\
= & \frac{1-\alpha}{\Gamma}+\left[\frac{(1-\alpha) \xi_{v} i}{\Gamma} \Xi_{1}^{\frac{1}{1-\delta}}+\lambda_{v} \Gamma(1-\delta) \Xi_{1}^{\frac{\delta}{1-\delta}}\right]\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}} \tag{C.12}\\
& +\left[\frac{(1-\alpha) \xi_{h} i}{\Gamma} \Xi_{2}^{\frac{1}{1-\gamma}}+\lambda_{h}(1-\gamma) \Xi_{2}^{\frac{\gamma}{1-\gamma}}\right]\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}} \\
= & \frac{1-\alpha}{\Gamma}\left[1+\left(\frac{1-\delta+\xi_{v} i}{\delta}\right) \Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\frac{(1-\alpha)\left(1-\gamma+\xi_{h} i\right)}{\gamma \Gamma} \Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]
\end{align*}
$$

We now have two differential equations yet three endogenous variables. We then need another equation to complete the description of dynamic system. Substituting $w_{t}\left(1-l_{t}\right)=c_{t}\left(1+\xi_{c} i\right)$, the expressions of c_{t} and w_{t}, (C.9) and (C.10) into the labor market-clearing condition $l_{t}=l_{y t}+l_{v t}+l_{h t}$ yields

$$
\begin{gather*}
1-\theta(1+\alpha)\left(1+\xi_{c} i\right) l_{y t}=l_{y t}+l_{v t}+l_{h t} \\
\Leftrightarrow z_{3}=\Xi_{3}\left[1-\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}-\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right], \tag{C.13}
\end{gather*}
$$

where

$$
\Xi_{3}=\frac{1-\alpha^{2}}{\Gamma\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]} .
$$

Differentiating z_{3} with respect to time yields

$$
\begin{align*}
\dot{z}_{3} & =-\Xi_{3}\left[\Xi_{1}^{\frac{1}{1-\delta}}\left(\frac{1}{1-\delta}\right)\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}-1}\left(\dot{z}_{1} z_{2}+\dot{z}_{2} z_{1}\right)+\Xi_{2}^{\frac{1}{1-\gamma}}\left(\frac{1}{1-\gamma}\right)\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}-1}\left(\dot{z}_{1} z_{2}+\dot{z}_{2} z_{1}\right)\right] \\
& =-\Xi_{3}\left[\frac{\Xi_{1}^{\frac{1}{1-\delta}}}{1-\delta}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\frac{\Xi_{2}^{\frac{1}{1-\gamma}}}{1-\gamma}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]\left(\frac{\dot{z}_{1}}{z_{1}}+\frac{\dot{z}_{2}}{z_{2}}\right) . \tag{C.14}
\end{align*}
$$

Substituting (C.13) and (C.14) into (C.12) to reduce \dot{z}_{3} and z_{3} yields

$$
\begin{align*}
& \dot{z}_{2}=\rho z_{2}-\Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left[1-\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}-\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right] \\
&+z_{2}\left(\frac{\dot{z}_{1}}{z_{1}}+\frac{\dot{z}_{2}}{z_{2}}\right) \frac{\frac{\Xi_{1}^{\frac{1}{1-\delta}}}{1-\delta}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\frac{\Xi_{2}^{1-\gamma}}{1-\gamma}}{\Xi_{1}^{1-\delta}}\left(z_{1} z_{2} z_{2}\right)^{\frac{1}{1-\gamma}} \\
&+\frac{1-\alpha}{\Gamma}\left[1+\left(\frac{1-\delta+\Xi_{v} i}{\delta}\right) \Xi_{1}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}-1\right. \\
& \frac{1}{1-\delta} \tag{C.15}\\
&\left.\left.z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma}\right) \Xi_{1}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right] \\
& \Leftrightarrow \dot{z}_{2}\left[\frac{1+\frac{\delta \Xi_{1}^{\frac{1}{1-\delta}}}{1-\delta}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\frac{\gamma \Xi_{1}^{1-\gamma}}{1-\gamma}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}}{\left.1-\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}-\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]}\right. \\
&=\rho z_{2}-\Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left[1-\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}-\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right] \\
&+z_{2}\left[\frac{\left.\frac{\Xi_{1}^{1-\delta}}{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\frac{\Xi_{2}^{1-\gamma}}{\Xi_{1}^{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]}{\frac{1}{1-\gamma}-1}\right] \\
&+\frac{1-\alpha}{\Gamma}\left[1+\left(\frac{1-\delta+\xi_{v} i}{z_{1}}\right) \Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma}\right) \Xi_{1}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}}\right]
\end{align*}
$$

Finally, the dynamic system is represented by two variables z_{1} and z_{2} and their differential equations of (C.11) and (C.15).

C. 2 Steady-state values of z_{1} and z_{2}

The steady-state values of variables z_{1} and z_{2} (i.e., z_{1}^{*} and z_{2}^{*}) are solved respectively by using (C.9) and (C.10). Given the calibrated parameters, $l_{v}=0.0102$ and $l_{h}=0.00014$. Substituting them into (C.9) and (C.10) eventually yields $z_{1}=0.1811$ and $z_{2}=12.5141$.

C. 3 Linearization

Once obtaining the steady-state values of variables z_{1} and z_{2}, we can linearize the above nonlinear dynamic system around z_{1}^{*} and z_{2}^{*}. Formally, the Taylor series expansion of the nonlinear system around the steady-state is given by

$$
\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\mathbf{J} \cdot\left[\begin{array}{c}
z_{1}-z_{1}^{*} \\
z_{2}-z_{2}^{*}
\end{array}\right]=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]\left[\begin{array}{l}
z_{1}-z_{1}^{*} \\
z_{2}-z_{2}^{*}
\end{array}\right]
$$

where \mathbf{J} is the corresponding Jacobian matrix with

$$
\begin{equation*}
J_{11}=\left.\frac{\partial \dot{z}_{1}}{\partial z_{1}}\right|_{\left(z_{1}^{*}, z_{2}^{*}\right)}=g_{L}-z_{1}^{*}\left[\frac{\sigma \lambda_{v}(2-\delta)}{1-\delta} \Xi_{1}^{\frac{\delta}{1-\delta}}\left(z_{1}^{*} z_{2}^{*}\right)^{\frac{\delta}{1-\delta}}+\frac{\lambda_{h}(2-\gamma)}{1-\gamma} \Xi_{2}^{\frac{\gamma}{1-\gamma}}\left(z_{1}^{*} z_{2}^{*}\right)^{\frac{\gamma}{1-\gamma}}\right], \tag{C.16}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{12}=\left.\frac{\partial \dot{z}_{1}}{\partial z_{2}}\right|_{\left(z_{1}^{*}, z_{2}^{*}\right)}=-\frac{\left(z_{1}^{*}\right)^{2}}{z_{2}^{*}}\left[\frac{\sigma \lambda_{v} \delta}{1-\delta} \Xi_{1}^{\frac{\delta}{1-\delta}}\left(z_{1}^{*} z_{2}^{*}\right)^{\frac{\delta}{1-\delta}}+\frac{\lambda_{h} \gamma}{1-\gamma} \Xi_{2}^{\frac{\delta}{1-\delta}}\left(z_{1}^{*} z_{2}^{*}\right)^{\frac{\gamma}{1-\gamma}}\right] . \tag{C.17}
\end{equation*}
$$

To derive J_{21} and J_{22}, we rewrite (C.15) as

$$
\begin{aligned}
& \dot{z}_{2}\left(\frac{1+\frac{\delta}{1-\delta} l_{v t}+\frac{\gamma}{1-\gamma} l_{h t}}{1-l_{v t}-l_{h t}}\right)=\rho z_{2}-\Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left(1-l_{v t}-l_{h t}\right) \\
& +z_{2}\left(\frac{\frac{\delta}{1-\delta} l_{v t}+\frac{\gamma}{1-\gamma} l_{h t}}{l_{v t}+l_{h t}-1}\right) \frac{\dot{z}_{1}}{z_{1}}+\frac{1-\alpha}{\Gamma}\left[1+\frac{1-\delta+\xi_{v} i}{\delta} l_{v t}+\frac{1-\gamma+\xi_{h} i}{\gamma} l_{h t}\right] \\
\Leftrightarrow & \dot{z}_{2} \underbrace{\left(1+\frac{\delta}{1-\delta} l_{v t}+\frac{\gamma}{1-\gamma} l_{h t}\right)}_{\text {term } 1}=\rho z_{2}\left(1-l_{v t}-l_{h t}\right)-\Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left(1-l_{v t}-l_{h t}\right)^{2} \\
& -\underbrace{z_{2}\left(\frac{l_{v t}}{1-\delta}+\frac{1-l_{h t}}{1-\gamma}\right) \frac{\dot{z}_{1}}{z_{1}}+\frac{1-\alpha}{\Gamma}\left[1+\frac{1-\delta+\xi_{v} i}{\delta} l_{v t}+\frac{1-\gamma+\xi_{h} i}{\gamma} l_{h t}\right]\left(1-l_{v t}-l_{h t}\right)}_{\text {term } 2} \\
& -\underbrace{\left(\frac{l_{v t}}{1-\delta}+\frac{1-l_{h t}}{1-\gamma}\right)\left[g_{L} z_{2}-\left(\frac{\sigma l_{v} l_{v t}}{\Xi_{1}}+\frac{\lambda_{h} l_{h t}}{\Xi_{2}}\right)\right]}_{\text {term } 4} \\
& +\underbrace{\frac{1-\alpha}{\Gamma}\left[1+\frac{1-\delta+\xi_{v t} i}{\delta} l_{v t}+\frac{1-\gamma+\xi_{h} i}{\gamma} l_{h t}\right]\left(1-l_{v t}-l_{h t}\right)}_{\text {term } 5}
\end{aligned}
$$

Alternatively,

$$
\dot{z}_{2}=\frac{\text { term } 2-\operatorname{term} 3-\operatorname{term} 4+\operatorname{term} 5}{\operatorname{term} 1} .
$$

Therefore, differentiating \dot{z}_{2} with respect to z_{1} and z_{2} respectively yields

$$
\begin{aligned}
J_{21} & =\left.\frac{\partial \dot{z}_{2}}{\partial z_{1}}\right|_{\left(z_{1}^{*}, z_{2}^{*}\right)} \\
& =\frac{\left(\frac{\partial \text { term } 2}{\partial z_{1}}-\frac{\partial \text { term } 3}{\partial z_{1}}-\frac{\partial \text { term } 4}{\partial z_{1}}+\frac{\partial \text { term } 5}{\partial z_{1}}\right) \cdot \text { term } 1-\frac{\partial \text { term } 1}{\partial z_{1}} \cdot(\text { term } 2-\text { term } 3-\text { term } 4+\text { term } 5)}{(\text { term } 1)^{2}} \\
J_{22} & =\left.\frac{\partial \dot{z}_{2}}{\partial z_{2}}\right|_{\left(z_{1}^{*}, z_{2}^{*}\right)} \\
& =\frac{\left(\frac{\partial \text { term } 2}{\partial z_{2}}-\frac{\partial \text { term } 3}{\partial z_{2}}-\frac{\partial \text { term } 4}{\partial z_{2}}+\frac{\partial \text { term } 5}{\partial z_{2}}\right) \cdot \text { term } 1-\frac{\partial \text { term } 1}{\partial z_{2}} \cdot(\text { term } 2-\text { term } 3-\text { term } 4+\text { term } 5)}{(\text { term } 1)^{2}} .
\end{aligned}
$$

The corresponding partial derivatives, evaluated at the steady-state (i.e., z_{1}^{*} and z_{2}^{*}), are given by

$$
\begin{aligned}
& \frac{\partial \text { term } 1}{\partial z_{1}}= \frac{\delta}{1-\delta} \frac{\partial l_{v t}}{\partial z_{1}}+\frac{\gamma}{1-\gamma} \frac{\partial l_{h t}}{\partial z_{1}}, \quad \frac{\partial \operatorname{term} 2}{\partial z_{1}}=-\rho z_{2}\left(\frac{\partial l_{v t}}{\partial z_{1}}+\frac{\partial l_{h t}}{\partial z_{1}}\right) \\
& \frac{\partial \operatorname{term} 3}{\partial z_{1}}=-2 \Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left(1-l_{v t}-l_{h t}\right)\left(\frac{\partial l_{v t}}{\partial z_{1}}+\frac{\partial l_{h t}}{\partial z_{1}}\right), \\
& \frac{\partial \operatorname{term} 4}{\partial z_{1}}=\left(\frac{1}{1-\delta} \frac{\partial l_{v t}}{\partial z_{1}}+\frac{1}{1-\gamma} \frac{\partial l_{h t}}{\partial z_{1}}\right)\left(g_{L} z_{2}-\frac{\lambda_{v} \sigma l_{v t}}{\Xi_{1}} \frac{\partial l_{v t}}{\partial z_{1}}-\frac{\lambda_{h}}{\Xi_{2}} \frac{\partial l_{h t}}{\partial z_{1}}\right) \\
&+\left(\frac{l_{v t}}{1-\delta}+\frac{l_{h t}}{1-\gamma}\right)\left(g_{L} z_{2}-\frac{\lambda_{v} \sigma l_{v t}}{\Xi_{1}} \frac{\partial l_{v t}}{\partial z_{1}}-\frac{\lambda_{h}}{\Xi_{2}} \frac{\partial l_{h t}}{\partial z_{1}}\right) \\
& \frac{\partial \text { term } 5}{\partial z_{1}}=\frac{1-\alpha}{\Gamma}\left[\left(\frac{1-\delta+\xi_{v} i}{\delta}\right) \frac{\partial l_{v t}}{\partial z_{1}}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma} \frac{\partial l_{h t}}{\partial z_{1}}\right)\right]\left(1-l_{v t}-l_{h t}\right) \\
&- \frac{1-\alpha}{\Gamma}\left[1+\left(\frac{1-\delta+\xi_{v} i}{\delta}\right) l_{v t}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma} l_{h t}\right)\right]\left(\frac{\partial l_{v t}}{\partial z_{1}}+\frac{\partial l_{h t}}{\partial z_{1}}\right),
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{\partial \text { term } 1}{\partial z_{2}}=\frac{\delta}{1-\delta} \frac{\partial l_{v t}}{\partial z_{2}}+\frac{\gamma}{1-\gamma} \frac{\partial l_{h t}}{\partial z_{2}}, \quad \frac{\partial \text { term } 2}{\partial z_{2}}=-\rho\left(1-l_{v t}-l_{h t}\right)-\rho z_{2}\left(\frac{\partial l_{v t}}{\partial z_{2}}+\frac{\partial l_{h t}}{\partial z_{2}}\right), \\
\frac{\partial \operatorname{term} 3}{\partial z_{1}}=-2 \Xi_{3}\left[1+\theta\left(1+\xi_{c} i\right)\right]\left(1-l_{v t}-l_{h t}\right)\left(\frac{\partial l_{v t}}{\partial z_{1}}+\frac{\partial l_{h t}}{\partial z_{1}}\right), \\
\frac{\partial \text { term } 4}{\partial z_{2}}=\left(\frac{1}{1-\delta} \frac{\partial l_{v t}}{\partial z_{2}}+\frac{1}{1-\gamma} \frac{\partial l_{h t}}{\partial z_{2}}\right)\left(g_{L} z_{2}-\frac{\lambda_{v} \sigma l_{v t}}{\Xi_{1}} \frac{\partial l_{v t}}{\partial z_{2}}-\frac{\lambda_{h}}{\Xi_{2}} \frac{\partial l_{h t}}{\partial z_{2}}\right) \\
+\left(\frac{l_{v t}}{1-\delta}+\frac{l_{h t}}{1-\gamma}\right)\left(g_{L} z_{2}-\frac{\lambda_{v} \sigma l_{v t}}{\Xi_{1}} \frac{\partial l_{v t}}{\partial z_{2}}-\frac{\lambda_{h}}{\Xi_{2}} \frac{\partial l_{h t}}{\partial z_{2}}\right) \\
\frac{\partial \text { term } 5}{\partial z_{2}}=\frac{1-\alpha}{\Gamma}\left[\left(\frac{1-\delta+\xi_{v} i}{\delta}\right) \frac{\partial l_{v t}}{\partial z_{2}}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma} \frac{\partial l_{h t}}{\partial z_{2}}\right)\right]\left(1-l_{v t}-l_{h t}\right) \\
-\frac{1-\alpha}{\Gamma}\left[1+\left(\frac{1-\delta+\xi_{v} i}{\delta}\right) l_{v t}+\left(\frac{1-\gamma+\xi_{h} i}{\gamma} l_{h t}\right)\right]\left(\frac{\partial l_{v t}}{\partial z_{2}}+\frac{\partial l_{h t}}{\partial z_{2}}\right),
\end{gathered}
$$

where

$$
\begin{aligned}
& l_{v t}=\Xi_{1}^{\frac{1}{1-\delta}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\delta}} ; \quad \frac{\partial l_{v t}}{\partial z_{1}}=\frac{\Xi_{1}^{\frac{1}{1-\delta}}}{1-\delta} z_{1}^{\frac{\delta}{1-\delta}} z_{2}^{\frac{1}{1-\delta}} ; \quad \frac{\partial l_{v t}}{\partial z_{2}}=\frac{\Xi_{1}^{\frac{1}{1-\delta}}}{1-\delta} z_{2}^{\frac{\delta}{1-\delta}} z_{1}^{\frac{1}{1-\delta}} \\
& l_{h t}=\Xi_{2}^{\frac{1}{1-\gamma}}\left(z_{1} z_{2}\right)^{\frac{1}{1-\gamma}} ; \quad \frac{\partial l_{h t}}{\partial z_{1}}=\frac{\Xi_{2}^{\frac{1}{1-\gamma}}}{1-\gamma} z_{1}^{\frac{\gamma}{1-\gamma}} z_{2}^{\frac{1}{1-\gamma}} ; \quad \frac{\partial l_{h t}}{\partial z_{2}}=\frac{\Xi_{2}^{\frac{1}{1-\gamma}}}{1-\gamma} z_{2}^{\frac{\gamma}{1-\gamma}} z_{1}^{\frac{1}{1-\gamma}}
\end{aligned}
$$

C. 4 Numerical analysis

Substituting the numerical values in our calibration into the Jacobian matrix yields

$$
J=\left[\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right]=\left[\begin{array}{cc}
-0.01613 & -0.00082 \\
0.09704 & -0.00260
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
-0.01613 & -0.00082 \\
0 & -0.00756
\end{array}\right]
$$

Therefore, the eigenvalues for this Jacobian matrix are -0.01614 and -0.00736 , respectively. Given that the eigenvalues are real, distinct and negative, the model features a stability of saddle-path.

References

Howitt, P. (1999). Steady endogenous growth with population and r\&d inputs growing. Journal of Political Economy, 107 (4), 715-730.

Segerstrom, P. S. (2000). The long-run growth effects of r\&d subsidies. Journal of Economic Growth, 5 (3), 277-305.

[^0]: *Research Institute of Economics and Management, Southwestern University of Finance and Economics, Chengdu, Sichuan, 611130, China. Email address: zhengzhijie1919@gmail.com.
 ${ }^{\dagger}$ Institute of Urban Development, Nanjing Audit University, Nanjing, Jiangsu, 211815, China. Email address: chuang4@ncsu.edu.
 ${ }^{\ddagger}$ Department of Economics, University of Macau, Taipa, Macao, China. Email address: yibai.yang@hotmail.com.

[^1]: ${ }^{1}$ To show the uniqueness of solution (equilibrium) for equations (A.11) and (A.12), we follow Segerstrom (2000) in rewriting the general R $8 D$ condition and population growth condition as functions of g_{N} and l_{h} such that

 $$
 g_{N}\left\{1-l_{h}-\Psi^{\frac{1}{1-\delta}} l_{h}^{\frac{1-\gamma}{1-\delta}}-\frac{\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right](\Gamma-\sigma)}{\Gamma \delta \alpha} \Psi^{\frac{1}{1-\delta}} l_{h}^{\frac{1-\gamma}{1-\gamma}}\right\}=\frac{\left(\rho+g_{L}\right)\left[1+\theta(1+\alpha)\left(1+\xi_{c} i\right)\right]}{\alpha \gamma} l_{h},
 $$

 and

 $$
 g_{L}=\left[1+\sigma\left(\frac{\lambda_{v}}{\lambda_{h}}\right) \Psi^{\frac{\delta}{1-\delta}} l_{h}^{\frac{\delta-\gamma}{1-\gamma}}\right] g_{N},
 $$

 respectively, where we have applied (A.4) to express l_{v} as a function of l_{h} such that $l_{v}=\Psi^{\frac{1}{1-\delta}} l_{h}^{\frac{1-\gamma}{1-\delta}}$ and (A.5). It is straightforward to see that from the first equaiton g_{N} is unambiguously increasing in l_{h} and goes through origin, implying a positive slope in (l_{h}, g_{N}) space of the general $R \mathcal{B} D$ condition; g_{N} in the second equation is unambiguously decreasing in l_{h} given $\gamma<\delta$ and has a positive vertical intercept, implying a negative slope in $\left(l_{h}, g_{N}\right)$ space of the

[^2]: ${ }^{2}$ The proof of a unique equilibrium is similar to the one shown in Footnote 1.

[^3]: ${ }^{3}$ Similarly, see Footnote 1 for the proof of the unique equilibrium in the case of $\gamma<\delta$.

[^4]: ${ }^{4}$ As explained in the article, λ_{v} is normalized to one and λ_{h} is chosen as a free parameter for ensuring the reasonable values of the remaining four parameters.

