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Online Appendix A : Proofs of propositions

A.1 Proof of Propositions 1, 2 and 3

To analytically prove these propositions, first, we follow Segerstrom (2000) to establish the
mutual R&D condition. This condition is derived from the first-order conditions of R&D profit
maximizing problem, (14) and (19), for vertical and horizontal R&D firms. Substituting (11) into
(14) yields the steady-state expected profit for each successful vertical innovative firm such that
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Hence the two R&D conditions are written as
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Combining (A.2) and (A.3) yields
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Furthermore, using (27) and (28), (A.1) can be re-expressed as a relationship with two innovation

growth rates, which is the mutual R&D condition, given by
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where Q0 = iig’::l’ and ¥ = % Substituting (24), (26) and ¢; = Cy/L; into the individual’s

consumption-leisure condition (5) yields
I=1-0(14 a)(1+ &)l (A.6)

Using (A.4), (A.6) and the labor market-clearing condition I, 41, 4+1; = [ to express [, as a function
of 1, such that
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where T =1+ 60(1 + «)(1 + &¢). Substituting (A.7) into (A.2) yields the general RED condition
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In addition, substituting (A.5) into the population-growth condition (30) results in the population-

growth condition
1 /) 4 2=8
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Consequently, (A.8) and (A.9) represent a system of two equations in two unknowns (I, and g4)
that can be solved for a balanced-growth equilibrium.

Lemma A.1. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA
constraint on consumption only, a permanent increase in the nominal interest rate i (a) decreases
the fraction of labor allocated to vertical RED 1, and increases the long-run product-quality growth
rate ga if v > 96, and (b) decreases 1, and ga if v <.

Proof of Lemma A.1. Imposing &, = &, = 0 to reduce (A.5), (A.8) and (A.9) to
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and -

g1, = [1 4L (Ah> \Im”—ll;”] ga. (A.12)
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The last two equations are graphed in Fig.la assuming that v > §. The R&D condition curve
(A.11) is unambiguously upward sloping and goes through the origin, whereas the population-growth
condition curve (A.12) is unambiguously downward sloping and has a strictly positive vertical
intercept. As illustrated in Fig.la, there is a unique intersection of these two curves at point A,
which pins down the balanced-growth equilibrium values of [, and g4. With these values determined,
(A.10) pins down gy, (27) pins down ¢, and (28) pins down . Thus, the model has a unique
balanced-growth equilibrium when v > §.

The effect of permanently increasing the nominal interest rate ¢ is illustrated in Fig.la by the
movement from point A to B. An increase in i unambiguously causes the R&D condition curve
(A.11) to shift up, whereas it has no effect on the population-growth condition curve (A.12). Thus,
a higher nominal interest rate decreases [, but increases g4 if v > §.
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Fig. 1. The effect of a higher nominal interest rate with CIA constraint on consumption.

Equations (A.11) and (A.12) are graphed in Fig.1b assuming v < §. For v < 4, the slope of
the population-growth condition curve turns to be positive because a higher [, is correlated with
a higher g4, whereas the positiveness of the slope of the general R€D condition curve remains
unchanged. Again, there is a unique intersection of these two curves at point A," which pins down

!To show the uniqueness of solution (equilibrium) for equations (A.11) and (A.12), we follow Segerstrom (2000)
in rewriting the general R€D condition and population growth condition as functions of gy and [; such that
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and

1—v
respectively, where we have applied (A.4) to express [, as a function of I, such that [, = \I/lljl}ij and (A.5). It
is straightforward to see that from the first equaiton gn is unambiguously increasing in I, and goes through origin,
implying a positive slope in (5, gn) space of the general RED condition; gn in the second equation is unambiguously
decreasing in 5 given v < ¢ and has a positive vertical intercept, implying a negative slope in (I, gn) space of the
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Fig. 2. The growth effect of a higher ¢ with CIA constraint on consumption.

the balanced-growth equilibrium values of [, and g4 in addition to other variables. The model also
has a unique balanced-growth equilibrium if in this case.

The effect of permanently increasing ¢ is illustrated in Fig.1b by moving the equilibrium from
point A to B. An increase in ¢ unambiguously shifts the general R€D condition curve (A.11) upward,
whereas it has no effect on the population-growth condition curve (A.12). Therefore, an increase in
i decreases [, and g4 if v < 6. 0

Proof of Proposition 1. Based on the above results, we now proceed to the analysis of the overall
effects of monetary policies on g4 and gy. In the (ga,gn) space, the slope of each iso-growth
line(i.e.,1/(1 — a)) exceeds the slope of the population-growth condition (i.e.,1) (in absolute value).
The effects of a higher nominal interest rate are illustrated in Fig.2 accordingly. The mutual RE€D
condition given by (A.10) is an upward-sloping line that goes through the origin in the (ga,gn)
space, when [, is fixed at the initial equilibrium value. An increase in ¢ shifts down the mutual R€D
condition to a new intersection C if v > §, leading to an increase in g4 according to Lemma A.1. In
contrast, an increase in 4 shifts up the mutual R€D condition to another new intersection B if v < §,
leading to an decrease in g4. Combining (29) with (30), one can express the aggregate economic
growth rate exclusively as the vertical innovation growth rate such that g = gr, + [1/(1 — «) — 1]ga.
It implies that an increase in ¢, which leads to an decrease in g4 when v < J, decreases the long-run
growth rate g (i.e., the movement from A to B); while an increase in ¢, which results in an increase
in g4 when v > §, increases the long-run growth rate g (i.e., the movement from A to C). O

Lemma A.2. The model has a unique balanced-growth equilibrium. In the equilibrium with o CIA
constraint on vertical R&D only, a permanent increase in i decreases l, and ga for both v > § and
v < 4.

population growth condition. Consequently, there is a unique intersection of these two curves and a unique solution

1 1=o
(equilibrium) of these two equations. Given the unique solution of I, and gn, l, = ¥T=31,"° from (A.4), and (A.5)
immediately imply a unique [, and gn, respectively. Hence, the curves illustrated in Fig.1b must intersect once.



Proof of Lemma A.2. Making use of & = £, = 0 to reduce (A.5), (A.8) and (A.9) to
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Equations (A.14) and (A.15) are graphed in Fig.3a given v > §. There is a unique intersection
of these two curves at point A, which pins down the balanced-growth equilibrium values of all
endogenous variables as in the previous case (in which only the CIA constraint on consumption is
present). Again, the model has a unique balanced-growth equilibrium when v > §. The effect of
permanently increasing ¢ is illustrated in Fig.3a by the movement from point A to B. A higher 4
unambiguously causes the general RE&D condition curve (A.14) (the negative sign means that the
value of those terms overall decreases as i increases) to shift upward and the population-growth
condition curve (A.15) to shift downward. Thus, a higher i surely decreases [,.
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Fig. 3. The effect of a higher nominal interest rate with CIA constraint on vertical R&D.

As for the effect on g4, suppose that for some 7 > §, an increase in i increases (or has no
v 2=5
effect on) ga. According to (A.15), (1 + &,4) 771, " must decrease (or remain unchanged) when i
)

increases, which means that [(1 + &,i)l,]~'l] must increase (or remain unchanged). Given that I,

decreases as i increases, [(1 + &,i)l,]”' must increase in response. Therefore, (A.14) implies that
y—=9

1 -9
(1 —=1,)/[(1 + &i)ly] — ¥ (1 + &,i)ﬁlﬁ” must increase and thus g4 must decrease. This yields
a contradiction, so g4 must always decrease in a higher ¢ when ~ > 4.
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Fig. 4. The growth effect of a higher 7 with CIA constraint on vertical R&D.

Equations (A.14) and (A.15) for v < 4 are graphed in Fig.3b.” There is still a unique intersection
of these two curves at point A, so the model has a unique balanced-growth equilibrium when v < 4.
The effect of permanently increasing ¢ is illustrated in Fig.3b by the movement from point A to B.
An increase in ¢ unambiguously causes the general R€D condition curve (A.141) to shift upward,
while the population-growth condition curve (A.15) to shift downward. Hence, a higher i decreases
ly. A similar proof applies for the change in g4. O

Proof of Proposition 2. The effects of a higher rate of nominal interest on the aggregate rate of
economic growth g are displayed in Fig.4. From Lemma A.2 and (A.15), a decreased g4 due to a
-5

J=0o
rise in 7 means an increased (1 + fvi)ﬁlﬁﬂ. As a result, an increase in ¢ shifts up the mutual
RED condition line according to (A.13), implying a lower vertical R&D growth rate for both v > ¢
(namely the movement from A to C) and v < ¢ (from A to B), with a larger magnitude for the

y=4
latter case. The difference arises because given a lowered [, for a rise in i, v < & leads I, 7 to be
=9
increasing in ¢ and makes the overall positive effect of a higher i in the term of (1 + &,i)ﬁlé*
y=4

dominate the one under v > § in which 1277 is decreasing in . In other words, the overall effect
of a higher nominal interest rate is to increase the product-variety growth rate at the expense of
the product-quality growth rate, with a larger sacrifice in vertical innovation growth rate when
7 < 0. The relation of g = gz + [1/(1 — a) — 1]ga from (29) and (30) states that a movement
on the population-growth condition in the northwest direction (gy increases and ga decreases) is
growth-retarding due to 1 < 1/(1 — «). Therefore, a larger sacrifice in the product-quality growth
rate g4 in the case of v < § means a larger decrease in the economic growth rate than that in the
case of v > 4. O

2The proof of a unique equilibrium is similar to the one shown in Footnote 1.



Lemma A.3. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA
constraint on horizontal RED only, a permanent increase in i increases l, and ga for both v > §
and vy > §.

Proof of Lemma A.3. In an analogous fashion of the proof of Lemma A.2, imposing £, = &, =0
enables us to reduce (A.5), (A.8) and (A.9) to
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Equations (A.17) and (A.18) are graphed in Fig.5a given v > §. There is a unique intersection
of these two curves at point A, which pins down the balanced-growth equilibrium values of all
endogenous variables. The model also has a unique balanced-growth equilibrium when v > §. The
effect of permanently increasing 4 is illustrated in Fig.5a by the movement from point A to B. An
increase in ¢ unambiguously causes the general RED condition curve (A.17) to shift downward and
the population-growth condition curve (A.18) to shift upward. Hence, a higher ¢ increases [,,.

As for the effect on g4, suppose that for some > J, an increase in i decreases (or does not
6

change) g4. Then, (A.18) implies that (1 + &,i)T Vll " increases (or remain constant) when i

increases, from which it follows that [(1 + &)l !] —A*l1 > 1ncreases (or remain constant). Since [,

increases in response to an increase in ¢, thus [(1 + &)l % should increase and [(1+ {hz)l o
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decrease. From (A.17),

must decrease and g4 must increase. This yields a contradiction. Therefore, g4 must always increase
in response to an increase ¢ when vy > §.

Equations (A.17) and (A.18) for v < § are graphed in Fig.5b. There is also a unique intersection
of these two curves at point A, and the model has a unique balanced-growth equilibrium when
v < 6.% The effect of a permanent increase in i is illustrated in Fig.5b by the movement from point
A to B. An increase in ¢ unambiguously causes the general R€D condition curve (A.17) to shift
downward and the population-growth condition curve (A.18) upward. Thus, a higher ¢ increases [,,.
A similar proof applies for the change in g4. O

Proof of proposition 3. The effects of a higher rate of nominal interest on the aggregate rate of

economic growth g are displayed in Fig.6. From Lemma A.3 and (A.18), an increased g4 means
5

a decreased (1 + &pi)T- "Yl . As a result, an increase in ¢ shifts down the mutual RE&D condition

3Similarly, see Footnote 1 for the proof of the unique equilibrium in the case of v < 4.
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Fig. 5. The effect of a higher nominal interest rate when CIA constraint on horizontal R&D.

\

gn|

Population growth

Iso-growth

ga

Fig. 6. The growth effect of a higher ¢ with CIA constraint on horizontal R&D.

line according to (A.16), and then increases the vertical R&D growth rate for both v > 6 (the
movement from A to C) and v < § (from A to B), with a larger magnitude for the latter case

=95
again. The difference occurs because given an increased [, for a higher i, v < & leads I, to be
—~y 2=
decreasing in 7 and makes the overall decreasing effect in the term of (14 &ﬂ')ﬁlz} 7 dominate the
)

one under v > ¢ in which {;77 is increasing in i. In other words, the overall effect of a higher 4
is to increase the product-quality growth rate at the cost of the product-variety growth rate, with
a larger sacrifice in gy when v < §. Again, g = g1, + [1/(1 — ) — 1]ga implies that a movement
on the population-growth condition in the southeast direction (g4 increases and gy decreases) is
growth-promoting due to 1 < 1/(1 — «). Therefore, a larger sacrifice in the product-variety growth
rate means a larger increase in the aggregate economic growth rate when v < 4. O



A.2 Proof of Proposition 4

To prove Proposition 4, we move one step forward to solve [, and then the economic growth
rate. Given (A.7), (A.2) is used to set up another relation between [, and I, to solve for l,,. To do
this, ¢ in (A.2) needs to be eliminated. Rewriting the economic growth rate solely as the vertical
innovation growth rate by combining (29) and (30) yields

1
g—gL+<1 —1)gA.
o

Substituting g4 = O')\Ulgl, and gy = )\hlZL into the above equation yields
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By substituting (A.19) and (A.2), we can reduce ¢ and express [, as a function of [, such that
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where © = pgo}ggLLF, A= (sz;}gL Substituting (A.20) into (A.6), together with (A.7), to rewrite the

labor market-clearing condition as

LIYOO + &) + 1] + Qﬁl;l—;g M YA(L+&i) /A + Q71 = 1. (A.21)

Hence, (A.21) implicitly solves [,.
To find the relation between ¢ and g, we need to derive a function of g exclusively on [,.
Combining (29) with (30), and using the expression of ¢ yield

7o (s - 1) (A.22)
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Differentiating g with respect to 7 yields
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Therefore, the sign of dg/di depends on the sign of [(fh — &)+ (6 =) (1 + &) (1 + &) Lol /81}.
Differentiating (A.21) with respect to i to derive dl,,/0i (note that ¥,© and A are unrelated to i)
yields
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To see how [({h — &)+ (0 —7y)(1+ &) (1+ §hz) al”/a ] changes in response to i is equivalent to see
how the following term changes with 1,
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We now show that as ¢ — oo, (A.25) goes to negative infinity because lim (1 4 &,3)(1 + &£,7)/x1 is
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Firstly, we show that
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is finite because as ¢ — 00, ko and k5 monotonically decrease to zero; k1 and k4 monotonically
approach to constant terms of 0(1 + «)&./&, and A\AO(1 + «)&./&p, respectively, according to
L’Hospital’s rule; and 3 also approaches to a constant.

Secondly, since xo is a monotonically decreasing function of g, and x3 and x4 are monoton-
Y
1—

ically increasing functions of i, lim {[((fh —&)x2 — Xx3) Q%ZU " —x4p /v = —o0. Therefore,
71— 00

(1+ &)1+ 5”)% in (A.25) is monotonically decreasing to a negative infinity and zliglo 0g/0i
is negative (positive) if v < (>)d. (i): As for v > §, together with &, > &,, 0g/0di is always positive
for any 7 > 0. (ii): As for v < 4, to see whether there exist some i leading to dg/di > 0, one can
substitute (A.24) into [(&h — &)+ (0= A +&i)(1+ fhi)al”/m] to show that
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where [, is determined in (A.21) evaluated at ¢ = 0. Accordingly, a sufficiently large (£, — &) is a
sufficient and necessary condition for the existence of a local maximum of g(¢) for ¢ > 0. In other
words, g is increasing in ¢ for ¢ < ¢* and decreasing for ¢ > i*, where ¢* can be solved from
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Online Appendix B : Calibration strategy

In this section, we illustrate the strategy of calibrating the model. Given all predetermined pa-
rameters and values, the remaining parameters {\,, Ap, &, &p, 0, 0} must be assigned. In obtaining
these values,” we match: (i) the economic growth rate; (ii) the Poisson arrival rate of vertical inno-
vations; (iii) the R&D intensity; (iv) the standard time of employment [ = 1/3; (v) the population
growth rate. The procedures are illustrated as follow.

We first calibrate o. The equation of economic growth rate is

g9=9r+ <1 - 1> ga. (B.1)

l—«

Upon selecting the economic growth rate, the population growth rate and «, we then have

9 — 9L

11—«

Once having determined g4, we use the Poisson arrival rate of vertical innovations to pin down o
such that

o =ga/9. (B.3)

We next calibrate {&,,&,}. According to (A.21), [, is an implicit function of these parameters,
so we need to build up three equations and use corresponding empirical moments for calibration.
First, we use the R&D intensity indicator. The total R&D expenditure is

R&D expenditure = wy Lyt (1 + &47) + wiLpe(1 + &pt). (B.4)
The aggregate GDP is

GDP = C(consumption expenditure) + I (R&D expenditure)
= ¢t Li(1 + &) + wi Lt (1 + §p1) + wiLipg (1 + &pi) (B.5)
=1+ a)(1 4+ &i)wi Ly + wi Lt (1 + &ut) + wiLpg(1 4 Ent).

Using (B.4) and (B.5) together results in the expression of R&D intensity given by

Lo(1+ &1) + Ln (1 + &pi)

2.6% = (1+ @) (L4 &)y + Lo(1 + &i) + (1 + &x1)

Rewrite this equation as
Ly =Wy [lo(1 4 &) + In(1 4+ &ni)] (B.7)
where
1-2.6%

V= 2.6%(1 + a)(1 + &)

4As explained in the article, A, is normalized to one and ), is chosen as a free parameter for ensuring the reasonable
values of the remaining four parameters.

12



is known for «, & and the benchmark nominal interest rate i have been chosen. Another equation
making use of the empirical moment of the standard time of employment is given by

l=1/3=1y+ 1, + . (B.8)
Equations (B.7) and (B.8) show that
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The second equation for solving {&,,&n, Iy} is
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— w1

Eventually, we have three equations (B.11), (B3.12) and (B.13), and three unknowns {&,, &n, 1y}
Having found these calibrated values, we thereafter obtain /,; and then 6 by solving

wi(1=1) =01+ a)(1+&i)e; = 1—1=2/3=0(1+ a)(1+&i)ly. (B.14)
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Online Appendix C : Stability analysis

C.1 Characterization of the dynamic system

Before establishing the dynamic system, we claim that the relative productivity parameter z; =
At /A; in equation (22) in our paper follows the distribution of Pr{z; < z} = F(z) = 217 at any
time. As shown in Howitt (1999) and Segerstrom (2000), the leading-edge productivity parameter A,
is sufficiently large at the initial steady-state so that the relative productivity parameter converges
to the invariant distribution, which implies IIj; = II,;/T". Thereafter, to characterize the dynamic
system, we first redefine ¢4, which represents the aggregate quality-adjusted labor force, as

_ Ly
YTOAN,

z

We next define the aggregate technology level T; = Ai /(=a) N; and then have

_ap g 1-a?
29 = —,; zZ3 = ? = let,
t

1
_ (17a2)lytAt @ Nt . 7
where we have used ¢; = ~——4——— from (25). Denote the economic growth rate g; = T} /T;.

Thus, taking log of z3 and differentiating it with respect to time yields the motion of z3 given by

s i
Z g —p—g =2, (C.1)
z3 lyt

where the Fuler equation is applied. Moreover, recall from the households’ budget constraint
ay + my = (r¢ — gr)as + wily + by + G — (7 + gr)my — ¢ + dy. (C.2)

Using the asset market-clearing condition, the bond market-clearing condition, the government bud-
get constraint, the CIA constraint, the households’ optimal decision on leisure, and the expression
of dtl

arLy = Nellpg;  beLy = EowiLog + Epwilng; 1ty + (m + gr)me = G Eecr + by = my,

wi(l = 1) = Oc(1+ &4);  deLe = (1 — 8)deIlue Ny + (1 — ) NIy,

(C.2) is reduced to

ag = (re — gr)as + w1 + i(Eolve + Enlne)] — c[1 4+ 0(1 + Eei)] + ds. (C.3)
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With (C.3), taking log of zo and differentiating it with respect to time yields the motion of zy:

Z2

;2 = ;t — gt
1+ 3(Eplr + &Rl 1+6(1+ &4 d
:Tt_gL_gt+wt[ (Gubot +&nlne)] il + 00 +&D)] i
ag at at
B z3 | (L= a)[1 4+ i(Eolvt + Enlne)]  23[1+0(1 + &) | (1= 0)pIlye Ny + (1 — 7) NiIlpy
=p+—+ — +
23 [z 22 Nillpt
; 1— )1+ (&, l 14+60(1+ &4
:p+§+( OZ)[ +Z(£ t+§h ht)] _23[ + ( +§1)] +[F(]-_5)>\vlgt+(]—_’7)>\hlzt]zl,
z3 Tz z2
(C.4)
where we have used (C.1) and the relations
wy w1y 1l -« Ct ct Ty z3 5 s
_—=—— = _—= —— = — :)\’l}l :)\’U lv
a T as Tzg ' ar Tiar 29 ¢ flut Alot
gne = Mntl), = Azl aily = Nyllyy, I, = | A VS
Similarly, the motion of z; is
z A N,
?1 = 90— 4~ = 9~ @l Ml (C.5)

where we have used the equation A; = o¢; = Ux\vlgtat in the derivation of the second equality.

The economic system is now preliminarily established by the differential equations (C.1), (C.4)
and (C.5). The next step is to replace the endogenous variables Iy, 5 and L. Firstly, using the
first-order conditions determining the optimal labor allocations in both vertical and horizontal R&D

sectors £\ ST
v vt ;5— .
A, lgt 1 wt(l + fvz)a
and .
L = w1+ ),

we can express lp; as a function of [, given by

1 1-6
1 4=
lht = Q'Y_llvt v,

1
Secondly, using the a; Ly = Nyllp, wy = (1_0‘)'&;170{]\]’5 = (l_f'f)Tt, (C.6) and (C.7), we have

_ Nelle _ Nelloe _ Ne Agwe(1+600) s _ 1+ &t we g

at

Lt FLt - Lt (5)\UF vt 5AUF Z1 vt
16 ﬁé)\vle _ Tize 0N 'y zo O I’z

R s o R

1 1

Sly = 217 (2122) T3,
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(C.9)



where

Ay 0T2
(1 —a)(1+ &)

Use (C.9) to rewrite (C.8) more compactly as

o
=1 =

1 1

lht = 521 (2122) (C.lO)

where —_
=1 T
Q (1 —a)(1+ &)

By substituting (C.9) and (C.10) into (C.5), we obtain the first differential equation governing the

—_
:2:

dynamic system given by

21 _% _6 _17 “Y
o =91 — |oME] 7 (2122) 70 + MEy 7 (2122) T | . (C.11)

To derive the second differential equation, we again substitute (C.9) and (C.10) into (C.41) and
multiply both sides of it with zo, which yields

Zo + [1 4+ 0(1 + &)z — pza — z—ng
3

1—«

=T {1+1 [évﬂl (2122)7-9 5+fh~21(2122)11””

— v

+ [F(l - 5)/\1,5%(21@)% + (1 —9)E5" (21Z2)’Y:| (z122)

) B S ) (C.12)
:1F04+|:(1 IO“)&) =1 5+)\ 1‘(1—5)5 5:| (2122)T=3

+ |:(1_1_O‘[)€h'_'1 v —|—)\h(1— ) 2117:| (2122)1%
! ;a [14— <1_55+5v2) S 6(2122)1i5 + < _a)(lfy;7+€hl) =y (2122) ™3 =

We now have two differential equations yet three endogenous variables. We then need another
equation to complete the description of dynamic system. Substituting w;(1 — ;) = ¢;(1 4 &.4), the
expressions of ¢; and wy, (C.9) and (C.10) into the labor market-clearing condition ly = lys 4+ ly¢ + s
yields
1 =001+ a) (1 + &ei)lyr = lye + Lo + Int
1 , 1 1 (C.13)

Sz =F3 [1—E] % (2122) T3 — g " (2129) 77 |,
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where
2

— 11—«

ST+ o)1+ &)

Differentiating z3 with respect to time yields

s (1 IR : (1 I .
1-5 (2’12’2)1—5 (2122+2221)+:2 v ﬁ (2122)1*7 (21Z2+2221)

1 1
gi-? a5 a | (s 2
= —Z3 117_5(2122)1*5 + 1 2_ fy(Z1Z2)1*7 (1 + 2) .

Z1 Z9
(C.14)
Substituting (C.13) and (C.14) into (C.12) to reduce Z3 and z3 yields
. — . 1t a1 1
Zo = pzo — E3[1+0(1 +&0)] |1 — 2] 7% (z122) 70 — 257" (2122) T
1 1
= (2129) T8+ Z(229) T
z z —5 (Z122) 1~ —(z122) '~
+ 22 (1 + 2) i 0 11 7
1 22/ oT=s = L=l = _
= (2122)1 + =5 (2122) v 1
11—« 1—0+&0)\ L 1 1—v+&0\ v 1
1 1
6=° s 5 =
oy | LT )T TR () (C.15)
1 . 1
1 — 257 (2129) 75 — B2 (212) T
1 1 = 1
= pzy — 53[1 + 0(1 + gcl)] [1 — 5117 (Z1Z2) 1-6 — E2f’y (2122) 1—W:|

=19 1 =1-7 _1
i (5122) 77 + T (212) T | 4
2 . 1 . o
Ell_ (leg)ﬁ +5217W (leg)ﬁ -1 1
1—-a 1—-0+&0)\ = 1 1—y+&pi\ o= 1
+ T {1 + (ﬁ) 210 (z122) T8 + <’y’y§h> =h ”(zlzg)lv]

Finally, the dynamic system is represented by two variables z1 and zo and their differential equations

of (C.11) and (C.15).

C.2 Steady-state values of z; and 2z,

The steady-state values of variables z; and 2y (i.e., 2f and 23) are solved respectively by using
(C.9) and (C.10). Given the calibrated parameters, I, = 0.0102 and [;, = 0.00014. Substituting

them into (C.9) and (C.10) eventually yields z; = 0.1811 and zo = 12.5141.
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C.3 Linearization

Once obtaining the steady-state values of variables z; and 22, we can linearize the above nonlinear
dynamic system around z] and z5. Formally, the Taylor series expansion of the nonlinear system
around the steady-state is given by

21 —3. 21—21< _ J11 J12 Zl—Zik
Z9 29 — 25 Jo1 Jao| |22 — 25

where J is the corresponding Jacobian matrix with

0% M2 —0) 155 . b A2 =)t e e
Ji1 = 5 ’(21«,22) gL, — 21 [ T B (2725)10 +ﬁ:21 T(2]z5) T |, (C.16)
and
321 (21)2 O')\U(S,_‘% PRI )‘h’Y —.% * %k
Jio = 322‘(Z1’z2) 2 T (5:11 5(2122)1—6 + 1 77‘:21 5(z122)1*v (C.17)

To derive Jo; and Jag, we rewrite (C.15) as

. <1 + 5l + = e
22

— pro — Eall+ 601+ &) (1 — Lot — Lne)
1=l — lnt

) Y . . .
Dl + 2 - -5 -
Tt T Ttht \ 21 @ + &t v+ Eni
R — 1 l l
—i—zz( [ —] >z1+ T [ + 5 ot T 5 ht

: 0 - :
S <1 +t1o 6lvt +1 j Vlht) = p22(1 = Lot — lpe) — Zs[1+ O(1 + Ei)](1 = Loy — lne)?
term 1
Lyt 1—1In\ #1 11—« 1—(5+£vi 1= +&ni
— _— 1 v 1_1)_ .
a (25 ) S [ e R s ey

=p2a(1 — Lot — lpe) — Z[L + 01+ &A)](1 — Lot — ly)?

term 2 term 3

Lot 1—1lp oAplut Anlht
<1—5+1—’y gLz2 = * =)

term 4
1-— 1—-0+¢&,1 1—~+4+&pe
T SLTRS Sl e LT (PSR R
r 0 ~y
term 5
Alternatively,

term 2 — term 3 — term 4 + term 5

Zp =

term 1
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Therefore, differentiating 2o with respect to z; and zo respectively yields

0%

Jo1 = 971 |(zf,z;)
Oterm 2 Oterm 3 Oterm 4 Oterm 5 Oterm 1
( o T om0 T Tom ) -term 1 — SF0= - (term 2 — term 3 — term 4 + term 5)
B (term 1)2
0%9
Jog =

2y (1)

Oterm 2 Oterm 3 Oterm 4 Oterm 5 Oterm 1
( Oz T 0z  0m T om ) ~term 1 — SZFA= - (term 2 — term 3 — term 4 + term 5)

(term 1)2

The corresponding partial derivatives, evaluated at the steady-state (i.e., 2] and z3), are given by

Oterm 1 5 Ol v Olpy  Oterm 2 <8lvt azht>
= + = —pz2 + )

0z1  1—=60zxn 1—~0z" 021 0z, 0z
Oterm 3 - . Olye . Olps
I3 9myl1 401+ &)1~ b — ) ( oy ),

Oterm 4 1 % 1 Ol o A0yt Ol B ﬁ%
82’1 N 1-6 621 1-— Y 821 gL=2 El 82’1 EQ 82’1

4 Lyt + Uht o — )\valvt% . ﬁ%
1-96 1-— Y g2 51 82’1 EQ azl
Oterm 5 1 —« 1—3804+&0\ Oyt 1 — 4 &ri Olps
= 1—ly —
021 r [( ) > 0z1 * ( vy 0z1 (= Lot = lt)

1-—a 1— 6+ &y 1=+ & Ay Ol
o [+ (5 e (55w (52 + 55 ).

and
Oterm 1 0 Oly v Olpy  Oterm 2 (11 nt) Olyt n Olpy
- = - - but — — pz a. |
0z9 1-3002 1—7v0z’ 0z9 p ¢ tht) T P22 Ozo Oz
Oterm 3 o= . Olye . Olps
821 = 2_3[1 + 9(1 + fcl)](l lvt lht) <621 + 8721 5

Oterm 4 _ 1 8lvt + 1 8lht o — Avalvt 8lvt _ ﬁ%
822 - 1-6 82’2 1-— Y 822 gL El 822 EQ 8Z2

+ Lot + lht 5 Avalvt% o ﬁ%
1-96 1— Y gL22 El 82’2 52 622
Ooterm b 1—a [/1—080+&i\ Oy 1 — v+ &ri Ol
— 1=l —1
0z r [( o > 0z * ( 04 0z ( ¢ = lnt)

11—« 1—64&i 1—vy+&ut Olyt  Olps
o (s () (2.
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where

1 1 ol =1-4 5 1 ol —=1-3 5 1
=1- 1= t =1 -5 1-5 vt =1 -5 1-3
Lot = 21 7° (2129) T3 " = 21702070 = 29 %270
1 (2122) T 0z1 1-0"1 "2 7 9z 1672 717
1 1
1 = 1=y 1 = 1l-y 1
_ —=1—y 1% 8lht ) 117 i— . 8[}“5 29 711’7 i
I =E5 7 (z122) 177 —— = 2 29y = 2o T2y .
021 1—7 079 1—x

C.4 Numerical analysis

Substituting the numerical values in our calibration into the Jacobian matrix yields

S Jin Jiz|  [—0.01613 —0.00082 —0.01613 —0.00082
| Jor Ja| | 0.09704  —0.00260 0 —0.00756 |

Therefore, the eigenvalues for this Jacobian matrix are -0.01614 and -0.00736, respectively. Given
that the eigenvalues are real, distinct and negative, the model features a stability of saddle-path.
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