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Online Appendix A : Proofs of propositions

A.1 Proof of Propositions 1, 2 and 3

To analytically prove these propositions, first, we follow Segerstrom (2000) to establish the
mutual R&D condition. This condition is derived from the first-order conditions of R&D profit
maximizing problem, (14) and (19), for vertical and horizontal R&D firms. Substituting (11) into
(14) yields the steady-state expected profit for each successful vertical innovative firm such that

Πvt =

∫ ∞
t

e−
∫ τ
t (r+φs)dsπ̂tτdτ =

α(1− α)LyA
1

1−α
t

ρ+ gL + ( 1
1−α − 1 + 1

σ )gA
. (A.1)

Hence the two R&D conditions are written as

δΓαλvlyι

ρ+ gL + ( 1
1−α − 1 + 1

σ )gA
lδ−1
v = 1 + ξvi, (A.2)

and
γαλhlyι

ρ+ gL + ( 1
1−α − 1 + 1

σ )gA
lγ−1
h = 1 + ξhi. (A.3)
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Combining (A.2) and (A.3) yields
δλvΓl

δ−1
v

1 + ξvi
=
γλhl

γ−1
h

1 + ξhi
. (A.4)

Furthermore, using (27) and (28), (A.4) can be re-expressed as a relationship with two innovation
growth rates, which is the mutual R&D condition, given by

gN =
1

σ

(
λh
λv

)
Ω

γ
γ−1 l

γ−δ
1−γ
v gA, (A.5)

where Ω = 1+ξhi
1+ξvi

Ψ and Ψ = δΓλv
γλh

. Substituting (24), (26) and ct = Ct/Lt into the individual’s
consumption-leisure condition (5) yields

l = 1− θ(1 + α)(1 + ξci)ly. (A.6)

Using (A.4), (A.6) and the labor market-clearing condition ly+ lv+ lh = l to express ly as a function
of lv such that

ly =
1− lv − Ω

1
γ−1 l

1−δ
1−γ
v

Υ
, (A.7)

where Υ = 1 + θ(1 + α)(1 + ξci). Substituting (A.7) into (A.2) yields the general R&D condition

gA

 1− lv
(1 + ξvi)lv

− Ω
1

γ−1 l
γ−δ
1−γ
v

1 + ξvi
−

Υ[1 + σ( 1
1−α − 1)]

Γδα

 =
σΥ(ρ+ gL)

Γδα
. (A.8)

In addition, substituting (A.5) into the population-growth condition (30) results in the population-
growth condition

gL = gA

[
1 +

1

σ

(
λh
λv

)
Ω

γ
γ−1 l

γ−δ
1−γ
v

]
(A.9)

Consequently, (A.8) and (A.9) represent a system of two equations in two unknowns (lv and gA)
that can be solved for a balanced-growth equilibrium.

Lemma A.1. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA
constraint on consumption only, a permanent increase in the nominal interest rate i (a) decreases
the fraction of labor allocated to vertical R&D lv and increases the long-run product-quality growth
rate gA if γ > δ, and (b) decreases lv and gA if γ < δ.

Proof of Lemma A.1. Imposing ξv = ξh = 0 to reduce (A.5), (A.8) and (A.9) to

gN =
1

σ

(
λh
λv

)
Ψ

γ
γ−1 l

γ−δ
1−γ
v gA, (A.10)

gA

{
1− lv −Ψ

1
γ−1 l

1−δ
1−γ
v − [1 + θ(1 + α)(1 + ξci)](Γ− σ)

Γδα
lv

}
=
σ(ρ+ gL)[1 + θ(1 + α)(1 + ξci)]

Γδα
lv

(A.11)
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and
gL =

[
1 +

1

σ

(
λh
λv

)
Ψ

γ
γ−1 l

γ−δ
1−γ
v

]
gA. (A.12)

The last two equations are graphed in Fig.1a assuming that γ > δ. The R&D condition curve
(A.11) is unambiguously upward sloping and goes through the origin, whereas the population-growth
condition curve (A.12) is unambiguously downward sloping and has a strictly positive vertical
intercept. As illustrated in Fig.1a, there is a unique intersection of these two curves at point A,
which pins down the balanced-growth equilibrium values of lv and gA. With these values determined,
(A.10) pins down gN , (27) pins down ι, and (28) pins down lh. Thus, the model has a unique
balanced-growth equilibrium when γ > δ.

The effect of permanently increasing the nominal interest rate i is illustrated in Fig.1a by the
movement from point A to B. An increase in i unambiguously causes the R&D condition curve
(A.11) to shift up, whereas it has no effect on the population-growth condition curve (A.12). Thus,
a higher nominal interest rate decreases lv but increases gA if γ > δ.

A

B

gA

lv

Population growth

R&D

R&D-1

(a) γ > δ

A

B

gA

lv

R&DR&D-1

Population Growth

(b) γ < δ

Fig. 1. The effect of a higher nominal interest rate with CIA constraint on consumption.

Equations (A.11) and (A.12) are graphed in Fig.1b assuming γ < δ. For γ < δ, the slope of
the population-growth condition curve turns to be positive because a higher lv is correlated with
a higher gA, whereas the positiveness of the slope of the general R&D condition curve remains
unchanged. Again, there is a unique intersection of these two curves at point A,1 which pins down

1To show the uniqueness of solution (equilibrium) for equations (A.11) and (A.12), we follow Segerstrom (2000)
in rewriting the general R&D condition and population growth condition as functions of gN and lh such that

gN

{
1 − lh − Ψ

1
1−δ l

1−γ
1−δ

h − [1 + θ(1 + α)(1 + ξci)](Γ − σ)

Γδα
Ψ

1
1−δ l

1−γ
1−δ

h

}
=

(ρ+ gL)[1 + θ(1 + α)(1 + ξci)]

αγ
lh,

and
gL =

[
1 + σ

(
λv
λh

)
Ψ

δ
1−δ l

δ−γ
1−δ

h

]
gN ,

respectively, where we have applied (A.4) to express lv as a function of lh such that lv = Ψ
1

1−δ l
1−γ
1−δ

h and (A.5). It
is straightforward to see that from the first equaiton gN is unambiguously increasing in lh and goes through origin,
implying a positive slope in (lh, gN ) space of the general R&D condition; gN in the second equation is unambiguously
decreasing in lh given γ < δ and has a positive vertical intercept, implying a negative slope in (lh, gN ) space of the
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gN

gA

Iso-growth

Population growth

Mutual R&D

γ > δ

γ < δ

B

A C

Fig. 2. The growth effect of a higher i with CIA constraint on consumption.

the balanced-growth equilibrium values of lv and gA in addition to other variables. The model also
has a unique balanced-growth equilibrium if in this case.

The effect of permanently increasing i is illustrated in Fig.1b by moving the equilibrium from
point A to B. An increase in i unambiguously shifts the general R&D condition curve (A.11) upward,
whereas it has no effect on the population-growth condition curve (A.12). Therefore, an increase in
i decreases lv and gA if γ < δ.

Proof of Proposition 1. Based on the above results, we now proceed to the analysis of the overall
effects of monetary policies on gA and gN . In the (gA, gN ) space, the slope of each iso-growth
line(i.e.,1/(1− α)) exceeds the slope of the population-growth condition (i.e.,1) (in absolute value).
The effects of a higher nominal interest rate are illustrated in Fig.2 accordingly. The mutual R&D
condition given by (A.10) is an upward-sloping line that goes through the origin in the (gA, gN )

space, when lv is fixed at the initial equilibrium value. An increase in i shifts down the mutual R&D
condition to a new intersection C if γ > δ, leading to an increase in gA according to Lemma A.1. In
contrast, an increase in i shifts up the mutual R&D condition to another new intersection B if γ < δ,
leading to an decrease in gA. Combining (29) with (30), one can express the aggregate economic
growth rate exclusively as the vertical innovation growth rate such that g = gL + [1/(1−α)− 1]gA.
It implies that an increase in i, which leads to an decrease in gA when γ < δ, decreases the long-run
growth rate g (i.e., the movement from A to B); while an increase in i, which results in an increase
in gA when γ > δ, increases the long-run growth rate g (i.e., the movement from A to C).

Lemma A.2. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA
constraint on vertical R&D only, a permanent increase in i decreases lv and gA for both γ > δ and
γ < δ.

population growth condition. Consequently, there is a unique intersection of these two curves and a unique solution

(equilibrium) of these two equations. Given the unique solution of lh and gN , lv = Ψ
1

1−δ l
1−γ
1−δ

h from (A.4), and (A.5)
immediately imply a unique lh and gN , respectively. Hence, the curves illustrated in Fig.1b must intersect once.
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Proof of Lemma A.2. Making use of ξc = ξh = 0 to reduce (A.5), (A.8) and (A.9) to

gN =
1

σ

(
λh
λv

)
Ψ

γ
γ−1 (1 + ξvi)

γ
1−γ l

γ−δ
1−γ
v gA, (A.13)

gA


1− lv

(1 + ξvi)lv
−Ψ

1
γ−1 (1 + ξvi)

γ
1−γ l

γ−δ
1−γ
v︸ ︷︷ ︸

−

−(1 + θ + θα)(Γ− σ)

Γδα

 =
σ(1 + θ + θα)(ρ+ gL)

Γδα
,

(A.14)
and

gL =

[
1 +

1

σ

(
λh
λv

)
Ψ

γ
γ−1 (1 + ξvi)

γ
1−γ l

γ−δ
1−γ
v

]
gA (A.15)

Equations (A.14) and (A.15) are graphed in Fig.3a given γ > δ. There is a unique intersection
of these two curves at point A, which pins down the balanced-growth equilibrium values of all
endogenous variables as in the previous case (in which only the CIA constraint on consumption is
present). Again, the model has a unique balanced-growth equilibrium when γ > δ. The effect of
permanently increasing i is illustrated in Fig.3a by the movement from point A to B. A higher i
unambiguously causes the general R&D condition curve (A.14) (the negative sign means that the
value of those terms overall decreases as i increases) to shift upward and the population-growth
condition curve (A.15) to shift downward. Thus, a higher i surely decreases lv.

AB

gA

lv

R&D

R&D-1

Population growth
Population growth-1

(a) γ > δ

A

B

gA

lv

Population growth

Population growth-1

R&D-1
R&D

(b) γ < δ

Fig. 3. The effect of a higher nominal interest rate with CIA constraint on vertical R&D.

As for the effect on gA, suppose that for some γ > δ, an increase in i increases (or has no

effect on) gA. According to (A.15), (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v must decrease (or remain unchanged) when i

increases, which means that [(1 + ξvi)lv]
−1l

δ
γ
v must increase (or remain unchanged). Given that lv

decreases as i increases, [(1 + ξvi)lv]
−1 must increase in response. Therefore, (A.14) implies that

(1− lv)/[(1 + ξvi)lv]−Ψ
1

γ−1 (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v must increase and thus gA must decrease. This yields

a contradiction, so gA must always decrease in a higher i when γ > δ.
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γ < δ

C
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A

Fig. 4. The growth effect of a higher i with CIA constraint on vertical R&D.

Equations (A.14) and (A.15) for γ < δ are graphed in Fig.3b.2 There is still a unique intersection
of these two curves at point A, so the model has a unique balanced-growth equilibrium when γ < δ.
The effect of permanently increasing i is illustrated in Fig.3b by the movement from point A to B.
An increase in i unambiguously causes the general R&D condition curve (A.14) to shift upward,
while the population-growth condition curve (A.15) to shift downward. Hence, a higher i decreases
lv. A similar proof applies for the change in gA.

Proof of Proposition 2. The effects of a higher rate of nominal interest on the aggregate rate of
economic growth g are displayed in Fig.4. From Lemma A.2 and (A.15), a decreased gA due to a

rise in i means an increased (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v . As a result, an increase in i shifts up the mutual

R&D condition line according to (A.13), implying a lower vertical R&D growth rate for both γ > δ

(namely the movement from A to C) and γ < δ (from A to B), with a larger magnitude for the

latter case. The difference arises because given a lowered lv for a rise in i, γ < δ leads l
γ−δ
1−γ
v to be

increasing in i and makes the overall positive effect of a higher i in the term of (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v

dominate the one under γ > δ in which l
γ−δ
1−γ
v is decreasing in i. In other words, the overall effect

of a higher nominal interest rate is to increase the product-variety growth rate at the expense of
the product-quality growth rate, with a larger sacrifice in vertical innovation growth rate when
γ < δ. The relation of g = gL + [1/(1 − α) − 1]gA from (29) and (30) states that a movement
on the population-growth condition in the northwest direction (gN increases and gA decreases) is
growth-retarding due to 1 < 1/(1 − α). Therefore, a larger sacrifice in the product-quality growth
rate gA in the case of γ < δ means a larger decrease in the economic growth rate than that in the
case of γ > δ.

2The proof of a unique equilibrium is similar to the one shown in Footnote 1.
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Lemma A.3. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA
constraint on horizontal R&D only, a permanent increase in i increases lv and gA for both γ > δ

and γ > δ.

Proof of Lemma A.3. In an analogous fashion of the proof of Lemma A.2, imposing ξc = ξv = 0

enables us to reduce (A.5), (A.8) and (A.9) to

gN =
1

σ

(
λh
λv

)
Ψ

γ
γ−1 (1 + ξhi)

−γ
1−γ l

γ−δ
1−γ
v gA, (A.16)

gA

1− lv
lv
−Ψ

1
γ−1 (1 + ξhi)

−1
1−γ l

γ−δ
1−γ
v︸ ︷︷ ︸

+

−(1 + θ + θα)(Γ− σ)

Γδα

 =
σ(1 + θ + θα)(ρ+ gL)

Γδα
, (A.17)

and
gL =

[
1 +

1

σ

(
λh
λv

)
Ψ

γ
γ−1 (1 + ξhi)

−γ
1−γ l

γ−δ
1−γ
v

]
gA. (A.18)

Equations (A.17) and (A.18) are graphed in Fig.5a given γ > δ. There is a unique intersection
of these two curves at point A, which pins down the balanced-growth equilibrium values of all
endogenous variables. The model also has a unique balanced-growth equilibrium when γ > δ. The
effect of permanently increasing i is illustrated in Fig.5a by the movement from point A to B. An
increase in i unambiguously causes the general R&D condition curve (A.17) to shift downward and
the population-growth condition curve (A.18) to shift upward. Hence, a higher i increases lv.

As for the effect on gA, suppose that for some γ > δ, an increase in i decreases (or does not

change) gA. Then, (A.18) implies that (1 + ξhi)
−γ
1−γ l

γ−δ
1−γ
v increases (or remain constant) when i

increases, from which it follows that [(1 + ξhi)l
−1
v ]

−γ
1−γ l

−δ
1−γ
v increases (or remain constant). Since lv

increases in response to an increase in i, thus [(1 + ξhi)l
−1
v ]

−γ
1−γ should increase and [(1 + ξhi)l

−1
v ]

decrease. From (A.17), 1−lv
lv
−Ψ

1
γ−1 (1+ξhi)

−1
1−γ l

γ−δ
1−γ
v = 1

1+ξhi

{
(1+ξhi)(1−lv)

lv
−Ψ

1
γ−1 (1 + ξhi)

−γ
1−γ l

γ−δ
1−γ
v

}
must decrease and gA must increase. This yields a contradiction. Therefore, gA must always increase
in response to an increase i when γ > δ.

Equations (A.17) and (A.18) for γ < δ are graphed in Fig.5b. There is also a unique intersection
of these two curves at point A, and the model has a unique balanced-growth equilibrium when
γ < δ.3 The effect of a permanent increase in i is illustrated in Fig.5b by the movement from point
A to B. An increase in i unambiguously causes the general R&D condition curve (A.17) to shift
downward and the population-growth condition curve (A.18) upward. Thus, a higher i increases lv.
A similar proof applies for the change in gA.

Proof of proposition 3. The effects of a higher rate of nominal interest on the aggregate rate of
economic growth g are displayed in Fig.6. From Lemma A.3 and (A.18), an increased gA means

a decreased (1 + ξhi)
−γ
1−γ l

γ−δ
1−γ
v . As a result, an increase in i shifts down the mutual R&D condition

3Similarly, see Footnote 1 for the proof of the unique equilibrium in the case of γ < δ.
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(a) γ > δ
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B

gA

lv

Population growth-1

Population growth
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R&D

(b) γ < δ

Fig. 5. The effect of a higher nominal interest rate when CIA constraint on horizontal R&D.

gN

gA

Iso-growth

Population growth

γ < δ
γ > δ

Mutual R&D

C

A

B

Fig. 6. The growth effect of a higher i with CIA constraint on horizontal R&D.

line according to (A.16), and then increases the vertical R&D growth rate for both γ > δ (the
movement from A to C) and γ < δ (from A to B), with a larger magnitude for the latter case

again. The difference occurs because given an increased lv for a higher i, γ < δ leads l
γ−δ
1−γ
v to be

decreasing in i and makes the overall decreasing effect in the term of (1 + ξhi)
−γ
1−γ l

γ−δ
1−γ
v dominate the

one under γ > δ in which l
γ−δ
1−γ
v is increasing in i. In other words, the overall effect of a higher i

is to increase the product-quality growth rate at the cost of the product-variety growth rate, with
a larger sacrifice in gN when γ < δ. Again, g = gL + [1/(1 − α) − 1]gA implies that a movement
on the population-growth condition in the southeast direction (gA increases and gN decreases) is
growth-promoting due to 1 < 1/(1− α). Therefore, a larger sacrifice in the product-variety growth
rate means a larger increase in the aggregate economic growth rate when γ < δ.
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A.2 Proof of Proposition 4

To prove Proposition 4, we move one step forward to solve lv and then the economic growth
rate. Given (A.7), (A.2) is used to set up another relation between ly and lv to solve for lv. To do
this, ι in (A.2) needs to be eliminated. Rewriting the economic growth rate solely as the vertical
innovation growth rate by combining (29) and (30) yields

g = gL +

(
1

1− α
− 1

)
gA.

Substituting gA = σλvl
δ
vι and gN = λhl

γ
hι into the above equation yields

gL = ι

[
σλvl

δ
v + λhΩ

γ
γ−1 l

γ(δ−1)
γ−1

v

]
(A.19)

By substituting (A.19) and (A.2), we can reduce ι and express ly as a function of lv such that

ly =
(1 + ξvi)[ρ+ gL +

(
1

1−α − 1 + 1
σ

)
gA]

δαΓλvι
l1−δv

=
(1 + ξvi)(ρ+ gL)

δαΓλvgL

[
σλvl

δ
v + λhΩ

γ
γ−1 l

(δ−1)γ
γ−1

v

]
l1−δv +

(1 + ξvi)
(

1
1−α − 1 + 1

σ

)
σλvl

δ
vι

δαΓλvι
l1−δv

=
(1 + ξvi)lv
δαΓgL

[
σ(ρ+ gL) + σgL

(
1

1− α
− 1 +

1

σ

)]
+

(1 + ξvi)(ρ+ gL)λh
δαΓgLλv

Ω
γ
γ−1 l

δ−1
γ−1
v

= (1 + ξvi)

Θlv +
λhΛΩ

γ
γ−1 l

δ−1
γ−1
v

λv



(A.20)

where Θ = ρσ+gLΓ
δαΓgL

, Λ = ρ+gL
δαΓgL

. Substituting (A.20) into (A.6), together with (A.7), to rewrite the
labor market-clearing condition as

lv[ΥΘ(1 + ξvi) + 1] + Ω
γ
γ−1 l

1−δ
1−γ
v

[
λhΥΛ(1 + ξvi)/λv + Ω−1

]
= 1. (A.21)

Hence, (A.21) implicitly solves lv.
To find the relation between i and g, we need to derive a function of g exclusively on lv.

Combining (29) with (30), and using the expression of ι yield

g = gL +
σgL

(
1

1−α − 1
)

σ + λhΩ
γ
γ−1 l

γ−δ
1−γ
v /λv

. (A.22)
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Differentiating g with respect to i yields

∂g

∂i
=

−σgL
(

1
1−α − 1

)
(
σ + λhΩ

γ
γ−1 l

δ−δ
1−γ
v /λv

)2

(
λh
λv

)(
γ

γ − 1
Ω

1
γ−1

∂Ω

∂i
l
γ−δ
1−γ
v + Ω

γ
γ−1

γ − δ
1− γ

∂lv
∂i
l
γ−δ
1−γ−1
v

)

=
σgLλh

(
1

1−α − 1
)

Ω
1

γ−1 l
γ−δ
1−γ
v

λv(1− γ)

(
σ + λhΩ

γ
γ−1 l

γ−δ
1−γ
v /λv

)2

[
γΨ

ξh − ξv
(1 + ξvi)2

+ (δ − γ)Ψ
1 + ξhi

1 + ξvi

∂lv
∂i

lv

]

=
gLσδΓ

(
1

1−α − 1
)

Ω
1

γ−1 l
γ−δ
1−γ
v

(1− γ)(1 + ξvi)2

(
σ + λhΩ

γ
γ−1 l

γ−δ
1−γ
v /λv

)2

︸ ︷︷ ︸
>0

[
(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi)

∂lv
∂i

γlv

]

(A.23)
Therefore, the sign of ∂g/∂i depends on the sign of

[
(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi)

∂lv/∂i
γlv

]
.

Differentiating (A.21) with respect to i to derive ∂lv/∂i (note that Ψ,Θ and Λ are unrelated to i)
yields{

[ΥΘ(1 + ξvi) + 1] +
1− δ
1− γ

Ω
γ
γ−1 l

γ−δ
1−γ
v

[
λhΥΛ(1 + ξvi)

λv
+ Ω−1

]}
︸ ︷︷ ︸

χ1>0

∂lv
∂i

=

(ξh − ξv)
[

γλhΥΛ

λv(1− γ)(1 + ξhi)
+

1

Ψ(1− γ)(1 + ξhi)2

]
︸ ︷︷ ︸

χ2>0

− λhΛ

λv
[θξc(1 + α)(1 + ξvi) + Υξv]︸ ︷︷ ︸

χ3>0

Ω
γ
γ−1 l

1−δ
1−γ
v

−Θ [θξc(1 + α)(1 + ξvi) + Υξv]︸ ︷︷ ︸
χ4>0

lv

⇔∂lv
∂i

=
[(ξh − ξv)χ2 − χ3] Ω

γ
γ−1 l

1−δ
1−γ
v − χ4lv

χ1
(A.24)

To see how
[
(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi)

∂lv/∂i
γlv

]
changes in response to i is equivalent to see

how the following term changes with i,

(1 + ξvi)(1 + ξhi)
∂lv/∂i

γlv
=

(1 + ξvi)(1 + ξhi)

χ1

 [(ξh − ξv)χ2 − χ3] Ω
γ
γ−1 l

γ−δ
1−γ
v − χ4

γ

 . (A.25)

We now show that as i → ∞, (A.25) goes to negative infinity because lim
i→∞

(1 + ξvi)(1 + ξhi)/χ1 is

finite and lim
i→∞

{
[(ξh − ξv)χ2 − χ3] Ω

γ
γ−1 l

γ−δ
1−γ
v − χ4

}
/γ = −∞.
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Firstly, we show that

lim
i→∞

(1 + ξvi)(1 + ξhi)

χ1

= lim
i→∞

(1 + ξvi)(1 + ξhi)

{Θ[1 + θ(1 + α)(1 + ξci)](1 + ξvi) + 1}+ 1−δ
1−γΩ

γ
γ−1 l

γ−δ
1−γ
v

[
λh
λv

Λ[1 + θ(1 + α)(1 + ξci)](1 + ξvi) + Ω−1
]

= lim
i→∞

1

Θ[1 + θ(1 + α)(1 + ξci)]

1 + ξhi︸ ︷︷ ︸
κ1

+
1

(1 + ξvi)(1 + ξhi)︸ ︷︷ ︸
κ2

+
1− δ
1− γ

Ω
γ
γ−1 l

γ−δ
1−γ
v︸ ︷︷ ︸

κ3

λhΛ

λv

1 + θ(1 + α)(1 + ξci)

1 + ξhi︸ ︷︷ ︸
κ4

+
1

(1 + ξhi)2Ψ︸ ︷︷ ︸
κ5


(A.26)

is finite because as i → ∞, κ2 and κ5 monotonically decrease to zero; κ1 and κ4 monotonically
approach to constant terms of θ(1 + α)ξc/ξh and λhΛθ(1 + α)ξc/ξh, respectively, according to
L’Hospital’s rule; and κ3 also approaches to a constant.

Secondly, since χ2 is a monotonically decreasing function of i, and χ3 and χ4 are monoton-

ically increasing functions of i, lim
i→∞

{
[(ξh − ξv)χ2 − χ3] Ω

γ
γ−1 l

γ−δ
1−γ
v − χ4

}
/γ = −∞. Therefore,

(1 + ξvi)(1 + ξhi)
∂lv
∂i in (A.25) is monotonically decreasing to a negative infinity and lim

i→∞
∂g/∂i

is negative (positive) if γ < (>)δ. (i): As for γ > δ, together with ξh > ξv, ∂g/∂i is always positive
for any i ≥ 0. (ii): As for γ < δ, to see whether there exist some i leading to ∂g/∂i > 0, one can
substitute (A.24) into

[
(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi)

∂lv/∂i
γlv

]
to show that

(
∂g

∂i

)
i=0

> 0

⇔(ξh − ξv) + (δ − γ)

{
Ψ

γ
γ−1 l

γ−δ
1−γ

γχ1
[(ξh − ξv)χ2 − χ3]− χ4

γχ1

}
i=0

> 0

⇔(ξh − ξv) >


(δ − γ)

(
χ4 + χ3Ψ

γ
γ−1 l

γ−δ
1−γ
)

γχ1 + (δ − γ)χ2Ψ
γ
γ−1 l

γ−δ
1−γ


i=0

> 0,

(A.27)

where lv is determined in (A.21) evaluated at i = 0. Accordingly, a sufficiently large (ξh − ξv) is a
sufficient and necessary condition for the existence of a local maximum of g(i) for i ≥ 0. In other
words, g is increasing in i for i < i∗ and decreasing for i > i∗, where i∗ can be solved from

(ξh − ξv) =
(δ − γ)

(
χ4 + χ3Ω

γ
γ−1 l

γ−δ
1−γ
)

γχ1 + (δ − γ)χ2Ω
γ
γ−1 l

γ−δ
1−γ

. (A.28)
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Online Appendix B : Calibration strategy

In this section, we illustrate the strategy of calibrating the model. Given all predetermined pa-
rameters and values, the remaining parameters {λv, λh, ξv, ξh, σ, θ} must be assigned. In obtaining
these values,4 we match: (i) the economic growth rate; (ii) the Poisson arrival rate of vertical inno-
vations; (iii) the R&D intensity; (iv) the standard time of employment l = 1/3; (v) the population
growth rate. The procedures are illustrated as follow.

We first calibrate σ. The equation of economic growth rate is

g = gL +

(
1

1− α
− 1

)
gA. (B.1)

Upon selecting the economic growth rate, the population growth rate and α, we then have

gA =
g − gL
1

1−α − 1
. (B.2)

Once having determined gA, we use the Poisson arrival rate of vertical innovations to pin down σ
such that

σ = gA/φ. (B.3)

We next calibrate {ξv, ξh}. According to (A.21), lv is an implicit function of these parameters,
so we need to build up three equations and use corresponding empirical moments for calibration.
First, we use the R&D intensity indicator. The total R&D expenditure is

R&D expenditure = wtLvt(1 + ξvi) + wtLht(1 + ξhi). (B.4)

The aggregate GDP is

GDP = C(consumption expenditure) + I(R&D expenditure)

= ctLt(1 + ξci) + wtLvt(1 + ξvi) + wtLht(1 + ξhi)

= (1 + α)(1 + ξci)wtLyt + wtLvt(1 + ξvi) + wtLht(1 + ξhi).

(B.5)

Using (B.4) and (B.5) together results in the expression of R&D intensity given by

2.6% =
lv(1 + ξvi) + lh(1 + ξhi)

(1 + α)(1 + ξci)ly + lv(1 + ξvi) + lh(1 + ξhi)
. (B.6)

Rewrite this equation as
ly = Ψ1 [lv(1 + ξvi) + lh(1 + ξhi)] , (B.7)

where
Ψ1 =

1− 2.6%

2.6%(1 + α)(1 + ξci)

4As explained in the article, λv is normalized to one and λh is chosen as a free parameter for ensuring the reasonable
values of the remaining four parameters.
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is known for α, ξc and the benchmark nominal interest rate i have been chosen. Another equation
making use of the empirical moment of the standard time of employment is given by

l = 1/3 = ly + lv + lh. (B.8)

Equations (B.7) and (B.8) show that

lh =
1/3− [1 + Ψ1(1 + ξvi)]lv

1 + Ψ1(1 + ξhi)
. (B.9)

Together with

lh =

(
1 + ξvi

1 + ξhi

) 1
1−γ ( γ

δΓ

) 1
1−γ
(
λh
λv

) 1
1−γ

l
1−δ
1−γ
v , (B.10)

the first equation used for pinning down the unknowns {ξv, ξh, lv} is given by

1/3− [1 + Ψ1(1 + ξvi)]lv
1 + Ψ1(1 + ξhi)

=

(
1 + ξvi

1 + ξhi

) 1
1−γ ( γ

δΓ

) 1
1−γ
(
λh
λv

) 1
1−γ

l
1−δ
1−γ
v . (B.11)

The second equation for solving {ξv, ξh, lv} is

gN
gA

=
1

σ

(
1 + ξvi

1 + ξhi

) γ
1−γ ( γ

δΓ

) γ
1−γ
(
λh
λv

) 1
1−γ

l
γ−δ
1−γ
v , (B.12)

where Γ = 1 + σ
1−α is now known once σ and α are determined. The last equation is

ly = (1 + ξvi)

[(
ρσ + gLΓ

δαΓgL

)
lv +

(
ρ+ gL
δαΓgL

)(
1 + ξvi

1 + ξhi

) γ
1−γ ( γ

δΓ

) γ
1−γ
(
λh
λv

) 1
1−γ

l
1−δ
1−γ
v

]

= Ψ1

[
lv(1 + ξvi) + (1 + ξhi)

1/3− [1 + Ψ1(1 + ξvi)]lv
1 + Ψ1(1 + ξhi)

]

⇔

[(
ρσ + gLΓ

δαΓgL

)
lv +

(
ρ+ gL
δαΓgL

)(
1 + ξvi

1 + ξhi

) γ
1−γ ( γ

δΓ

) γ
1−γ
(
λh
λv

) 1
1−γ

l
1−δ
1−γ
v

]

= Ψ1

[
1− 1 + Ψ1(1 + ξvi)

1 + Ψ1(1 + ξhi)

1 + ξhi

1 + ξvi

]
lv + Ψ1

1 + ξhi

1 + ξvi

1/3

1 + Ψ1(1 + ξhi)
.

(B.13)

Eventually, we have three equations (B.11), (B.12) and (B.13), and three unknowns {ξv, ξh, lv}.
Having found these calibrated values, we thereafter obtain ly and then θ by solving

wt(1− l) = θ(1 + α)(1 + ξci)ct ⇔ 1− l = 2/3 = θ(1 + α)(1 + ξci)ly. (B.14)
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Online Appendix C : Stability analysis

C.1 Characterization of the dynamic system

Before establishing the dynamic system, we claim that the relative productivity parameter zit ≡
Ait/At in equation (22) in our paper follows the distribution of Pr{zit ≤ z} ≡ F (z) = z1/σ at any
time. As shown in Howitt (1999) and Segerstrom (2000), the leading-edge productivity parameter At
is sufficiently large at the initial steady-state so that the relative productivity parameter converges
to the invariant distribution, which implies Πht = Πvt/Γ. Thereafter, to characterize the dynamic
system, we first redefine ιt, which represents the aggregate quality-adjusted labor force, as

z1 ≡
Lt
AtNt

.

We next define the aggregate technology level Tt = A
1/(1−α)
t Nt and then have

z2 ≡
at
Tt

; z3 ≡
ct
Tt

=
1− α2

Γ
lyt,

where we have used ct =
(1−α2)lytA

1
1−α
t Nt

Γ from (25). Denote the economic growth rate gt ≡ Ṫt/Tt.
Thus, taking log of z3 and differentiating it with respect to time yields the motion of z3 given by

ż3

z3
= rt − gL − ρ− gt =

l̇yt
lyt
, (C.1)

where the Euler equation is applied. Moreover, recall from the households’ budget constraint

ȧt + ṁt = (rt − gL)at + wtlt + ibt + ζt − (πt + gL)mt − ct + dt. (C.2)

Using the asset market-clearing condition, the bond market-clearing condition, the government bud-
get constraint, the CIA constraint, the households’ optimal decision on leisure, and the expression
of dt:

atLt = NtΠht; btLt = ξvwtLvt + ξhwtLht; ṁt + (πt + gL)mt = ζt; ξcct + bt = mt,

wt(1− lt) = θct(1 + ξci); dtLt = (1− δ)φtΠvtNt + (1− γ)ṄtΠht,

(C.2) is reduced to

ȧt = (rt − gL)at + wt[1 + i(ξvlvt + ξhlht)]− ct[1 + θ(1 + ξci)] + dt. (C.3)
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With (C.3), taking log of z2 and differentiating it with respect to time yields the motion of z2:

ż2

z2
=
ȧt
at
− gt

= rt − gL − gt +
wt[1 + i(ξvlvt + ξhlht)]

at
− ct[1 + θ(1 + ξci)]

at
+
dt
at

= ρ+
ż3

z3
+

(1− α)[1 + i(ξvlvt + ξhlht)]

Γz2
− z3[1 + θ(1 + ξci)]

z2
+

(1− δ)φtΠvtNt + (1− γ)ṄtΠht

NtΠht

= ρ+
ż3

z3
+

(1− α)[1 + i(ξvlvt + ξhlht)]

Γz2
− z3[1 + θ(1 + ξci)]

z2
+ [Γ(1− δ)λvlδvt + (1− γ)λhl

γ
ht]z1,

(C.4)
where we have used (C.1) and the relations

wt
at

=
wt
Tt

Tt
at

=
1− α
Γz2

,
ct
at

=
ct
Tt

Tt
at

=
z3

z2
, φ = λvιtl

δ
vt = λvz1l

δ
vt

gNt = λhιtl
γ
ht = λhz1l

γ
ht, atLt = NtΠht, Πht = Γ−1Πvt.

Similarly, the motion of z1 is

ż1

z1
= gL −

Ȧt
At
− Ṅt

Nt
= gL − (σλvl

δ
vt + λhl

γ
ht)z1, (C.5)

where we have used the equation At = σφt = σλvl
δ
vtιt in the derivation of the second equality.

The economic system is now preliminarily established by the differential equations (C.1), (C.4)
and (C.5). The next step is to replace the endogenous variables lvt, lht and lyt. Firstly, using the
first-order conditions determining the optimal labor allocations in both vertical and horizontal R&D
sectors

λvδΠvt

At
lδ−1
vt = wt(1 + ξvi), (C.6)

and
λhγΠht

At
lγ−1
ht = wt(1 + ξhi), (C.7)

we can express lht as a function of lvt given by

lht = Ω
1

γ−1 l
1−δ
1−γ
vt . (C.8)

Secondly, using the atLt = NtΠht, wt = (1−α)A
1

1−αNt
Γ = (1−α)Tt

Γ , (C.6) and (C.7), we have

at =
NtΠht

Lt
=
NtΠvt

ΓLt
=
Nt

Lt

Atwt(1 + ξvi)

δλvΓ
l1−δvt =

1 + ξvi

δλvΓ

wt
z1
l1−δvt

⇔l1−δvt =
at
wt

δλvΓz1

1 + ξvi
=
Ttz2

wt

δλvΓz1

1 + ξvi
=

z2
1−α

Γ

δλvΓz1

1 + ξvi

⇔lvt = Ξ
1

1−δ
1 (z1z2)

1
1−δ ,

(C.9)
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where

Ξ1 =
λvδΓ

2

(1− α)(1 + ξvi)
.

Use (C.9) to rewrite (C.8) more compactly as

lht = Ξ
1

1−γ
2 (z1z2)

1
1−γ , (C.10)

where
Ξ2 =

Ξ1

Ω
=

λhγΓ

(1− α)(1 + ξhi)
.

By substituting (C.9) and (C.10) into (C.5), we obtain the first differential equation governing the
dynamic system given by

ż1

z1
= gL −

[
σλvΞ

δ
1−δ
1 (z1z2)

δ
1−δ + λhΞ

γ
1−γ
2 (z1z2)

γ
1−γ

]
. (C.11)

To derive the second differential equation, we again substitute (C.9) and (C.10) into (C.4) and
multiply both sides of it with z2, which yields

ż2 + [1 + θ(1 + ξci)]z3 − ρz2 −
ż3

z3
z2

=
1− α

Γ

{
1 + i

[
ξvΞ

1
1−δ
1 (z1z2)

1
1−δ + ξhΞ

1
1−γ
2 (z1z2)

1
1−γ

]}
+

[
Γ(1− δ)λvΞ

δ
1−δ (z1z2)

δ
1−δ + λh(1− γ)Ξ

γ
1−γ
2 (z1z2)

γ
1−γ

]
(z1z2)

=
1− α

Γ
+

[
(1− α)ξvi

Γ
Ξ

1
1−δ
1 + λvΓ(1− δ)Ξ

δ
1−δ
1

]
(z1z2)

1
1−δ

+

[
(1− α)ξhi

Γ
Ξ

1
1−γ
2 + λh(1− γ)Ξ

γ
1−γ
2

]
(z1z2)

1
1−γ

=
1− α

Γ

[
1 +

(
1− δ + ξvi

δ

)
Ξ

1
1−δ
1 (z1z2)

1
1−δ +

(1− α)(1− γ + ξhi)

γΓ
Ξ

1
1−γ
2 (z1z2)

1
1−γ

]
.

(C.12)

We now have two differential equations yet three endogenous variables. We then need another
equation to complete the description of dynamic system. Substituting wt(1− lt) = ct(1 + ξci), the
expressions of ct and wt, (C.9) and (C.10) into the labor market-clearing condition lt = lyt+ lvt+ lht
yields

1− θ(1 + α)(1 + ξci)lyt = lyt + lvt + lht

⇔z3 = Ξ3

[
1− Ξ

1
1−δ
1 (z1z2)

1
1−δ − Ξ

1
1−γ
2 (z1z2)

1
1−γ

]
,

(C.13)
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where

Ξ3 =
1− α2

Γ[1 + θ(1 + α)(1 + ξci)]
.

Differentiating z3 with respect to time yields

ż3 = −Ξ3

[
Ξ

1
1−δ
1

(
1

1− δ

)
(z1z2)

1
1−δ−1(ż1z2 + ż2z1) + Ξ

1
1−γ
2

(
1

1− γ

)
(z1z2)

1
1−γ−1

(ż1z2 + ż2z1)

]

= −Ξ3

Ξ
1

1−δ
1

1− δ
(z1z2)

1
1−δ +

Ξ
1

1−γ
2

1− γ
(z1z2)

1
1−γ

( ż1

z1
+
ż2

z2

)
.

(C.14)
Substituting (C.13) and (C.14) into (C.12) to reduce ż3 and z3 yields

ż2 = ρz2 − Ξ3[1 + θ(1 + ξci)]

[
1− Ξ

1
1−δ
1 (z1z2)

1
1−δ − Ξ

1
1−γ
2 (z1z2)

1
1−γ

]

+ z2

(
ż1

z1
+
ż2

z2

) Ξ
1

1−δ
1
1−δ (z1z2)

1
1−δ +

Ξ
1

1−γ
2

1−γ (z1z2)
1

1−γ

Ξ
1

1−δ
1 (z1z2)

1
1−δ + Ξ

1
1−γ
2 (z1z2)

1
1−γ − 1

+
1− α

Γ

[
1 +

(
1− δ + ξvi

δ

)
Ξ

1
1−δ
1 (z1z2)

1
1−δ +

(
1− γ + ξhi

γ

)
Ξ

1
1−γ
1 (z1z2)

1
1−γ

]

⇔ż2

1 +
δΞ

1
1−δ
1

1−δ (z1z2)
1

1−δ +
γΞ

1
1−γ
2

1−γ (z1z2)
1

1−γ

1− Ξ
1

1−δ
1 (z1z2)

1
1−δ − Ξ

1
1−γ
2 (z1z2)

1
1−γ


= ρz2 − Ξ3[1 + θ(1 + ξci)]

[
1− Ξ

1
1−δ
1 (z1z2)

1
1−δ − Ξ

1
1−γ
2 (z1z2)

1
1−γ

]

+ z2

 Ξ
1

1−δ
1
1−δ (z1z2)

1
1−δ +

Ξ
1

1−γ
2

1−γ (z1z2)
1

1−γ

Ξ
1

1−δ
1 (z1z2)

1
1−δ + Ξ

1
1−γ
2 (z1z2)

1
1−γ − 1

 ż1

z1

+
1− α

Γ

[
1 +

(
1− δ + ξvi

δ

)
Ξ

1
1−δ
1 (z1z2)

1
1−δ +

(
1− γ + ξhi

γ

)
Ξ

1
1−γ
1 (z1z2)

1
1−γ

]

(C.15)

Finally, the dynamic system is represented by two variables z1 and z2 and their differential equations
of (C.11) and (C.15).

C.2 Steady-state values of z1 and z2

The steady-state values of variables z1 and z2 (i.e., z∗1 and z∗2) are solved respectively by using
(C.9) and (C.10). Given the calibrated parameters, lv = 0.0102 and lh = 0.00014. Substituting
them into (C.9) and (C.10) eventually yields z1 = 0.1811 and z2 = 12.5141.

17



C.3 Linearization

Once obtaining the steady-state values of variables z1 and z2, we can linearize the above nonlinear
dynamic system around z∗1 and z∗2 . Formally, the Taylor series expansion of the nonlinear system
around the steady-state is given by[

ż1

ż2

]
= J ·

[
z1 − z∗1
z2 − z∗2

]
=

[
J11 J12

J21 J22

][
z1 − z∗1
z2 − z∗2

]

where J is the corresponding Jacobian matrix with

J11 =
∂ż1

∂z1
|(z∗1 ,z∗2 ) =gL − z∗1

[
σλv(2− δ)

1− δ
Ξ

δ
1−δ
1 (z∗1z

∗
2)

δ
1−δ +

λh(2− γ)

1− γ
Ξ

γ
1−γ
2 (z∗1z

∗
2)

γ
1−γ

]
, (C.16)

and

J12 =
∂ż1

∂z2
|(z∗1 ,z∗2 ) =− (z∗1)2

z∗2

[
σλvδ

1− δ
Ξ

δ
1−δ
1 (z∗1z

∗
2)

δ
1−δ +

λhγ

1− γ
Ξ

δ
1−δ
2 (z∗1z

∗
2)

γ
1−γ

]
. (C.17)

To derive J21 and J22, we rewrite (C.15) as

ż2

(
1 + δ

1−δ lvt + γ
1−γ lht

1− lvt − lht

)
= ρz2 − Ξ3[1 + θ(1 + ξci)](1− lvt − lht)

+ z2

(
δ

1−δ lvt + γ
1−γ lht

lvt + lht − 1

)
ż1

z1
+

1− α
Γ

[
1 +

1− δ + ξvi

δ
lvt +

1− γ + ξhi

γ
lht

]

⇔ż2

(
1 +

δ

1− δ
lvt +

γ

1− γ
lht

)
︸ ︷︷ ︸

term 1

= ρz2(1− lvt − lht)− Ξ3[1 + θ(1 + ξci)](1− lvt − lht)2

− z2

(
lvt

1− δ
+

1− lht
1− γ

)
ż1

z1
+

1− α
Γ

[
1 +

1− δ + ξvi

δ
lvt +

1− γ + ξhi

γ
lht

]
(1− lvt − lht)

= ρz2(1− lvt − lht)︸ ︷︷ ︸
term 2

−Ξ3[1 + θ(1 + ξci)](1− lvt − lht)2︸ ︷︷ ︸
term 3

−
(

lvt
1− δ

+
1− lht
1− γ

)[
gLz2 −

(
σλvlvt

Ξ1
+
λhlht
Ξ2

)]
︸ ︷︷ ︸

term 4

+
1− α

Γ

[
1 +

1− δ + ξvi

δ
lvt +

1− γ + ξhi

γ
lht

]
(1− lvt − lht)︸ ︷︷ ︸

term 5

(C.18)

Alternatively,

ż2 =
term 2− term 3− term 4 + term 5

term 1
.
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Therefore, differentiating ż2 with respect to z1 and z2 respectively yields

J21 =
∂ż2

∂z1
|(z∗1 ,z∗2 )

=

(
∂term 2
∂z1

− ∂term 3
∂z1

− ∂term 4
∂z1

+ ∂term 5
∂z1

)
· term 1− ∂term 1

∂z1
· (term 2− term 3− term 4 + term 5)

(term 1)2

J22 =
∂ż2

∂z2
|(z∗1 ,z∗2 )

=

(
∂term 2
∂z2

− ∂term 3
∂z2

− ∂term 4
∂z2

+ ∂term 5
∂z2

)
· term 1− ∂term 1

∂z2
· (term 2− term 3− term 4 + term 5)

(term 1)2
.

The corresponding partial derivatives, evaluated at the steady-state (i.e., z∗1 and z∗2), are given by

∂term 1
∂z1

=
δ

1− δ
∂lvt
∂z1

+
γ

1− γ
∂lht
∂z1

,
∂term 2
∂z1

= −ρz2

(
∂lvt
∂z1

+
∂lht
∂z1

)
,

∂term 3
∂z1

= −2Ξ3[1 + θ(1 + ξci)](1− lvt − lht)
(
∂lvt
∂z1

+
∂lht
∂z1

)
,

∂term 4
∂z1

=

(
1

1− δ
∂lvt
∂z1

+
1

1− γ
∂lht
∂z1

)(
gLz2 −

λvσlvt
Ξ1

∂lvt
∂z1
− λh

Ξ2

∂lht
∂z1

)
+

(
lvt

1− δ
+

lht
1− γ

)(
gLz2 −

λvσlvt
Ξ1

∂lvt
∂z1
− λh

Ξ2

∂lht
∂z1

)
∂term 5
∂z1

=
1− α

Γ

[(
1− δ + ξvi

δ

)
∂lvt
∂z1

+

(
1− γ + ξhi

γ

∂lht
∂z1

)]
(1− lvt − lht)

− 1− α
Γ

[
1 +

(
1− δ + ξvi

δ

)
lvt +

(
1− γ + ξhi

γ
lht

)](
∂lvt
∂z1

+
∂lht
∂z1

)
,

and

∂term 1
∂z2

=
δ

1− δ
∂lvt
∂z2

+
γ

1− γ
∂lht
∂z2

,
∂term 2
∂z2

= −ρ(1− lvt − lht)− ρz2

(
∂lvt
∂z2

+
∂lht
∂z2

)
,

∂term 3
∂z1

= −2Ξ3[1 + θ(1 + ξci)](1− lvt − lht)
(
∂lvt
∂z1

+
∂lht
∂z1

)
,

∂term 4
∂z2

=

(
1

1− δ
∂lvt
∂z2

+
1

1− γ
∂lht
∂z2

)(
gLz2 −

λvσlvt
Ξ1

∂lvt
∂z2
− λh

Ξ2

∂lht
∂z2

)
+

(
lvt

1− δ
+

lht
1− γ

)(
gLz2 −

λvσlvt
Ξ1

∂lvt
∂z2
− λh

Ξ2

∂lht
∂z2

)
∂term 5
∂z2

=
1− α

Γ

[(
1− δ + ξvi

δ

)
∂lvt
∂z2

+

(
1− γ + ξhi

γ

∂lht
∂z2

)]
(1− lvt − lht)

− 1− α
Γ

[
1 +

(
1− δ + ξvi

δ

)
lvt +

(
1− γ + ξhi

γ
lht

)](
∂lvt
∂z2

+
∂lht
∂z2

)
,
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where

lvt = Ξ
1

1−δ
1 (z1z2)

1
1−δ ;

∂lvt
∂z1

=
Ξ

1
1−δ
1

1− δ
z

δ
1−δ
1 z

1
1−δ
2 ;

∂lvt
∂z2

=
Ξ

1
1−δ
1

1− δ
z

δ
1−δ
2 z

1
1−δ
1 ;

lht = Ξ
1

1−γ
2 (z1z2)

1
1−γ ;

∂lht
∂z1

=
Ξ

1
1−γ
2

1− γ
z

γ
1−γ
1 z

1
1−γ
2 ;

∂lht
∂z2

=
Ξ

1
1−γ
2

1− γ
z

γ
1−γ
2 z

1
1−γ
1 .

C.4 Numerical analysis

Substituting the numerical values in our calibration into the Jacobian matrix yields

J =

[
J11 J12

J21 J22

]
=

[
−0.01613 −0.00082

0.09704 −0.00260

]
−→

[
−0.01613 −0.00082

0 −0.00756

]
.

Therefore, the eigenvalues for this Jacobian matrix are -0.01614 and -0.00736, respectively. Given
that the eigenvalues are real, distinct and negative, the model features a stability of saddle-path.
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