Appendix

A Proof of Lemma 1

As shown in Figure 5, the intersection of $\varepsilon\left(x_{t}\right)$ and $\eta\left(\varphi_{t-1}\right)$ determines the value of x_{t}, which satisfies (19) for a given φ_{t-1}. When φ_{t-1} increases, the function $\eta\left(\varphi_{t-1}\right)$ increases, as depicted by the broken line in Figure 5. Thus, x_{t} rises correspondingly. As a result, the $\varphi_{t}=\varphi_{t-1}$ locus can be depicted as an upward-sloping curve on the $\left(x_{t}, \varphi_{t-1}\right)$ plane in Figure 1. Note that the definition of φ_{t} implies $\varphi_{t-1} \in(0,1)$. Let us define $\tilde{\varphi}$ as $\tilde{\varphi} \equiv \eta^{-1}(\varepsilon(0))$. Since $\lim _{\varphi_{t-1} \rightarrow 1} \eta\left(\varphi_{t-1}\right)=+\infty$ and $\lim _{\varphi_{t-1} \rightarrow 0} \eta\left(\varphi_{t-1}\right)=-\infty$, the $\varphi_{t}=\varphi_{t-1}$ locus has an asymptote $\varphi_{t-1}=1$ when $x_{t} \rightarrow \infty$ and φ_{t-1} has a lower limit $\tilde{\varphi}$ when $x_{t}=0 .{ }^{18}$

Figure 5: Derivation of the $x_{t+1}=x_{t}$ locus.

B Proof of Lemma 2

We derive the $x_{t+1}=x_{t}$ locus. Differentiating $\zeta\left(x_{t}\right)$ with respect to x_{t} yields

$$
\begin{align*}
\zeta^{\prime}\left(x_{t}\right)= & \frac{\left[\gamma\left(1+x_{t}\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)+\left(1+\gamma x_{t}\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\left(1+\gamma x_{t}\right)\left(1+x_{t}\right) \frac{\lambda \Gamma}{x_{t}^{2}}\right]}{\beta\left(1+x_{t}\right)\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]} \\
& -\frac{\left[\left(1+\gamma x_{t}\right)\left(1+x_{t}\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\bar{\alpha}(1-\gamma) \mu_{1}\right]\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}} . \tag{B.1}
\end{align*}
$$

We rearrange (B.1) as follows:

$$
\begin{aligned}
\zeta^{\prime}\left(x_{t}\right)= & \frac{\left(1+x_{t}\right)^{2}\left[\gamma^{2} \mu_{1}\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\left(1+\gamma x_{t}\right)\left(1+\gamma x_{t}+\gamma \mu_{1}\right) \frac{\lambda \Gamma}{x_{t}^{2}}\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}} \\
& +\frac{\bar{\alpha}(1-\gamma) \mu_{1}\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}}, \\
= & \frac{\Gamma\left(1+x_{t}\right)^{2}\left[\gamma^{2}(1-g) x_{t}^{2}-\lambda\left\{1+\gamma\left(2 x_{t}+\mu_{1}\right)\right\}+\bar{\alpha}(1-\gamma) \mu_{1} x_{t}^{2}\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]\right]}{\beta x_{t}^{2}\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}}, \\
= & \frac{\sigma\left(x_{t}\right)}{\beta x_{t}^{2}\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}},
\end{aligned}
$$

where
$\sigma\left(x_{t}\right) \equiv \Gamma\left(1+x_{t}\right)^{2}\left[\gamma^{2}(1-g) x_{t}^{2}-\lambda\left\{1+\gamma\left(2 x_{t}+\mu_{1}\right)\right\}\right]+\bar{\alpha}(1-\gamma) \mu_{1} x_{t}^{2}\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]$.

We then differentiate $\sigma\left(x_{t}\right)$ with respect to x_{t} as follows:

$$
\sigma^{\prime}\left(x_{t}\right)=\mu_{2} x_{t}^{3}+\mu_{3} x_{t}^{2}+\mu_{4} x_{t}+\mu_{5}
$$

where

$$
\begin{aligned}
& \mu_{2} \equiv 4 \Gamma \gamma^{2}(1-g)+2 \gamma \bar{\alpha}(1-\gamma) \mu_{1}>0, \\
& \mu_{3} \equiv 6 \Gamma \gamma\{\gamma(1-g)-\lambda\}+2 \bar{\alpha}(1-\gamma) \mu_{1}\left(1+2 \gamma+\gamma \mu_{1}\right), \\
& \mu_{4} \equiv 2 \Gamma \gamma^{2}(1-g)+2 \gamma \bar{\alpha}(1-\gamma) \mu_{1}-8 \lambda \Gamma \gamma-2 \lambda \Gamma\left(1+\gamma \mu_{1}\right), \\
& \mu_{5} \equiv-2 \lambda \Gamma\left(1+\gamma+\gamma \mu_{1}\right)<0 .
\end{aligned}
$$

Assuming that $\gamma(1-g)>\lambda$, we obtain $\mu_{4}>0$. As a result, there is a unique $\overline{\bar{x}}>0$ that satisfies $\sigma^{\prime}(\overline{\bar{x}})=0$. $\sigma^{\prime}\left(x_{t}\right)<0$ holds when $0<x_{t}<\overline{\bar{x}}$ and $\sigma^{\prime}\left(x_{t}\right)>0$ holds when $x_{t}>\overline{\bar{x}}$. Moreover, since $\sigma(0)=-\lambda \Gamma\left(1+\gamma \mu_{1}\right)<0$ and $\lim _{x_{t} \rightarrow \infty} \sigma\left(x_{t}\right)=\infty$, there is a unique $\bar{x}>0$ that satisfies $\sigma(\bar{x})=0 . \sigma\left(x_{t}\right)<0$ holds when $0<x_{t}<\bar{x}$ and $\sigma\left(x_{t}\right)>0$ holds when $x_{t}>\bar{x}$. That is, we obtain

$$
\begin{array}{lll}
\zeta^{\prime}\left(x_{t}\right)<0 & \text { if } & 0<x_{t}<\bar{x} \\
\zeta^{\prime}\left(x_{t}\right)>0 & \text { if } & x_{t}>\bar{x}
\end{array}
$$

In addition, we obtain the following results:

$$
\begin{aligned}
& \lim _{x_{t} \rightarrow 0} \zeta\left(x_{t}\right)=\infty \\
& \lim _{x_{t} \rightarrow \infty} \zeta\left(x_{t}\right)=\lim _{x_{t} \rightarrow \infty}\left[\frac{\left(\frac{1}{x_{t}}+\gamma\right)\left(\frac{1}{x_{t}}+1\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\frac{\bar{\alpha}(1-\gamma) \mu_{1}}{x_{t}^{2}}}{\beta\left(\frac{1}{x_{t}}+1\right)\left(\frac{1+\gamma \mu_{1}}{x_{t}}+\gamma\right)}-\alpha_{P}\right]=\frac{1}{\beta}-\alpha_{P} .
\end{aligned}
$$

By using these results, we obtain a curve, the $x_{t+1}=x_{t}$ locus, which is U -shaped and has the asymptotes $\varphi_{t-1}=\frac{1}{\alpha_{R}-\alpha_{P}}\left(\beta^{-1}-\alpha_{P}\right)>1$ when $x_{t} \rightarrow \infty$ and $\varphi_{t-1} \rightarrow \infty$ when $x_{t} \rightarrow 0$.

Figure 1 depicts the $x_{t+1}=x_{t}$ locus.

C Properties of the $K_{t+1} / K_{t}=0$ locus

By differentiating $\Lambda\left(x_{t}\right)$ with respect to x_{t}, we obtain

$$
\begin{align*}
\Lambda^{\prime}\left(x_{t}\right)= & \frac{\left[\left(1+\gamma x_{t}\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)+\gamma x_{t}\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\left(1+\gamma x_{t}\right) \frac{\lambda \Gamma}{x_{t}}\right]}{\beta\left(1+x_{t}\right)\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]} \\
& -\frac{\left[x_{t}\left(1+\gamma x_{t}\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\bar{\alpha}(1-\gamma) \mu_{1}\right]\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}}, \\
= & \frac{\left(1+2 \gamma x_{t}+\gamma \lambda \Gamma\right)\left(1+x_{t}\right)\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]-\left(1+\gamma x_{t}\right)\left(x_{t}+\lambda \Gamma\right)\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}} \\
& +\frac{\bar{\alpha}(1-\gamma) \mu_{1}\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}}, \\
= & \frac{(1-\lambda \Gamma)\left(1+\gamma x_{t}\right)^{2}+\gamma \mu_{1}\left(\gamma x_{t}^{2}+2 \gamma x_{t}+1-\lambda \Gamma+\gamma \lambda \Gamma\right)}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}} \\
& +\frac{\bar{\alpha}(1-\gamma) \mu_{1}\left[1+\gamma\left(1+2 x_{t}+\mu_{1}\right)\right]}{\beta\left(1+x_{t}\right)^{2}\left[1+\gamma\left(x_{t}+\mu_{1}\right)\right]^{2}} . \tag{C.1}
\end{align*}
$$

By using $\mu_{1} \equiv \Gamma(1+\lambda-g)$, we can rewrite the numerator of (C.1) as

$$
\nu_{1} x_{t}^{2}+\nu_{2} x_{t}+\nu_{3},
$$

where

$$
\begin{aligned}
& \nu_{1} \equiv \gamma^{2}[1+(1-g) \Gamma], \\
& \nu_{2} \equiv 2 \gamma\left\{1+[\gamma \lambda+(1-g) \gamma-\lambda] \Gamma+(1-\gamma) \bar{\alpha} \mu_{1}\right\}, \\
& \nu_{3} \equiv\left(1+\gamma \mu_{1}\right)\{1+[\bar{\alpha}(1-\gamma)(1+\lambda-g)-\lambda] \Gamma\}+\gamma^{2} \mu_{1} \lambda \Gamma+\bar{\alpha}(1-\gamma) \gamma \mu_{1} .
\end{aligned}
$$

Assuming that $\bar{\alpha}(1-\gamma)(1+\lambda-g)>\lambda$ and using the assumption $\gamma(1-g)>\lambda$ in Lemma $2, \nu_{1}>0, \nu_{2}>0$, and $\nu_{3}>0$ hold, and hence $\Lambda^{\prime}\left(x_{t}\right)>0$ holds for all $x_{t} \geq 0$. In addition, we obtain the following property for $\Lambda\left(x_{t}\right)$:

$$
\lim _{x_{t} \rightarrow \infty} \Lambda\left(x_{t}\right)=\lim _{x_{t} \rightarrow \infty}\left[\frac{\left(\frac{1}{x_{t}}+\gamma\right)\left(1+\frac{\lambda \Gamma}{x_{t}}\right)-\frac{\bar{\alpha}(1-\gamma) \mu_{1}}{x_{t}^{2}}}{\beta\left(\frac{1}{x_{t}}+1\right)\left(\frac{1+\gamma \mu_{1}}{x_{t}}+\gamma\right)}-\alpha_{P}\right]=\frac{1}{\beta}-\alpha_{P}
$$

Thus, the $K_{t+1} / K_{t}=0$ locus is upward sloping if $\bar{\alpha}(1-\gamma)(1+\lambda-g)>\lambda$ and has an asymptote $\varphi_{t-1}=\frac{1}{\alpha_{R}-\alpha_{P}}\left(\beta^{-1}-\alpha_{P}\right)>1$ when $x_{t} \rightarrow \infty$ on the $\left(x_{t}, \varphi_{t-1}\right)$ plane.

D Phase diagram

First, we examine whether $\varphi_{t}>\varphi_{t-1}$ or $\varphi_{t}<\varphi_{t-1}$ at each point of the $\left(x_{t}, \varphi_{t-1}\right)$ plane. By using (9), we obtain

$$
\varphi_{t} \gtreqless \varphi_{t-1} \Leftrightarrow \varepsilon\left(x_{t}\right) \gtreqless \eta\left(\varphi_{t-1}\right) .
$$

Suppose that (\underline{x}, φ) is a combination that satisfies (19); that is, $\varepsilon(\underline{x})=\eta(\varphi)$ holds. Moreover, let us define $\underline{\underline{x}}$ by $\underline{x}>\underline{\underline{x}}$. Since $\varepsilon\left(x_{t}\right)$ is increasing in $x_{t}, \varepsilon(\underline{\underline{x}})<\eta(\underline{\varphi})$ holds. As a result, we obtain $\varphi_{t}<\varphi_{t-1}$ on the left of the $\varphi_{t}=\varphi_{t-1}$ locus. Similarly, we obtain $\varphi_{t}>\varphi_{t-1}$ on the right of the $\varphi_{t}=\varphi_{t-1}$ locus.

Next, we investigate whether $x_{t+1}>x_{t}$ or $x_{t+1}<x_{t}$ at each point of the $\left(x_{t}, \varphi_{t-1}\right)$ plane. From (6), we obtain

$$
x_{t+1} \gtreqless x_{t} \Leftrightarrow \varphi_{t-1} \lesseqgtr \zeta\left(x_{t}\right) .
$$

Therefore, we obtain $x_{t+1}>x_{t}$ below the $x_{t+1}=x_{t}$ locus and $x_{t+1}<x_{t}$ above the $x_{t+1}=x_{t}$ locus. By using these results, we can depict a phase diagram, as shown in Figure 1.

E Local stability around the steady states

By approximating (17) and (18) linearly around the steady state $k(k \in\{S, U\})$, we obtain

$$
\binom{\varphi_{t}-\varphi_{k}^{*}}{x_{t+1}-x_{k}^{*}}=\left(\begin{array}{cc}
J_{\varphi \varphi}^{k} & J_{\varphi x}^{k} \tag{E.1}\\
J_{x x}^{k} & J_{x \varphi}^{k}
\end{array}\right)\binom{\varphi_{t-1}-\varphi_{k}^{*}}{x_{t}-x_{k}^{*}}
$$

where

$$
\begin{aligned}
& J_{\varphi \varphi}^{k}=\frac{\varphi_{k}^{*} G_{\varphi}^{R}\left(x_{k}^{*}, \varphi_{k}^{*}\right)+G^{R}\left(x_{k}^{*}, \varphi_{k}^{*}\right)-\varphi_{k}^{*} G_{\varphi}^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}{G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}, \\
& J_{\varphi x}^{k}=\frac{\varphi_{k}^{*} G_{x}^{R}\left(x_{k}^{*}, \varphi_{k}^{*}\right)-\varphi_{k}^{*} G_{x}^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}{G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}, \\
& J_{x x}^{i}=\frac{G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)(1-\lambda \Gamma)-\left(1+x_{k}^{*}\right)\left(x_{k}^{*}+\lambda \Gamma\right) G_{x}^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}{\left[\left(1+x_{k}^{*}\right) G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)-\left(x_{k}^{*}+\lambda \Gamma\right)\right]^{2}}, \\
& J_{x \varphi}^{k}=-\frac{\left(x_{k}^{*}+\lambda \Gamma\right)\left(1+x_{k}^{*}\right) G_{\varphi}^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)}{\left[\left(1+x_{k}^{*}\right) G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)-\left(x_{k}^{*}+\lambda \Gamma\right)\right]^{2}},
\end{aligned}
$$

where $\left.G_{z}^{R}\left(x_{k}^{*}, \varphi_{k}^{*}\right) \equiv \frac{\partial G^{R}\left(x_{t}, \varphi_{t-1}\right)}{\partial z}\right|_{\left(x_{t}, \varphi_{t-1}\right)=\left(x_{k}^{*}, \varphi_{k}^{*}\right)}$ and $\left.G_{z}^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right) \equiv \frac{\partial G^{A}\left(x_{t}, \varphi_{t-1}\right)}{\partial z}\right|_{\left(x_{t}, \varphi_{t-1}\right)=\left(x_{k}^{*}, \varphi_{k}^{*}\right)}$ for $z \in\left\{x_{t}, \varphi_{t-1}\right\}$. Note that $G^{A}\left(x_{k}^{*}, \varphi_{k}^{*}\right)=G^{R}\left(x_{k}^{*}, \varphi_{k}^{*}\right)$ holds. Let us denote the two eigenvalues of the Jacobian matrix of the linearized system as e_{1}^{k} and e_{2}^{k}. These eigenvalues are the roots of the characteristic polynomial: $P(e)=e^{2}-\left(J_{\varphi \varphi}^{k}+J_{x x}^{k}\right) e+\left(J_{x x}^{k} J_{\varphi \varphi}^{k}-J_{\varphi x}^{k} J_{x \varphi}^{k}\right)$. To consider this, we conduct a numerical analysis. We adopt the following benchmark parameters: $\gamma=0.2, \Gamma=12, g=0.2, \delta=0.5, \beta=0.3, \alpha_{R}=0.45$, and $\alpha_{P}=0.25$. Table 3 shows the two eigenvalues for each steady state.

λ	$\left(e_{1}^{S}, e_{2}^{S}\right)$	$\left(e_{1}^{U}, e_{2}^{U}\right)$
0.01	$(0.098,0.378)$	$(0.219,2.566)$
0.02	$(0.104,0.439)$	$(0.207,2.227)$
0.03	$(0.113,0.527)$	$(0.193,1.874)$
0.04	$(0.126,0.678)$	$(0.174,1.467)$

Table 3: Eigenvalues at the steady states S and U.

From Table 3, we find that both e_{1}^{S} and e_{2}^{S} take real positive values and satisfy $0<$ $e_{1}^{S}<e_{2}^{S}<1$, and then the steady state S is a sink. We further find that both e_{1}^{U} and e_{2}^{U} take real positive values and satisfy $0<e_{1}^{U}<1<e_{2}^{U}$, and then the steady state U is a saddle point.

F Introduction of redistributive policy

Under the redistributive policy, we rewrite the following optimal conditions of individuals:

$$
\begin{align*}
b_{t+1}^{R} & =\frac{\beta\left[1+\left(1-\tau_{t+1}\right) r_{t+1}\right] s_{t}^{R}}{1+\tau^{b}}, \tag{F.1}\\
c_{t}^{1 P} & =\left(1-\alpha_{P}\right)\left[\left(1-\tau_{t}\right) w_{t}+b_{t}^{P}+T_{t}\right], \tag{F.2}\\
s_{t}^{P} & =\alpha_{P}\left[\left(1-\tau_{t}\right) w_{t}+b_{t}^{P}+T_{t}\right], \tag{F.3}
\end{align*}
$$

The other optimal conditions are the same as in (4a)-4d). In addition, (5) becomes

$$
\begin{align*}
& s_{t}^{R}=\alpha_{R}\left[\left(1-\tau_{t}\right) w_{t}+\frac{\beta\left\{1+\left(1-\tau_{t}\right) r_{t}\right\}}{1+\tau^{b}} s_{t-1}^{R}\right], \tag{F.4}\\
& s_{t}^{P}=\alpha_{P}\left[\left(1-\tau_{t}\right) w_{t}+T_{t}+\beta\left\{1+\left(1-\tau_{t}\right) r_{t}\right\} s_{t-1}^{P}\right] . \tag{F.5}
\end{align*}
$$

By substituting (F.1) into the government's redistributive policy $\delta N \tau^{b} b_{t}^{R}=(1-\delta) N T_{t}$, we obtain

$$
\begin{equation*}
T_{t}=\left(\frac{\delta}{1-\delta}\right)\left(\frac{\tau^{b}}{1+\tau^{b}}\right) \beta\left[1+\left(1-\tau_{t}\right) r_{t}\right] s_{t-1}^{R} . \tag{F.6}
\end{equation*}
$$

The asset market-clearing condition (6), equations determined in the production sector ($7 \mathrm{7a}$) , 7 b) , and $(7 \mathrm{c})$), and those in the public sector ($(8),(9)$, and $(10 \mathrm{p})$ remain unchanged. Furthermore, the derivations of the other equations are conducted in the same manner as described in Section 3. Some algebra rewrites $G^{A}\left(x_{t}, \varphi_{t-1}\right)$ (in (13), (16), 17), and 18), $G^{K}\left(x_{t}, \varphi_{t-1}\right)$ (in 16) and 18), and $G^{R}\left(x_{t}, \varphi_{t-1}\right)$ (in 14) and 17) into

$$
\begin{gather*}
G^{A}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)=\frac{\bar{\alpha}(1-\gamma) \mu_{1}}{\left(1+\gamma x_{t}\right)\left(1+x_{t}\right)}+\beta\left(1+\frac{\gamma \mu_{1}}{1+\gamma x_{t}}\right)\left[\frac{\alpha_{R}-\alpha_{P}}{1+\tau^{b}} \varphi_{t-1}+\alpha_{P}\right], \tag{F.7}\\
G^{K}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)=\left(1+x_{t}\right) G^{A}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)-\left(x_{t}+\lambda \Gamma\right), \tag{F.8}
\end{gather*}
$$

and

$$
\begin{equation*}
G^{R}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)=\frac{\alpha_{R}}{\varphi_{t-1}}\left[\frac{\delta(1-\gamma) \mu_{1}}{\left(1+\gamma x_{t}\right)\left(1+x_{t}\right)}+\frac{\beta}{1+\tau^{b}}\left(1+\frac{\gamma \mu_{1}}{1+\gamma x_{t}}\right) \varphi_{t-1}\right], \tag{F.9}
\end{equation*}
$$

respectively. Translating these into (17) and (18) transforms the dynamic systems as

$$
\begin{align*}
\frac{\varphi_{t}}{\varphi_{t-1}} & =\frac{G^{R}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)}{G^{A}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)} \\
\frac{x_{t+1}}{x_{t}} & =\frac{1+\lambda \Gamma / x_{t}}{\left(1+x_{t}\right) G^{A}\left(x_{t}, \varphi_{t-1} ; \tau^{b}\right)-\left(x_{t}+\lambda \Gamma\right)} \tag{F.10}
\end{align*}
$$

Setting $\varphi_{t}=\varphi_{t-1}$ and $x_{t}=x_{t+1}$ in (F.10) yields (27) and (28).

$\mathrm{G} \quad \varphi_{t}=\varphi_{t-1}$ locus under the redistributive policy

We rearrange (27) as follows:

$$
\tilde{\eta}\left(\varphi_{t-1}\right)=\frac{\left(1+\tau^{b}\right)(1-\gamma)}{\left[\alpha_{R}-\left(1+\tau^{b}\right) \alpha_{P}\right]-\left(\alpha_{R}-\alpha_{P}\right) \varphi_{t-1}}\left(\bar{\alpha}-\frac{\delta \alpha_{R}}{\varphi_{t-1}}\right) .
$$

Here, we assume $\alpha_{R}>\left(1+\tau^{b}\right) \alpha_{P}$. Under this assumption, when φ_{t-1} increases, the function $\tilde{\eta}\left(\varphi_{t-1}\right)$ increases. Similar to the analysis in Appendix A, the $\varphi_{t}=\varphi_{t-1}$ locus can be depicted as an upward-sloping curve on the $\left(x_{t}, \varphi_{t-1}\right)$ plane. Moreover, we define $\hat{\varphi}$ and $\tilde{\varphi}\left(\tau^{b}\right)$ as $\hat{\varphi} \equiv \frac{1+\tau^{b}}{\alpha_{R}-\alpha_{P}}\left(\frac{\alpha_{R}}{1+\tau^{b}}-\alpha_{P}\right)<1$ and $\tilde{\varphi}\left(\tau^{b}\right) \equiv \tilde{\eta}^{-1}(\varepsilon(0))$, respectively. Since $\lim _{\varphi_{t-1} \rightarrow \hat{\varphi}} \tilde{\eta}\left(\varphi_{t-1}\right)=+\infty$ and $\lim _{\varphi_{t-1} \rightarrow 0} \tilde{\eta}\left(\varphi_{t-1}\right)=-\infty$, the $\varphi_{t}=\varphi_{t-1}$ locus has an asymptote $\varphi_{t-1}=\hat{\varphi}$ when $x_{t} \rightarrow \infty$ and φ_{t-1} has a lower limit $\tilde{\varphi}\left(\tau^{b}\right)$ when $x_{t}=0 .{ }^{19}$

