Appendix A: Proof of Lemma 1

In this proof, we examine the stability of this model given a stationary path of μ_{t}. First, define the transformed variables $\Psi_{n, t} \equiv Y_{t} /\left(V_{n, t} N_{t}\right)$ and $\Psi_{k, t} \equiv Y_{t} /\left(V_{k, t} K_{t}\right)$. Then, differentiating $\Psi_{n, t}$ with respect to time yields

$$
\begin{equation*}
\frac{\dot{\Psi}_{n, t}}{\Psi_{n, t}}=\frac{\dot{Y}_{t}}{Y_{t}}-\frac{\dot{V}_{n, t}}{V_{n, t}}-\frac{\dot{N}_{t}}{N_{t}} . \tag{A.1}
\end{equation*}
$$

From the final-goods resource constraint $Y_{t}=C_{t}$, the law of motion for Y_{t} is given by

$$
\begin{equation*}
\frac{\dot{Y}_{t}}{Y_{t}}=\frac{\dot{C}_{t}}{C_{t}}=R_{t}-\rho, \tag{A.2}
\end{equation*}
$$

where the second equality stems from the Euler equation in (3). From (12), the law of motion for $V_{n, t}$ is

$$
\begin{equation*}
\frac{\dot{V}_{n, t}}{V_{n, t}}=R_{t}-\frac{\Pi_{x, t}}{V_{n, t}} . \tag{A.3}
\end{equation*}
$$

where $\Pi_{x, t}=\alpha(\mu-1) Y_{t} /\left(\mu_{t} N_{t}\right)$, which is obtained by applying symmetry across varieties in (4) to rewrite (5) as $\alpha Y_{t} / N_{t}=P_{t}(j) X_{t}(j)$ and substituting it into (9). Combining (A.1)-(A.3) yields

$$
\begin{equation*}
\frac{\dot{\Psi}_{n, t}}{\Psi_{n, t}}=\alpha\left(\frac{\mu-1}{\mu}\right) \Psi_{n, t}-\varphi L_{r, t}-\rho, \tag{A.4}
\end{equation*}
$$

where we use the fact that $\dot{N}_{t} / N_{t}=\varphi L_{r, t}$.
Using the same logic, differentiating $\Psi_{k, t}$ with respect to time yields

$$
\begin{equation*}
\frac{\dot{\Psi}_{k, t}}{\Psi_{k, t}}=\frac{\dot{Y}_{t}}{Y_{t}}-\frac{\dot{V}_{k, t}}{V_{k, t}}-\frac{\dot{K}_{t}}{K_{t}} . \tag{A.5}
\end{equation*}
$$

From (15), the law of motion for $V_{k, t}$ is

$$
\begin{equation*}
\frac{\dot{V}_{k, t}}{V_{k, t}}=R_{t}-\frac{Q_{t}}{V_{k, t}}, \tag{A.6}
\end{equation*}
$$

where $Q_{t}=\alpha \gamma Y_{t} /\left(\mu_{t} K_{t}\right)$, which is obtained by applying symmetry across varieties in (4) to rewrite
(5) as $\alpha Y_{t} / N_{t}=P_{t}(j) X_{t}(j)$ and substituting it into (11). Combining (A.2), (A.5), and (A.6) yields

$$
\begin{equation*}
\frac{\dot{\Psi}_{k, t}}{\Psi_{k, t}}=\alpha\left(\frac{\gamma}{\mu}\right) \Psi_{k, t}-\phi L_{k, t}-\rho, \tag{A.7}
\end{equation*}
$$

where we use the fact that $\dot{K}_{t} / K_{t}=\phi L_{k, t}$.
Furthermore, combining (14) and (17) yields $\varphi V_{n, t} N_{t}=\phi V_{k, t} K_{t}$, which implies

$$
\begin{equation*}
\frac{\Psi_{n, t}}{\varphi}=\frac{\Psi_{k, t}}{\phi} \tag{A.8}
\end{equation*}
$$

and also $\dot{\Psi}_{n, t} / \Psi_{n, t}=\dot{\Psi}_{k, t} / \Psi_{k, t}$. Using this result and (A.8), we rewrite (A.7) to make $L_{k, t}$ a function of $\dot{\Psi}_{n, t} / \Psi_{n, t}$ and $\Psi_{n, t}$ such that

$$
\begin{equation*}
L_{k, t}=-\frac{1}{\phi}\left[\frac{\dot{\Psi}_{n, t}}{\Psi_{n, t}}-\alpha\left(\frac{\gamma}{\mu}\right)\left(\frac{\phi}{\varphi}\right) \Psi_{n, t}+\rho\right] . \tag{A.9}
\end{equation*}
$$

Then, we use (10) to derive

$$
\begin{equation*}
L_{x, t}=\int_{0}^{N_{t}} L_{x, t}(j) d j=\frac{\left(\frac{1-\gamma}{\mu}\right) \int_{0}^{N_{t}} P_{t}(j) X_{t}(j) d j}{W_{t}}=\frac{\left(\frac{1-\gamma}{\mu}\right) \alpha Y_{t}}{W_{t}}=\frac{\alpha}{\varphi}\left(\frac{1-\gamma}{\mu}\right) \Psi_{n, t}, \tag{A.10}
\end{equation*}
$$

where (4) and (5) are used in the third equality and (14) is used in the fourth equality.
Finally, substituting (A.9), (A.10), and the labor-market-clearing condition $L_{x, t}+L_{r, t}+L_{k, t}=1$ into (A.4), a few steps of manipulation yield a one-dimensional differential equation in $\Psi_{n, t}$:

$$
\begin{equation*}
\frac{\dot{\Psi}_{n, t}}{\Psi_{n, t}}=\left(1+\frac{\varphi}{\phi}\right)^{-1}\left[\alpha \Psi_{n, t}-\varphi\left(1+\frac{\rho}{\varphi}+\frac{\rho}{\phi}\right)\right] . \tag{A.11}
\end{equation*}
$$

Therefore, the dynamics of $\Psi_{n, t}$ is characterized by saddle-point stability such that $\Psi_{n, t}$ jumps immediately to its interior steady-state value given by

$$
\begin{equation*}
\Psi_{n}=\frac{\varphi}{\alpha}\left(1+\frac{\rho}{\varphi}+\frac{\rho}{\phi}\right) . \tag{A.12}
\end{equation*}
$$

Then, (A.4), (A.7), and (A.10) reveal that when Ψ_{n} and μ are stationary, L_{r}, L_{k}, and L_{x} must
also be stationary, respectively.

