Appendix A: Proof of Lemma 1

In this proof, we examine the stability of this model given a stationary path of u;. First, define
the transformed variables ¥, ; = Y;/(V;,:N;) and ¥y = Y;/(Vj ¢ K:). Then, differentiating W,, ;

with respect to time yields
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From the final-goods resource constraint Y; = C;, the law of motion for Y; is given by
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where the second equality stems from the Euler equation in (3). From (12), the law of motion for

th is
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where I, ; = a(p — 1)Y: /(e Ny), which is obtained by applying symmetry across varieties in (4) to

rewrite (5) as aY;/Ny = Pi(7)X¢(j) and substituting it into (9). Combining (A.1)-(A.3) yields

¥ -1
q,"’t =a (%) Ui =Ly = p, (A.4)

n,t

where we use the fact that N; /Nt = @Ly .

Using the same logic, differentiating ¥y, ; with respect to time yields
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From (15), the law of motion for V}; is
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where Q; = aY;/(uK¢), which is obtained by applying symmetry across varieties in (4) to rewrite
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(5) as aYy/Ny = Pi(j)X¢(j) and substituting it into (11). Combining (A.2), (A.5), and (A.6) yields
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where we use the fact that Kt/Kt = ¢Lp;.

Furthermore, combining (14) and (17) yields ¢V}, ;N; = ¢V}, 1K, which implies

\Ilnt \I/kt
b Tkt A8
" 5 (A.8)

and also W, /U, = Wy,;/Us,. Using this result and (A.8), we rewrite (A.7) to make Ly, a

function of ¥,, ;/¥,; and ¥, ; such that
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Then, we use (10) to derive
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where (4) and (5) are used in the third equality and (14) is used in the fourth equality.
Finally, substituting (A.9), (A.10), and the labor-market-clearing condition Ly s+ Ly ¢+ Ly = 1
into (A.4), a few steps of manipulation yield a one-dimensional differential equation in Wy, ;:
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Therefore, the dynamics of W, ; is characterized by saddle-point stability such that ¥, ; jumps

immediately to its interior steady-state value given by
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Then, (A.4), (A.7), and (A.10) reveal that when ¥,, and p are stationary, L,, L, and L, must
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also be stationary, respectively.
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