
Appendix A: Proof of Lemma 1

In this proof, we examine the stability of this model given a stationary path of µt. First, define

the transformed variables Ψn,t ≡ Yt/(Vn,tNt) and Ψk,t ≡ Yt/(Vk,tKt). Then, differentiating Ψn,t

with respect to time yields

Ψ̇n,t

Ψn,t
=
Ẏt
Yt
− V̇n,t
Vn,t
− Ṅt

Nt
. (A.1)

From the final-goods resource constraint Yt = Ct, the law of motion for Yt is given by

Ẏt
Yt

=
Ċt
Ct

= Rt − ρ, (A.2)

where the second equality stems from the Euler equation in (3). From (12), the law of motion for

Vn,t is

V̇n,t
Vn,t

= Rt −
Πx,t

Vn,t
. (A.3)

where Πx,t = α(µ− 1)Yt/(µtNt), which is obtained by applying symmetry across varieties in (4) to

rewrite (5) as αYt/Nt = Pt(j)Xt(j) and substituting it into (9). Combining (A.1)-(A.3) yields

Ψ̇n,t

Ψn,t
= α

(
µ− 1

µ

)
Ψn,t − ϕLr,t − ρ, (A.4)

where we use the fact that Ṅt/Nt = ϕLr,t.

Using the same logic, differentiating Ψk,t with respect to time yields

Ψ̇k,t

Ψk,t
=
Ẏt
Yt
−
V̇k,t
Vk,t
− K̇t

Kt
. (A.5)

From (15), the law of motion for Vk,t is

V̇k,t
Vk,t

= Rt −
Qt
Vk,t

, (A.6)

where Qt = αγYt/(µtKt), which is obtained by applying symmetry across varieties in (4) to rewrite
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(5) as αYt/Nt = Pt(j)Xt(j) and substituting it into (11). Combining (A.2), (A.5), and (A.6) yields

Ψ̇k,t

Ψk,t
= α

(
γ

µ

)
Ψk,t − φLk,t − ρ, (A.7)

where we use the fact that K̇t/Kt = φLk,t.

Furthermore, combining (14) and (17) yields ϕVn,tNt = φVk,tKt, which implies

Ψn,t

ϕ
=

Ψk,t

φ
, (A.8)

and also Ψ̇n,t/Ψn,t = Ψ̇k,t/Ψk,t. Using this result and (A.8), we rewrite (A.7) to make Lk,t a

function of Ψ̇n,t/Ψn,t and Ψn,t such that

Lk,t = − 1

φ

[
Ψ̇n,t

Ψn,t
− α

(
γ

µ

)(
φ

ϕ

)
Ψn,t + ρ

]
. (A.9)

Then, we use (10) to derive

Lx,t =

∫ Nt

0
Lx,t(j)dj =

(
1−γ
µ

) ∫ Nt

0 Pt(j)Xt(j)dj

Wt
=

(
1−γ
µ

)
αYt

Wt
=
α

ϕ

(
1− γ
µ

)
Ψn,t, (A.10)

where (4) and (5) are used in the third equality and (14) is used in the fourth equality.

Finally, substituting (A.9), (A.10), and the labor-market-clearing condition Lx,t+Lr,t+Lk,t = 1

into (A.4), a few steps of manipulation yield a one-dimensional differential equation in Ψn,t:

Ψ̇n,t

Ψn,t
=

(
1 +

ϕ

φ

)−1 [
αΨn,t − ϕ

(
1 +

ρ

ϕ
+
ρ

φ

)]
. (A.11)

Therefore, the dynamics of Ψn,t is characterized by saddle-point stability such that Ψn,t jumps

immediately to its interior steady-state value given by

Ψn =
ϕ

α

(
1 +

ρ

ϕ
+
ρ

φ

)
. (A.12)

Then, (A.4), (A.7), and (A.10) reveal that when Ψn and µ are stationary, Lr, Lk, and Lx must
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also be stationary, respectively.
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