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In the Appendix, we provide mathematical details of the second-order conditions
of household/firm optimization and wage bargaining, the concavity of household/firm
value functions, quasi-socail planner’s optimization, the centralized solution by coordi-
nating labor matching and wage bargain, dynamic taxation, as well as the Alternative
Models II (linear human capital accumulation) and III (Walrasian).

1 Second-Order Conditions

The second-order conditions of firm’s optimization with respect to v and k are (to ease
notation burden, we carry time subscript t only for perpetually growing variables):
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which hold automatically under our functional form specifications.
The second-order conditions of household’s optimization with respect to ct, `t and

st are:
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which also hold under our functional form specifications and parameterization in the
benchmark model.

Finally, we turn to the second-order condition of wage bargaining. From (30), it is
easily see that MBww < 0 and MCww > 0, thus assuring the second-order condition:
d(MBw −MCw)/dw < 0.
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2 Wage Bargaining

The bargained wage rate and the equilibrium wage can be derived by solving the
following quadratic equation:

Sw(1-ζ)F1w
2
t

+ {Srqt[(1-ζ)F1+ζ]-SwF2(1-ζ)}wt − Srqt[(1-ζ)F2 + ζ(1-α)Aqα
t

] = 0

where F1 = (1−τL)(1−b̄)+mn`Sw
(1−τL)(1−b̄) > 0 and F2 = −m[Srqn`+(π+T )/h]

(1−τL)(1−b̄) < 0.

3 Concavity of Household and Firm Value Functions

The concavity of the value function Γ(nt) in firm’s optimization is easily confirmed as:

∂2Γ(nt)

∂ (nt)
2 = α(1− α)A

(
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)α−1
qF
t+1(nt) +

(1− ψ)2

1 + r̄
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The concavity of the value function Ω(H) in household’s optimization is not as
trivial, as it requires the Hessian matrix of Ω(H)

JΩ ≡


Ωkk Ωkh Ωkn

Ωhk Ωhh Ωhn

Ωnk Ωnh Ωnn


to be negative semidefinite. We can easily show:
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(
qH
t
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Under our parameterization in the benchmark model, Ωkk(H) < 0.
By exhaustive manipulations, we have:

Ωhh(H) =
1
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where
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{
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(
qH
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Under our parameterization in the benchmark model, Ωhh(H) < 0. Additional ex-
haustive manipulations yield:

Ωnn(H) =
1

1+ρ
(TE5 + TE6 + TE7 + TE8 + TE9 + TE10 + TE11)
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where

TE5 = Ωkk(H′)[(1-τLt)wtht(`t-b̄t)]2 < 0
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Under our parameterization in the benchmark model, Ωnn(H) < 0. The 2×2 principal
minors of JΩ need be all positive and the determinant

∣∣JΩ
∣∣ need be negative, which

are too complicated to identify clean suffi cient conditions; nonetheless, they all hold
true under our calibrated benchmark parametrization.

4 Quasi-Social Planner’s Optimization

The quasi-social planner’s problem is given by,

Λ(kt, ht, nt) = max
ct, `t, st, vt

U (ct) +m (1− nt) +
1

1 + ρ
Λ(kt+1, ht+1, nt+1)

subject to:
kt+1 = A(stkt)
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nt+1 = (1− ψ)nt +B(1− nt)β (vt)
1−β

It is noted that while the resource constraint is straightforward by replacing income
with net output and the human capital accumulation equation is identical to the decen-
tralized problem, the evolution equations of employment differs from the decentralized
program now with coordinated labor matches.

The quasi-social planner’s optimization satisfies the following first-order conditions
(with respect to {ct, `t, st, vt}),
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−β
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together with the respective Benveniste-Scheinkman conditions (associated with {kt, ht, nt}):

Λk(H) =
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t
)α−1]
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5 Equilibrium

We derive algebra in Section 3. Under the logarithmic utility function: U(c) = ln c,
households’ lifetime utility is always bounded along a BGP. Moreover, Γn(n′) and
Ωn(H′) are constant along a BGP, whereas Ωk(H′) and Ωh(H′) are decreasing at rate
g. Then, we use (6), (8), and (9) to derive a standard Keynes-Ramsey relationship
governing consumption growth and an intertemporal optimization condition governing
human capital accumulation as follows.

g =
(1− τK)r − δk − ρ

1 + ρ
(A1)

ρ+ (1 + ρ)g = [D + D̃(1− γ)
(
qH
)γ

][n+ (1− n)b̄] (A2)

From the definition of π and (16), we can derive the flow profit redistribution to
each household in effective units as follows.

π

h
= n`

{
A
(
qF
)α

[(1− α)− φv]− w
}

(A3)

From (3), the definition of qF and the flow profit redistribution given above, we can
derive effective consumption along a BGP as:

c

h
=

(
Sww + Srq

F
)
n`+

π

h
+
T

h

=
{
A
(
qF
)α

[(1− α)− φv] + Srq
F − (1− Sw)w

}
n`+

T

h
(A4)

where T is regarded as given by individuals with its equilibrium value being pinned
down by the government budget constraint (21).

6 Effi ciency

This Appendix derive algebra in Section 4. For the purpose of comparison, it is
convenient to rewrite the conditions in Lemmas 1 and 2 in the decentralized problem
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as:

Ωk(H′) = (1 + ρ)Uc

Ωk(H′)(1− τLt)wt = Ωh(H′)
[
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(
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t

)γ]
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(1 + ρ) (1 + gt) = [1− δk + (1− τKt)rt]
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[
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(
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ψ +Rt
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(
qF
t
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We can then differentiate the above expressions to obtain:

dΩn/dwt =
1 + ρ

ρ+ ψ + µt

(
1− b̄t

)
(1− τLt)htUc

dΓn/dwt = − 1 +Rt
ψ +Rt

The cooperative Nash wage bargaining therefore implies:

Ωn = − ζ

1− ζ
dΩn/dwt
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= − ζ
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[
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(
qFt
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The above expression can be combined with (A6) to yield:
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[(
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)
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[
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(
qF
t

)α
-wt
]

which can be simplified to the decentralized labor-leisure-consumption trade-off as
follows.

(
1− b̄t

)
(1− τLt)wthtUc − (1− ζ)m = ζ

(
1− b̄t

)
(1− τLt)ht(1− α)A

(
qFt
)α
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Concerning centralized solution, we rewrite the conditions in Lemma 5 to get:

Λk(H′) = (1 + ρ)Uc

Λk(H′)A(1− α)(qF
t
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[
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(
qH
t

)γ]
Λk(H′)Aα(qF

t
)α−1 = Λh(H′)D̃γ
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qH
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)γ−1

Λk(H′)φA(qF
t

)αnt`tht = Λn(H′)(1− β)B(1− nt)β (vt)
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(A8)

(1 + ρ) (1 + gt) = [1− δk +Aα(qFt )α−1]

(1 + ρ) (1 + gt)− 1 =
[
D + D̃(1− γ)

(
qHt
)γ]

nt

[
ρ+ ψ + βB(1− nt)β−1 (vt)

1−β
]

Λn = (1 + ρ)
[
A(1− α)(qF

t
)αhtUc −m

]
(1− β)B(1− nt)β (vt)

−β Λn = φA(qFt )αnt`tht (1 + ρ)Uc

where the last two expressions can be combined with ψnt = µt(1 − nt) = ηtvt =

B(1− nt)β (vt)
1−β to yield:

A(1− α)(qFt )αhtUc −m =
ρ+ ψ + βB(1− nt)β−1 (vt)

1−β

(1− β)B(1− nt)β (vt)
−β φA(qFt )αnt`thtUc

=
ρ+ ψ + βµt

(1− β)ηt
φA(qFt )αnt`thtUc

which can be simplified to the counterpart of this labor-leisure-consumption trade-off
under the centralized solution as follows.

(1− α)A(qFt )αhtUc −
ρ+ ψ + βµt

ηtvt
ΦUc − (1− β)m = β(1− α)A(qFt )αhtUc

where Φ = φvtȳt = φvtA(qFt )αnt`tht is the vacancy creation cost.
Then, by comparing the decentralized and centralized solutions, namely (A5) and

(A8), we can identify four conditions in a more straightforward manner:

Rt = rt

Ωk(H′) = Λk(H′)
τKt = 0

b̄t = 0

Moreover, to ensure the labor-leisure-consumption trade-offunder decentralization and
centralization to be identical, we need to establish equivalence between the decen-
tralized labor-leisure-consumption trade-off and the counterpart of this labor-leisure-
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consumption trade-off under the centralized solution, which holds true under the fol-
lowing conditions:

ζ = β

τLt = 0

wt = (1−∆∗t ) (1− α)A(qFt )α

where effi cient wage discount ∆∗t is given by,

∆∗t =
(ρ+ ψ + βµt)φvt`t

ψ(1− α)
=

(ρ+ ψ + βµt)φnt`t
(1− α)ηt

7 Dynamic Taxation and Dynamic Tax Incidence

This Appendix derives dynamic taxation. In deriving dynamic taxation, we maintain
a BGP equilibrium with stationary matching and bargaining. This implies that g and
n are constant. Then (22)-(25) indicate that µ, η, v, and θ are constant.

From (A1), we derive:

rt = r(τKt) =
1

1− τKt
[g(1 + ρ) + δk + ρ]

implying r′(τKt) = 1
(1−τKt)2 [g(1 + ρ) + δk + ρ] > 0 and r′′(τKt) = 2

(1−τKt)3 [g(1 + ρ) +

δk + ρ] > 0.

From (A2), we derive:

qHt = qH(b̄t) =

{
1

D̃(1− γ)

[
ρ+ (1 + ρ)g

n+ (1− n)b̄t
−D

]} 1
γ

implying ∂qHt
∂b̄t

< 0. Moreover, ∂q
H
t
∂g > 0 and ∂qHt

∂n < 0.
From (26), we derive:

`t = `(b̄t) = 1− g

n{D + D̃[qH(b̄t)]γ}

implying `′(b̄t) < 0.Moreover, ∂`t∂g < 0 and ∂`t
∂n > 0.

From (16), we derive:
Rt = R(τKt) = r(τKt)

From (18), we derive:

qFt = qF (τKt) =

(
αA

r(τKt)

) 1
1−α
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implying ∂qFt
∂τKt

= − 1
1−α

(
αA

r(τKt)

) 1
1−α−1

r′(τKt) < 0.

From (A1) and (31), we derive:

wt = w(τKt) =

(
ααA

r(τKt)α

) 1
1−α

[
1− α− (r(τKt) + ψ)φ

η(n)
n

]

implying w′(τKt) = − (ααA)
1

1−α r′(τKt)

{
αr(τKt)

−1
1−α

1−α
η(n)(1−α)−(r(τKt)+ψ)φn

η(n) + φnr(τKt)
−α
1−α

η(n)

}
<

0. Although w′′(τKt) may be ambiguous, as a result of factor substitution, when the
direct production cost effect dominates the labor market friction effect (the last term
in the square bracket of the effective wage expression), effective wage is strictly concave
in the capital tax rate and thus, w′′(τKt) < 0.

Equation (11) becomes:

(
qH(b̄t)

)1−γ [
D + D̃(1− γ)

(
qH(b̄t)

)γ]
= D̃γ

(1− τLt)w(τKt)

(1− τKt)r(τKt)
from which we can express b̄t as an equation of τKt and τLt:

b̄t = b̄(τKt, τLt)

implying ∂b̄t
∂τLt

> 0. Moreover, ∂b̄t∂τKt
> 0, because from (A1), (1− τKt)r(τKt) is depen-

dent on τKt only through its BGP effect on g, which we have already proved. Thus,
the time varying effect of τKt only affect w(τKt) negatively, so τKt also affects b̄t
positively. This is the IR locus.

The IR locus is negatively sloping in the (τLt, τKt) plane.

dτLt
dτKt

=
w′(τKt)(1− τLt)

w(τKt)
(1−τKt )r(τKt)

=
w′(τKt)(1− τLt)(1− τKt)r(τKt)

w(τKt)
< 0.

To see whether the isoquant is concave or convex, we take a second-order derivative
to get

d2τLt
dτ2

Kt

=
{w(τKt)w

”(τKt)− w′(τKt)2[1 + (1− τKt)r(τKt)]}(1− τLt)(1− τKt)r(τKt)
w(τKt)2

If w′′(τKt) < 0, then
d2τLt
dτ2Kt

< 0 and the IR locus is concave to the origin. Our

quantitative exercises confirm w′′(τKt) < 0 and thus, the IR locus is concave to the
origin.

In order to quantify time-varying factor taxes, we impose the following factor tax
schedules

τKt − τ∗K = AKe
−aK(t)·t

τLt − τ∗L = −ALe−aL(t)·t
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where AK , aK(t), AL, aL(t) are coeffi cients that are to be calibrated. Below, we char-
acterize these coeffi cients. First, from (A1), we have (1−τLt)w(τKt) = g(1+ρ)+δk+ρ

which is constant. Then we rewrite (11) as

(
qH(b̄t)

)1−γ [
D + D̃(1− γ)

(
qH(b̄t)

)γ]
= D̃γ

(1− τLt)w(τKt)

g(1 + ρ) + δk + ρ

Next, using (31) to substitute w(τKt) in (11), we have

(1− τLt)
(

ααA

r(τKt)α

) 1
1−α

[
1− α− φn

η
(r(τKt) + ψ)

]
= Θ

where Θ =
(
qH(b̄t)

)1−γ [
D + D̃(1− γ)

(
qH(b̄t)

)γ] g(1+ρ)+δk+ρ

D̃γ
.

Using (A1) to substitute r(τKt) in (11) gives

(1−τLt)
(
g(1 + ρ) + δk + ρ

1− τKt

) −α
1−α

[
1− α− φn

η
{ 1

1− τKt
[g(1 + ρ) + δk + ρ] + ψ}

]
= (ααA)

−1
1−α Θ

At t = 0, the initial condition is τK0 = τ∗K + AK and τL0 = τ∗L − AL. Then (11) at
t = 0 gives the relationship between AL and AK as follows.

AL (AK) = −1 + τ∗L +
(ααA)

−1
1−α

[
g(1+ρ)+δk+ρ

1−τ∗K−AK

] α
1−α

Θ(b̄)

1− α− φn
η

[
g(1+ρ)+δk+ρ

1−τ∗K−AK
+ ψ

]
which depends positively on AK when the capital income share is not too high such

that α < min
{

1
2 , 1−

ψφn
η

}
. Thus the two initial tax rates are negatively related,

which is easily understood because the IR locus is downward sloping. Moreover, at
time t, the speed of labor taxation aL(t) is governed by

ln
[
1− τ∗L +AL (AK) e−aL(t)·t

]
= ln (ααA)

−1
1−α Θ(b̄) +

α

1− α ln
g(1 + ρ) + δk + ρ

1− τ∗K −AKe−aK(t)·t

− ln

{
1− α− φn

η

[
g(1 + ρ) + δk + ρ

1− τ∗K −AKe−aK(t)·t + ψ

]}
Define Ξ = α

1−α
1

1−τK−AK ·e−aK (t)·t+
φn
η

g(1+ρ)+δk+ρ

[1−τK−AKe−aK (t)·t]
2
{

1−α−φn
η

[
g(1+ρ)+δk+ρ

1−τK−AKe
−aK (t)·t+ψ

]} .
Totally differentiating (34) gives

ALte
−aL(t)·t

1− τL +ALe−aL(t)·tdaL =

{
A′L(AK)e−aL(t)·t

1− τL +ALe−aL(t)·t − Ξe−aK(t)·t

}
dAK+ΞAKte

−aK(t)·tdaK

Thus, daL
daK

> 0 whereas daL
dAK

is ambiguous, but daL
dAK

> 0 if the effect through AL
dominates (which is the case of our calibrated economy).
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To evaluate the welfare, first we rewrite (2) as

ht+1

ht
= 1 +Dnt(1− `t) + D̃(qHt )γnt(1− `t)

Since nt, qHt and `t are constant, then the growth rate of ht is constant. Since the
growth rate of ht is constant, then we only need to analyze the transition of ctht when
evaluating welfare.

Then, from (27), we derive

st = s(τKt, b̄) =
qF (τKt)`(b̄t)

[1− `(b̄)]qH(b̄) + qF (τKt)`(b̄)

which is decreasing in τKt.
Moreover, from (21), we have

Tt
ht

= w(τKt){τLt
[
n`+ (1− n)b̄

]
− (1− n)b̄}+ τKtr(τKt)q

F (τKt)n`

which is increasing in τLt but the effect of τKt is complicated. Since τKtr(τKt)q
F (τKt) ∝

τKt (1− τKt)
α

1−α , straightforward differentiation implies τKtr(τKt)q
F (τKt) is increas-

ing in τKt if τKt < 1 − α. Yet, a higher τKt lowers w(τKt), thus leading to an
ambiguous result. In our calibrated economy, the indirect effect via w(τKt) is domi-
nated by the direct effect. As a result, both factor tax rates raise effective lump-sum

tax. Also note that Swt = Sw(τLt, b̄) = (1 − τLt)
[
1 + (1−n)b̄

n`

]
and Srt = Sr(τKt, b̄) =[

(1− τKt)r(τKt)− g+δk
s(τKt,b̄t)

]
. While Swt is decreasing in τLt, Srt is decreasing in τKt.

Furthermore, from (A4), we have

ct
ht

=
{
A
(
qF (τKt)

)α
[(1− α)− φv] + Sr(τKt, b̄)q

F (τKt)−
(
1− Sw(τLt, b̄t)

)
w(τKt)

}
n`+

Tt
ht

Finally, we are ready to calibrate tax schedules. The calibration is carried out in the
following steps.

(i) We set AK so to match the (given) initial τK0;
(ii) Given AK , the value of aK is set so that the difference between τKt and τ

∗
K

(the optimal capital tax rate, 16.11%) is within 1% of τ∗K in the 50th period;
(iii) Then AL is set so that (11) is satisfied at the 10th period (t = 9);
(iv) The value of aL is set so that the difference between τLt and τ

∗
L (the optimal

capital labor rate, 24.09%) is within 1% of τ∗L at the 50th period.

8 Alternative Model II: Linear Human Capital Accumu-

lation

In the case with a linear human capital accumulation process independent of market
goods, the first-order condition of the household’s optimization problem (5) is the same

x



while (6) becomes:
Ωk(H′)(1− τLt)wt = Ωh(H′)D

The Benveniste-Scheinkman conditions of the household’s optimization problem are
now:

Ωk(H) =
1

1 + ρ
Ωk(H′)[(1− δk) + (1− τKt)rt]

Ωh(H) =
1

1 + ρ

{
Ωk(H′)(1− τLt)wt[nt`t + (1− nt)b̄t] + Ωh(H′)[1 +Dnt(1− `t)]

}
Ωn(H) = −m+

1

1+ρ

[
Ωk(H′)

(
`t-b̄t

)
(1-τLt)wthtvt + Ωh(H′)D(1-`t)ht + Ωn(H′)(1-ψ-µt)

]
The BGP equilibrium expressions follow by simply setting D̃ = 0 and s = 1.

9 Alternative Model III: Walrasin Model

We consider a Walrasian economy with n = 1. Let qHt =
(1− st)kt
(1− `t)ht

and qFt =
stkt
`tht

.

Then the firm’s optimal decisions are:

αA
(
qFt
)α−1

= rt

(1− α)A
(
qFt
)α

= wt

Combining these, we have:
qFt =

αwt
(1− α)rt

The household faces the following budget constraint:

kt+1 = (1− τLt)wt`tht + [(1− δk + (1− τKt)rt]kt − ct + Tt

The main change is the Benveniste-Scheinkman condition with respect to ht:

Ωh(H) =
1

1+ρ

{
Ωk(H′)(1-τLt)wt`t+Ωh(H′)

[
1+(1-`t)

[
D+D̃(1-γ)

(
qHt
)γ]]}

By imposing a log utility function U(c) = ln c, we can derive the following equations
along the BGP:

ρ+ (1 + ρ)g =
[
D + D̃(1− γ)

(
qH
)γ]

` = 1− g

D + D̃ (qH)γ

The Keynes-Ramsey relationship (A1) and (11) remain unchanged. The effective con-
sumption along a BGP becomes:

c

h
= (1− τL)w`+

[
(1− τK)r − g + δk

s

]
qF `+

T

h

xi


