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In the Appendix, we provide mathematical details of the second-order conditions
of household /firm optimization and wage bargaining, the concavity of household/firm
value functions, quasi-socail planner’s optimization, the centralized solution by coordi-
nating labor matching and wage bargain, dynamic taxation, as well as the Alternative
Models IT (linear human capital accumulation) and III (Walrasian).

1 Second-Order Conditions

The second-order conditions of firm’s optimization with respect to v and k are (to ease
notation burden, we carry time subscript ¢ only for perpetually growing variables):
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which hold automatically under our functional form specifications.
The second-order conditions of household’s optimization with respect to ¢, £ and
s¢ are:
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which also hold under our functional form specifications and parameterization in the
benchmark model.

Finally, we turn to the second-order condition of wage bargaining. From (30), it is
easily see that M By, < 0 and MCy,, > 0, thus assuring the second-order condition:
d(M By, — MCy)/dw < 0.



2 Wage Bargaining

The bargained wage rate and the equilibrium wage can be derived by solving the
following quadratic equation:
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3 Concavity of Household and Firm Value Functions

The concavity of the value function I'(n;) in firm’s optimization is easily confirmed as:
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The concavity of the value function () in household’s optimization is not as
trivial, as it requires the Hessian matrix of Q(H)
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to be negative semidefinite. We can easily show:
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Under our parameterization in the benchmark model, Q. (H) < 0.
By exhaustive manipulations, we have:
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Under our parameterization in the benchmark model, Q,(H) < 0. Additional ex-
haustive manipulations yield:
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where
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Under our parameterization in the benchmark model, 2,,,,(H) < 0. The 2 x 2 principal
minors of J need be all positive and the determinant ‘J Q} need be negative, which
are too complicated to identify clean sufficient conditions; nonetheless, they all hold
true under our calibrated benchmark parametrization.

4 Quasi-Social Planner’s Optimization

The quasi-social planner’s problem is given by,
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It is noted that while the resource constraint is straightforward by replacing income
with net output and the human capital accumulation equation is identical to the decen-
tralized problem, the evolution equations of employment differs from the decentralized
program now with coordinated labor matches.

The quasi-social planner’s optimization satisfies the following first-order conditions
(with respect to {c, 4y, ¢, v }),
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together with the respective Benveniste-Scheinkman conditions (associated with { k¢, he, ne}):
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5 Equilibrium

We derive algebra in Section 3. Under the logarithmic utility function: U(c) = Ine,
households’ lifetime utility is always bounded along a BGP. Moreover, I',(n’) and
2, (H") are constant along a BGP, whereas Q(H') and Qj(H’) are decreasing at rate
g. Then, we use (6), (8), and (9) to derive a standard Keynes-Ramsey relationship
governing consumption growth and an intertemporal optimization condition governing
human capital accumulation as follows.

(1—7g)r—>0r—p
1+p

p+(1+p)g=[D+D(1-7) (¢")n+ (1 —n)) (A2)

From the definition of = and (16), we can derive the flow profit redistribution to
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each household in effective units as follows.
T
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From (3), the definition of ¢/ and the flow profit redistribution given above, we can
derive effective consumption along a BGP as:
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where T is regarded as given by individuals with its equilibrium value being pinned
down by the government budget constraint (21).

6 Efficiency

This Appendix derive algebra in Section 4. For the purpose of comparison, it is
convenient to rewrite the conditions in Lemmas 1 and 2 in the decentralized problem
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as:
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We can then differentiate the above expressions to obtain:
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The cooperative Nash wage bargaining therefore implies:
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The above expression can be combined with (A6) to yield:
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which can be simplified to the decentralized labor-leisure-consumption trade-off as

follows.
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Concerning centralized solution, we rewrite the conditions in Lemma 5 to get:
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where the last two expressions can be combined with ¢¥mny = p,(1 — ny) = nu =
B(1 —n)? (v)* 7 to yield:
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which can be simplified to the counterpart of this labor-leisure-consumption trade-off
under the centralized solution as follows.
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where ® = ¢v,7; = pviAlgl)*nlihy is the vacancy creation cost.
Then, by comparing the decentralized and centralized solutions, namely (A5) and
(A8), we can identify four conditions in a more straightforward manner:

Ry = n
Q(H) = Ap(H')
TR, =
by =

Moreover, to ensure the labor-leisure-consumption trade-off under decentralization and
centralization to be identical, we need to establish equivalence between the decen-
tralized labor-leisure-consumption trade-off and the counterpart of this labor-leisure-
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consumption trade-off under the centralized solution, which holds true under the fol-
lowing conditions:

¢ = p
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where efficient wage discount A} is given by,
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7 Dynamic Taxation and Dynamic Tax Incidence

This Appendix derives dynamic taxation. In deriving dynamic taxation, we maintain
a BGP equilibrium with stationary matching and bargaining. This implies that g and
n are constant. Then (22)-(25) indicate that u, 7, v, and 6 are constant.

From (A1), we derive:
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From (A2), we derive:
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implying 88% < 0. Moreover, ag; > 0 and %q—; < 0.

From (26), we derive:
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implying ¢ (b;) < 0.Moreover, % < 0 and % > 0.
From (16), we derive:
Rt = R(TKt) = T'(TKt)

From (18), we derive:
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From (A1) and (31), we derive:
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0. Although w”(7k¢) may be ambiguous, as a result of factor substitution, when the
direct production cost effect dominates the labor market friction effect (the last term
in the square bracket of the effective wage expression), effective wage is strictly concave
in the capital tax rate and thus, w”(7g¢) < 0.

Equation (11) becomes:

1 ~ - ~ (1 =710, )w(Tke)
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from which we can express b; as an equation of 7x; and 7p;:

by = b(Tke, Trt)
implying 825; > 0. Moreover, 8(25;;
dent on 7x; only through its BGP effect on g, which we have already proved. Thus,

the time varying effect of 7 only affect w(7x;) negatively, so Tx; also affects by

> 0, because from (Al), (1 — 7g,)r(Tx¢) is depen-

positively. This is the IR locus.
The IR locus is negatively sloping in the (714, Tx:) plane.
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To see whether the isoquant is concave or convex, we take a second-order derivative
to get
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If w”(Tr¢) < 0, then

quantitative exercises confirm w”(7x;) < 0 and thus, the IR locus is concave to the

2+ < 0 and the IR locus is concave to the origin. Our
Kt
origin.
In order to quantify time-varying factor taxes, we impose the following factor tax
schedules

T, — T = Age xW
T, -7 = —Ape
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where Ag,ar(t), Ar,ar(t) are coefficients that are to be calibrated. Below, we char-
acterize these coefficients. First, from (A1), we have (1—71,)w(Tx:) = g(1+p)+dk+p
which is constant. Then we rewrite (11) as
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Next, using (31) to substitute w(7g¢) in (11), we have
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Using (A1) to substitute r(7x¢) in (11) gives
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At t = 0, the initial condition is 7x, = 7} + Ak and 71, = 75 — Ar. Then (11) at
t = 0 gives the relationship between A, and Ag as follows.
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which depends positively on Ax when the capital income share is not too high such
1
2
which is easily understood because the IR locus is downward sloping. Moreover, at

that a < min{ 1-— %} Thus the two initial tax rates are negatively related,

time t, the speed of labor taxation ar(t) is governed by
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Totally differentiating (34) gives
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Thus, % > 0 whereas jji{ is ambiguous, but jj?{ > 0 if the effect through Aj

dominates (which is the case of our calibrated economy).
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To evaluate the welfare, first we rewrite (2) as

h ~
%1 =1+ Dny(1 — &) + D(gf)Tne(1 — £,)
t
Since n¢, ¢ff and ¢; are constant, then the growth rate of h; is constant. Since the
growth rate of h; is constant, then we only need to analyze the transition of ,% when
evaluating welfare.
Then, from (27), we derive
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which is decreasing in 7.
Moreover, from (21), we have
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which is increasing in 77; but the effect of 75 is complicated. Since 7,7 (Tx¢)q" (Tx¢)
7i, (1 = Tx,)T-a, straightforward differentiation implies 7 x,7(7x¢)q" (T i) is increas-
ing in 7k, if Tk, < 1 —a. Yet, a higher 7, lowers w(7x:), thus leading to an
ambiguous result. In our calibrated economy, the indirect effect via w(7g¢) is domi-
nated by the direct effect. As a result, both factor tax rates raise effective lump-sum

tax. Also note that Syt = Sw(7rt,0) = (1 — T1¢) [1 + %] and Syt = Sp(Tx¢,b) =

[(1 — 1) (TKt) — S(i;f%t)}. While Sy is decreasing in 71, S;¢ is decreasing in 7 ;.
Furthermore, from (A4), we have
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Finally, we are ready to calibrate tax schedules. The calibration is carried out in the
following steps.

(i) We set Ak so to match the (given) initial 7q;

(ii) Given Ag, the value of ak is set so that the difference between 7x, and 77
(the optimal capital tax rate, 16.11%) is within 1% of 77}, in the 50th period;

(iii) Then Ay, is set so that (11) is satisfied at the 10th period (¢ = 9);

(iv) The value of ay, is set so that the difference between 7, and 7} (the optimal
capital labor rate, 24.09%) is within 1% of 77 at the 50th period.

8 Alternative Model II: Linear Human Capital Accumu-

lation

In the case with a linear human capital accumulation process independent of market
goods, the first-order condition of the household’s optimization problem (5) is the same



while (6) becomes:

QMY = 7,)w = Qu(H)D
The Benveniste-Scheinkman conditions of the household’s optimization problem are
now:
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The BGP equilibrium expressions follow by simply setting D=0ands=1.

9 Alternative Model I1I: Walrasin Model

1—s)k k
We consider a Walrasian economy with n = 1. Let ¢/f = w and ¢ = Sy
Then the firm’s optimal decisions are:
-1
aA (th)a =7
(1-a)A(q)" = w
Combining these, we have:
A _ Oéwt

% = (1—a)ry

The household faces the following budget constraint:
ki1 = (1= Tr)welehy + [(1 = 6 + (1 — 7, )relke — ¢ + T
The main change is the Benveniste-Scheinkman condition with respect to hy:
1 ~
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By imposing a log utility function U(c) = In¢, we can derive the following equations
along the BGP:

p+(1L+p)g =D+ D(1-7) (¢")]
g
D+ D(g")
The Keynes-Ramsey relationship (A1) and (11) remain unchanged. The effective con-
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sumption along a BGP becomes:
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