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Appendix A 

A.1. The two agricultural revolutions 

 

Figure 1A. The first agricultural revolution: index of farm output, 1520-1739. Source, Allen (1999) 

 

 

Figure 2A. The second agricultural revolution: index of farm output, 1740-1850. Source, Allen (1999) 
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Figure 3A: Total Agricultural Output, normalized to 100 in the year 1700. Source: Thomas and Dimsdale 

(2017), authors’ own calculations. 

A.2. Assumptions concerning the production function in the industrial sector 

The model explains the macro-dynamics during the industrial revolution through several 

aspects. One of these aspects is the onset of the industrial sector, which is closed during the 

Malthusian period and opens afterwards giving rise to the Industrial Revolution. This can be 

ensured by guaranteeing that when employment in the agricultural sector decreases, the 

demand for labor increases without bound while productivity in the industrial sector remains 

finite. This fact ensures that the industrial sector will open if and only if labor productivity in 

this sector exceeds the marginal productivity of labor in the agricultural sector, under the 

assumption that all labor is employed in the agricultural sector (see also Lemma 1). Thus, 

some assumptions have to be made regarding the production function of the industrial sector. 

The assumption taken to ensure that this sector is closed during the Malthusian period, as 

historically happened, is the latent production function 𝑌𝑡
𝐼 = 𝐴𝑡

𝐼𝐻𝑡 because in this equation 

marginal labor productivity does not rely on the labor level. Since it is only a latent function, 

it does not directly affect the dynamics of the economy regarding output or labor decisions.  
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After the onset of the industrial revolution, a traditional Cobb-Douglas production 

function in the industrial sector 𝑌𝑡
𝐼 = (𝐴𝑡

𝐼)1−𝜃(𝐻𝑡)
𝜃 is assumed. This will be the effective 

production function of the industrial sector in the economy.  

There are two points that make a strong case for this approach. The first is the fact that 

in the pre-industrial regime, the production function of the industrial sector is only latent. It is 

merely a benchmark used to quantify the gains of productivity necessary to make the 

industrial sector economically viable in the economy. In the end, the only valid production 

function is the one employed after the industrialization takes place and is also the one 

affecting the dynamics of output and employment in each sector. The second point is the 

presence  in the literature that supports the existence of these structural breaks in the ways of 

production and of technology advancements for different economies at different periods of 

time in our modern history (see, for example, Hansen (2001) and Miyagiwa and Papageorgiou 

(2007)). As these papers show, aggregate elasticity of substitution evolves with the process of 

economic development, which gives further support to this assumption as it appears to be a 

valid way of modeling the enormous change to the economy that took place at this point in 

time in some European countries. 

A.3. Sectoral distribution of labor force 
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Figure 4A: Sectoral distribution of labor force between 3 sectors, from 1381-1871. Source: Broadberry et 

al. (2013) 

Table 1A. Sectoral distribution of labor force 

Sector                                     Year 1381 1522 1700 1759 1801 1813 1851 1861 1871 

Agriculture 57.2 58.1 38.9 36.8 31.7 31.4 23.5 20.6 16.9 

Industry 19.2 22.7 34 33.9 36.4 44.5 45.7 45.9 47.1 

Services 23.6 19.2 27.2 29.3 31.9 24.1 30.9 33.5 36 

Share in Industry / Share in Agriculture 25% 28% 47% 48% 53% 59% 66% 69% 74% 

Source: Broadberry et al. (2013) 

 

Appendix B 

B.1 Proof of Lemma 1 

If we equalize (6) and (7), using the assumption of perfect labor mobility, we know that 

workers are also employed in the industrial sector if the marginal productivity in the industrial 

sector 𝐴𝑡
𝐼  is equal to or exceeds the marginal productivity in the agricultural sector. 

B.2 Proof of Lemma 2 

First we need to derive the properties of 𝑒𝑡+1. Using (14) and (16), the optimization with 

respect to 𝑒𝑡+1 shows how the implicit function 𝐸(. ) only depends on 𝑒𝑡+1 and 𝑇𝑡: 

𝐸(𝑒𝑡+1, 𝑇𝑡) = ℎ𝑡+1
′ (𝜏𝑟 + 𝑔(𝜏𝑒 , 𝑇𝑡)𝑒𝑡+1) − ℎ𝑡+1𝑔(𝜏

𝑒 , 𝑇𝑡) , (B.1) 

where 𝐸𝑒(𝑒𝑡+1, 𝑇𝑡) < 0. 𝐸𝑇(𝑒𝑡+1, 𝑇𝑡) = 𝑔′(𝜏𝑒 , 𝑇𝑡)[ℎ𝑡+1
′ 𝑒𝑡+1 − ℎ𝑡+1] > 0 according to the 

properties of 𝑔(. ), 𝑛𝑡(. ) and ℎ𝑡(. ). To guarantee that for a positive level of 𝑇𝑡, the chosen 

level of education is higher than zero, it is assumed that: 

𝐸(0,0) = ℎ𝑡+1
′ (0)𝜏𝑟 − ℎ𝑡+1(0)𝑔(𝜏

𝑒 , 0) = 0 ,      (B.2) 

We know that 𝐸(0, 𝑇𝑡) is increasing in 𝑇𝑡. Also, the 𝑙𝑖𝑚𝑇→∞ 𝐸(0, 𝑇𝑡) is higher than 

(0, 0), so from (A1) it is positive. In the concrete case of this paper, where the set of equations 
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of 𝑔(. ), 𝑛𝑡(. ) and ℎ𝑡(. ) is assumed, 𝑒𝑡+1 will only depend on 𝑇𝑡. Using the first order 

conditions obtained from the optimization of the household problem for nt and 𝑒𝑡+1 yields: 

ℎ𝑡+1(𝑒𝑡+1)

ℎ𝑡+1
′ (𝑒𝑡+1)

=
(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝑇𝑡)𝑒𝑡+1)

𝑔(𝜏𝑒 , 𝑇𝑡)
 

Applying the definition of ℎ𝑡(. ), and after some manipulations, we arrive at the 

expression: 

𝑒𝑡+1 =
𝛽𝜏𝑟 − 𝑔(𝜏𝑒 , 𝑇𝑡)

(1 − 𝛽)𝑔(𝜏𝑒 , 𝑇𝑡)
 (B.3) 

From here we can discern what is meant by condition (B.2). This condition is a strong 

assumption in the model. Since the objective of the transferences from landowners to the 

households is to promote education, 𝑒𝑡+1(𝑇𝑡) < 0 is not realistic. Therefore, we choose 

parameters in the model that make sure that a sufficient condition (𝛽𝜏𝑟 − 𝑔(𝜏𝑒 , 0) ≥ 0) will 

be valid and 𝑒𝑡+1 ≥ 0 will always apply, as was shown in (B.2). This assumption can actually 

be relaxed if we want to assume that some residual education prevails in the economy. But, as 

explained in the introduction, costs of education were quite large by the time of the Industrial 

Revolution, therefore we enforce condition (B.2) - 𝛽𝜏𝑟 = 𝑔(𝜏𝑒 , 0) - such that 𝑒𝑡+1|𝑇𝑡=0 = 0 . 

As we can observe, 𝑒𝑡+1 depends only on the variable 𝑇𝑡: 𝑒𝑡+1 = 𝑒𝑡+1(𝑇𝑡). From here, 

and using the definition of 𝑔(. ), we can also derive the derivative of 𝑒𝑡+1 with respect to 𝑇𝑡: 

𝑒′𝑡+1(𝑇𝑡) =
−1

(1−𝛽)
[
𝛽𝜏𝑟−𝑔(𝜏𝑒, 𝑇𝑡)
[𝑔(𝜏𝑒, 𝑇𝑡)]2

𝑑𝑔
𝑑𝑇𝑡

+
1

𝑔(𝜏𝑒, 𝑇𝑡)
𝑑𝑔
𝑑𝑇𝑡

] 

                                       =
−1

(1−𝛽)𝑔(𝜏𝑒,𝑇𝑡)

𝑑𝑔

𝑑𝑇𝑡
[1 + 𝛽𝜏𝑟−𝑔(𝜏𝑒,𝑇𝑡)

𝑔(𝜏𝑒,𝑇𝑡)
] 

= −
1

(1− 𝛽)𝑔(𝜏𝑒, 𝑇𝑡)
𝑑𝑔
𝑑𝑇𝑡

[
𝛽𝜏𝑟

𝑔(𝜏𝑒, 𝑇𝑡)
] 

(B.4) 

From above, and since 
𝑑𝑔

𝑑𝑇𝑡
< 0, it is definitely the case that 𝑒′𝑡+1(𝑇𝑡) > 0, when applying the 

definitions of 𝑔(. ). 

B.3 Proof of Proposition 1 – part (a) 

This proposition claims that the number of offspring is decreasing in 𝑇𝑡. Using (17): 
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𝑑𝑛𝑡
𝑑𝑇𝑡

=
−(1 − 𝛾) [

𝑑𝑔
𝑑𝑇𝑡

𝑒𝑡+1 +
𝑑𝑒𝑡+1
𝑑𝑇𝑡

𝑔(. )]

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝑇𝑡)𝑒𝑡+1)2
≷ 0 

By the formulations of 𝑒′𝑡+1(. )above,  

𝑑𝑛𝑡
𝑑𝑇𝑡

=
−(1 − 𝛾)

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝑇𝑡)𝑒𝑡+1)2
[
𝑑𝑔

𝑑𝑇𝑡
(𝑒𝑡+1 −

1

(1 − 𝛽)
[1 +

𝛽𝜏𝑟 − 𝑔(𝜏𝑒 , 𝑇𝑡)

𝑔(𝜏𝑒 , 𝑇𝑡)
])] 

Applying (B.3), 

𝑑𝑛𝑡
𝑑𝑇𝑡

=
−(1 − 𝛾)

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝑇𝑡)𝑒𝑡+1)2
[
𝑑𝑔

𝑑𝑇𝑡
(

−𝑔(𝜏𝑒 , 𝑇𝑡)

(1 − 𝛽)𝑔(𝜏𝑒 , 𝑇𝑡)
)] 

Since 
𝑑𝑔

𝑑𝑇𝑡
< 0, then it is straightforward that 

𝑑𝑛𝑡

𝑑𝑇𝑡
< 0. 

B.4 Proof of Lemma 3 

Since we are maximizing the utility, we want the values of 𝑡𝑡 for the interval [0,1] to yield 

that maximum. So, 

When 
𝑑𝑢

𝑑𝑡𝑡
≠ 0 for the interval of 𝑡𝑡 𝜖 [0,1]; 

If 
𝑑𝑢

𝑑𝑡𝑡
> 0 ⇒ 𝐺(. ) =

𝑑𝜌𝑡+1
𝑑𝑡𝑡

− 𝑏𝑡 > 0 ⇒ 𝑡𝑡 = 1 

If 
𝑑𝑢

𝑑𝑡𝑡
< 0 ⇒ 𝐺(. ) =

𝑑𝜌𝑡+1
𝑑𝑡𝑡

− 𝑏𝑡 < 0 ⇒ 𝑡𝑡 = 0 

Since 
𝑑𝑢

𝑑𝑡𝑡
 is a decreasing function, from numerical simulations, these are the only valid cases, 

and  
𝑑𝑢

𝑑𝑡𝑡
|𝑡𝑡 = 0 < 0 and 

𝑑𝑢

𝑑𝑡𝑡
|𝑡𝑡 = 1 > 0 do not apply. 

Take the definition of 𝜌𝑡+1 from (5): 

𝜌𝑡+1 = 𝛼(𝐴𝑡+1
𝐴 )𝛼(𝑋𝑡+1)

𝛼−1(𝐿𝑡+1
𝐴 )1−𝛼 = 

= 𝛼(𝐴𝑡+1
𝐴 )𝛼(𝑋𝑡+1)

𝛼−1((1 − 𝜆𝑡+1)𝐿𝑡+1)
1−𝛼

 

Depending on if the industrial sector is already economically viable or not, the definition of 

𝜆𝑡+1 changes. Before the take-off of the industrial sector, landowners assume prospective 

values of 𝜆𝑡+1, given (6), (7) and Lemma 1, such that: 
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𝜌𝑡+1 = 𝛼(𝐴𝑡+1
𝐴 )𝛼(𝑋𝑡+1)

𝛼−1 (
(1 − 𝛼)

1

𝛼𝐴𝑡+1
𝐴 𝑋𝑡+1

(ℎ𝑡+1𝐴𝑡+1
𝐼 )

1

𝛼𝐿𝑡+1

𝐿𝑡+1)

1−𝛼

 

Using the dynamic conditions from Subsection 4.1: 

= 𝛼𝐿𝑡(𝐴𝑡
𝐴)𝛿 [

1 − 𝛼

(1 + ℎ𝑡𝐿𝑡
𝛥) 𝐴𝑡

𝐼]

1−𝛼
𝛼 (1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)

(1 + 𝑒𝑡+1)
𝛽(1−𝛼)

𝛼

 

As we can observe from above, on the one hand, rents are positively dependent on 

agricultural technology, which depends on industrial technology and education itself. On the 

other hand, they depend negatively on the industrial technology since more technology will 

increase the share of workers in the industrial sector. However, the industrial sector is still 

closed; therefore, both incentives are not strong enough to make landowners’ take action and 

set positive taxes. Taking now the implicit function 𝐺(. ), we show this conclusion below:  

𝐺(. ) =
𝑑𝜌𝑡+1
𝑑𝑡𝑡

− 𝑏𝑡 = 

= 𝛼(𝐿𝑡)
휀 (𝐴𝑡

𝐴
)
𝛿

[
 
 
 
 

(1 − 𝛼)
1
𝛼

((1 + ℎ𝑡𝐿𝑡
𝛥
)
휁
𝐴𝑡
𝐼
)

1
𝛼

]
 
 
 
 
1−𝛼

(
(𝐴𝑡

𝐼
)
𝑏

(1 + 𝑒𝑡+1)
𝛽(1−𝛼)
𝛼

𝑑𝑒𝑡+1
𝑑𝑡𝑡

−
𝛽(1 − 𝛼)

𝛼

(1+ 𝑒𝑡+1 (𝐴𝑡
𝐼
)
𝑏
)

(1 + 𝑒𝑡+1)
𝛽(1−𝛼)
𝛼 +1

𝑑𝑒𝑡+1
𝑑𝑡𝑡

)− 𝑏𝑡 

⟺ 𝐺(. ) =
𝛼(𝐿𝑡)

휀 (𝐴𝑡
𝐴
)
𝛿

(1 + 𝑒𝑡+1)
𝛽(1−𝛼)
𝛼

[
 
 
 
 

(1 − 𝛼)
1
𝛼

((1 + ℎ𝑡𝐿𝑡
𝛥
)
휁
𝐴𝑡
𝐼
)

1
𝛼

]
 
 
 
 
1−𝛼

𝑑𝑒𝑡+1
𝑑𝑡𝑡

((𝐴𝑡
𝐼
)
𝑏
−
𝛽(1 − 𝛼)

𝛼

(1 + 𝑒𝑡+1 (𝐴𝑡
𝐼
)
𝑏
)

(1 + 𝑒𝑡+1)
)− 𝑏𝑡 

Since 𝑏𝑡 is always positive, if Lemma 4’s condition (see Appendix B.6) is negative, then 

𝐺(. ) < 0. So only when Lemma 4’s condition is positive and sufficiently high 𝐺(. ) ≥ 0. 

More explicitly, as 
𝛽(1−𝛼)

𝛼
 is constant, and 𝐴𝑡

𝐼  grows over time, then: 

(𝐴𝑡
𝐼)𝑏 −

𝛽(1 − 𝛼)

𝛼

(1 + 𝑒𝑡+1(𝐴𝑡
𝐼)𝑏)

(1 + 𝑒𝑡+1)
= 

= (𝐴𝑡
𝐼)𝑏 −

𝛽(1 − 𝛼)

𝛼

(
1

(𝐴𝑡
𝐼)𝑏

+ 𝑒𝑡+1)

(1 + 𝑒𝑡+1)
(𝐴𝑡

𝐼)𝑏 
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Given some parameterization that guarantees that 
𝛽(1−𝛼)

𝛼
< 1 and 𝑏 sufficiently high, as 

𝐴𝑡
𝐼  grows, when 𝐴𝑡

𝐼  is sufficiently large such that (𝐴𝑡
𝐼)𝑏 > 1 and for any et+1 ≥ 0, we have a 

positive condition. Thus, at some point in time, 𝐺(. ) ≥ 0. We observe in the numerical 

simulations that 𝐺(. ) will not be higher than zero before the onset of the industrial sector.  

After the industrialization, landowners’ decisions depend on a different implicit 

function that then makes landowners aware that allowing for education fosters not only 

agricultural production, but also industrial production. Therefore, 

𝜌𝑡+1 = 𝛼(𝐴𝑡+1
𝐴 )𝛼(𝑋𝑡+1)

𝛼−1((1 −
𝐴𝑡+1
𝐼 (ℎ𝑡+1)

𝜃
𝛼

𝐴𝑡+1
𝐴 𝑋𝑡+1 + 𝐴𝑡+1

𝐼 (ℎ𝑡+1)
𝜃
𝛼

) 𝐿𝑡+1)

1−𝛼

 

And the given implicit function: 

𝐺(. ) =
𝑑𝜌𝑡+1
𝑑𝑡𝑡

− 𝑏𝑡 =
𝛼(1 − 𝛼)

1−𝛼
𝛼 (𝐿𝑡)

1+ −𝛼(𝐴𝑡
𝐴)𝛿

[(1 + 𝑒𝑡+1(𝐴𝑡
𝐼)𝑏)(𝐿𝑡) (𝐴𝑡

𝐴)𝛿𝑋𝑡(1 − 𝛼)
1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼]
1−𝛼 

(

  
 𝑑𝑒𝑡+1
𝑑𝑡𝑡

𝑛𝑡
1−𝛼(𝐴𝑡

𝐼)𝑏

(

 
 
1 − (1 − 𝛼)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (𝛽

𝜃
𝛼

1
(1 + 𝑒𝑡+1)(𝐴𝑡

𝐼)𝑏
)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (

1
(1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)
)
)

 
 

− (1 − 𝛼)(1 + 𝑒𝑡+1(𝐴𝑡
𝐼)𝑏)𝑛𝑡

−𝛼(1 − 𝛾)(𝜏𝑟 + 𝑔(. )𝑒𝑡+1)
−2 (

𝑑𝑔(. )

𝑑𝑡𝑡
𝑒𝑡+1 +

𝑑𝑒𝑡+1
𝑑𝑡𝑡

𝑔(. ))

)

  
 
− 𝑏𝑡 

Since 𝑏𝑡 is always positive, and from the proof of Proposition 1: (
𝑑𝑔(.)

𝑑𝑡𝑡
𝑒𝑡+1 +

𝑑𝑒𝑡+1

𝑑𝑡𝑡
𝑔(. )) > 0 

then, if Lemma 5’s condition (see Appendix B.7) is negative, 𝐺(. ) < 0. Only when Lemma 

5’s condition is positive does 𝐺(. ) ≥ 0 at some point. 

Lemma 1’s condition depends on initial conditions of 𝐴𝑡
𝐴

 and 𝐿𝑡. Since we assume the 

steady state values under the Malthusian regime, both 𝐴𝑡
𝐴

 and 𝐿𝑡 depend on the parameters of 

the model. We know from Lemma 1 that industrial technology guarantees that Lemma 1’s 

condition holds at the beginning of the Malthusian and Pre-Industrial period. Under both the 
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parameterization of the model and the assumption of the initial value of 𝐴𝑡
𝐼  at the Malthusian 

period condition, 1 > (𝐴𝑡
𝐼)𝑏 originally holds. 

Then, when the economy starts to industrialize and (𝐴𝑡
𝐼)𝑏 > 1, we can certainly 

guarantee that:  

0 < (1 − 𝛼)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (𝛽

𝜃
𝛼

1
(1 + 𝑒𝑡+1)(𝐴𝑡

𝐼)𝑏
)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (

1
(1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)
)

< 1 

And hence, 

(

 
 
1 − (1 − 𝛼)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (𝛽

𝜃
𝛼

1
(1 + 𝑒𝑡+1)(𝐴𝑡

𝐼)𝑏
)

(𝐿𝑡) (𝐴𝑡
𝐴)𝛿𝑋𝑡(1 − 𝛼)

1
𝛼 + 𝜃

1
𝛼(1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1 + 𝑒𝑡+1)

𝛽
𝜃
𝛼 (

1
(1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)
)
)

 
 
> 0 

Note that, as 𝛽
𝜃

𝛼
 is constant, 

1

(1+𝑒𝑡+1)(𝐴𝑡
𝐼)
𝑏 >

1

(1+𝑒𝑡+1(𝐴𝑡
𝐼)
𝑏
)
 only if 1 > (𝐴𝑡

𝐼)𝑏 

Therefore, again, when 𝐴𝑡
𝐼  is sufficiently large, we have a positive condition. So, at 

some point in time 𝐺(. ) ≥ 0 – we observe this also in the numerical simulations. Moreover, 

as we show in the sensitivity analysis below, 
𝜕𝐺

𝜕𝐴𝑡
𝐼 is always positive for the range of 

parameters chosen for the main analysis in the paper, and additionally for a wide range of 

values for each parameter, giving support to the claim above.  

This dual effect will make landowners delay the onset of taxes and only later will they 

slowly raise them and, hence, increase education. 

B.5 Sensitivity Analysis on 𝑮(. ) 

Because the analytical solution of the model is intractable, it is too complex to determine the 

impact of several variables, such as 𝑡𝑡, 𝐴𝑡
𝐴, and 𝐴𝑡

𝐼  on landowners’ decisions, 𝐺(. ). Therefore, 

for the sake of clarity, a numerical sensitivity analysis was done so that how the dynamics of 

landowners’ decisions depend on the evolution of the economy and its parameters could be 

understood. This sensitivity analysis is only possible when using numerical simulations of the 

analytical solutions of the derivatives. To calculate the derivatives, we use the values from the 
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real model at three specific moments in time of the simulation – before the industrialization, 

just after the industrialization and after education becomes prevalent in the economy. These 

three moments of time allow us to observe how each derivative behaves relying on its 

analytical solution, which changes between before and after industrialization (see above), and 

also relying on the emergence or not of education. Additionally, we can also test if variables 

that change over time, such as 𝐴𝑡
𝐴, 𝐴𝑡

𝐼  and 𝐿t affect the behavior of each derivative. We verify 

that they do not affect 
𝜕𝐺

𝜕𝑡𝑡
, but affect the behavior of 

𝜕𝐺

𝜕𝐴𝑡
𝐴 and slightly alter the behavior of 

𝜕𝐺

𝜕𝐴𝑡
𝐼. 

Concerning the parameters, we present below the results for different ranges of 

parameters in each table. The ranges are not shown but we test for the whole range (0,1] in 

almost all parameters except for 𝜙, which ranges from (−1,−0.5]. These ranges are 

reasonable for most parameters, but can be too large for parameters such as 𝛾 or 𝛼; in these 

cases, we stopped at the value 0.9. 

We start by showing that 
𝜕𝐺

𝜕𝑡𝑡
 is always negative for a different range of parameters and 

also in different stages of the economy. We consider the necessary restrictions on the 

parameters to guarantee a globally stable steady state. Therefore, for example, we only 

consider 𝜏𝑟 > 𝜏̅𝑟 due to condition 1 below, (see Proof of Proposition 2).  

Table 1B. Sensitivity analysis for 
𝝏𝑮

𝝏𝒕𝒕
 

 𝜙 𝜏𝑟 𝛾 𝑏 

Before industrialization < 0 < 0 < 0 < 0 

After industrialization < 0 < 0 < 0 < 0 

After industrialization 

and after rise of 

education 

< 0 < 0 < 0 < 0 

Source: own computations 

As we can see from Table 1B above, 
𝜕𝐺

𝜕𝑡𝑡
 is negative for almost the whole range of 

parameters - here only the most relevant ones to determine 𝑡𝑡 are shown. Note that for initially 
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very low values of 𝐴𝑡
𝐼 ≤ 0.6, 

𝜕𝐺

𝜕𝑡𝑡
 is positive. Since we assume an initial value of 𝐴0

𝐼 = 0.6, this 

does not pose problems to the sensitivity analysis here. In the period after the emergence of 

the industrial sector, it is generally valid for all simulations made. The only exception 

(𝛾 > 0.9) would not be in the chosen range of parameterization since it implies that 

households would dedicate more than 90% of their time to raising children, which is not 

empirically observed. Therefore, we can be confident in assuming that under the standard 

range of parameterization, 
𝜕G

𝜕tt
< 0 will always hold. 

The same procedure was implemented to determine the relationship between 𝐺(. ) and 

𝐴𝑡
𝐴. From Table 2B below, the sign of 

𝜕𝐺

𝜕𝐴𝑡
𝐴 is ambiguous. 

Table 2B. Sensitivity analysis for 
𝝏𝑮

𝝏𝑨𝒕
𝑨 

 𝜙 𝜏𝑟 𝛾 𝑏 𝛼 𝛿 𝛥 휀 

Before 

industrialization 
< 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 

After industrialization ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 

After industrialization 

and after rise of 

education 

≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 ≶ 0 

Source: own computations 

Before industrialization, it is clear that 
𝜕𝐺

𝜕𝐴𝑡
𝐴 is always negative. However, in the time 

period after the industrialization, the sign of the derivative depends on the range of values of 

𝐴𝑡
𝐴. For small values of 𝐴𝑡

𝐴, i.e. values of 𝐴𝑡
𝐴 at the three specific moments of the model 

shown in the sensitivity analysis, 
𝜕𝐺

𝜕𝐴𝑡
𝐴 is positive. As 𝐴𝑡

𝐴 increases, 
𝜕𝐺

𝜕𝐴𝑡
𝐴 becomes negative, 

ceteris paribus. For the same range of values of 𝐴𝑡
𝐴, the higher 𝐴𝑡

𝐼  is, the higher the threshold 

of 𝐴𝑡
𝐴 such that 

𝜕𝐺

𝜕𝐴𝑡
𝐴 becomes negative. We also know that the technology of agriculture is 

lower than the industrial sector’s technology after industrialization, and the former’s growth 

dynamics follow the growth dynamics of the latter. Since both technologies are increasing, it 
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is thus always the case that 
𝜕𝐺

𝜕𝐴𝑡
𝐴 > 0. All parameters do not affect these results and the same 

patterns referred to previously hold. The derivative will always behave as described above. 

Regarding 
𝜕𝐺

𝜕𝐴𝑡
𝐼, shown in Table B3 below, we observe that it is almost always positive, 

the exception being only after industrialization for the range of parameters 𝛼 and 𝑏. However, 

this only happens for values of 𝑏 lower than 0.66 and for values of 𝛼 around 0.1, which is too 

low and not an option for calibration. This analysis gives strength to the claims made in part 

B.4 in this Appendix, where 𝐺(. ) will at some point be positive due to increasing 𝐴𝑡
𝐼 . 

Table 3B. Sensitivity analysis for 
𝝏𝑮

𝝏𝑨𝒕
𝑰 

 𝜙 𝜏𝑟 𝛽 𝛾 𝑏 𝛼 𝛿 𝛥 휀 

Before 

industrialization 
> 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 

After 

industrialization 
> 0 > 0 > 0 > 0 ≶ 0 ≶ 0 > 0 > 0 > 0 

After 

industrialization and 

after rise of education 

> 0 > 0 > 0 > 0 ≶ 0 ≶ 0 > 0 > 0 > 0 

Source: own computations 

 

B.6 Lemma 4:  

Lemma 4: Before industrialization, for 𝐺(. ) ≥ 0 the condition (𝐴𝑡
𝐼)𝑏 −

𝛽(1−𝛼)

𝛼

(1+𝑒𝑡+1(𝐴𝑡
𝐼)
𝑏
)

(1+𝑒𝑡+1)
 

must be positive.  

Proof: From (5), (6), (7), (20) and Lemma 3 we can determine the implicit function 𝐺(. ) 

before industrialization:  

𝐺(. ) =
𝛼(𝐿𝑡) (𝐴𝑡

𝐴)𝛿

(1 + 𝑒𝑡+1)
𝛽(1−𝛼)

𝛼

[
(1 − 𝛼)

1
𝛼

((1 + ℎ𝑡𝐿𝑡
𝛥) 𝐴𝑡

𝐼)
1
𝛼

]

1−𝛼

𝑑𝑒𝑡+1
𝑑𝑡𝑡

((𝐴𝑡
𝐼)𝑏 −

𝛽(1 − 𝛼)

𝛼

(1 + 𝑒𝑡+1(𝐴𝑡
𝐼)𝑏)

(1 + 𝑒𝑡+1)
) − 𝑏𝑡   ,  

where only 𝑒𝑡+1 depends on 𝑡𝑡. 

B.7 Lemma 5:  
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Lemma 5: After industrialization, for 𝐺(. ) ≥ 0 it must be true that:  

(

  
 
1 − (1 − 𝛼)

(𝐿𝑡) (𝐴𝑡
𝐴)
𝛿
𝑋𝑡(1−𝛼)

1
𝛼+𝜃

1
𝛼(1+ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1+𝑒𝑡+1)

𝛽
𝜃
𝛼(𝛽

𝜃

𝛼

1

(1+𝑒𝑡+1)(𝐴𝑡
𝐼)
𝑏)

(𝐿𝑡) (𝐴𝑡
𝐴)
𝛿
𝑋𝑡(1−𝛼)

1
𝛼+𝜃

1
𝛼(1+ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼(1+𝑒𝑡+1)

𝛽
𝜃
𝛼(

1

(1+𝑒𝑡+1(𝐴𝑡
𝐼)
𝑏
)

)

)

  
 
> 0  

Proof: It follows from the implicit function condition. 

B.8 Globally Stable Steady State 

Using Lemmas 7 and 8, the pre-industrial steady-state values of productivity in the 

agricultural sector 𝐴𝑠𝑠, and the size of the working population 𝐿𝑠𝑠, are given by: 

𝐴𝑠𝑠
𝐴 = [

(1−𝜏𝑟)(1−𝛼)

𝑐̃
]
𝛼(1−𝛿− )

𝑋(1−𝛿− ) ,  

𝐿𝑠𝑠 = [
(1 − 𝜏𝑟)(1 − 𝛼)

�̃�
]

1−𝛿
𝛼(1−𝛿− )

𝑋
1−𝛿

(1−𝛿− ) ,  

Proof of Proposition 2: 

Under the Pre-Industrial, Pre-Malthusian, the following dynamic system applies: 

{
 

 
𝐴𝑡+1
𝐴 = (1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)(𝐿𝑡) (𝐴𝑡
𝐴)𝛿   

𝐿𝑡+1 =
1 −

�̃�
𝑤𝑡ℎ𝑡

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝜄𝑡)𝑒𝑡+1)
𝐿𝑡           

for 𝑧𝑡 < �̃� 

In this regime we assume that there is still no education (𝑒𝑡+1 = 0) because at the 

beginning of the model the conditions of Lemma 4 do not hold yet. The Jacobian matrix will 

be represented by: 

𝐽(𝐴𝐴, 𝐿) =

[
 
 
 
 
𝑑𝐴𝐴

𝑑𝐴𝑡
𝐴

𝑑𝐴𝐴

𝑑𝐿𝑡
𝑑𝐿

𝑑𝐴𝑡
𝐴

𝑑𝐿

𝑑𝐿𝑡 ]
 
 
 
 

= 
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= [

𝛿𝐿𝑡(𝐴𝑡
𝐴)𝛿−1 휀𝐿𝑡

−1(𝐴𝑡
𝐴)𝛿

1

𝜏𝑟
�̃�𝛼

(1 − 𝛼)
𝐿𝑡
1+𝛼𝑋𝑡

−𝛼(𝐴𝑡
𝐴)−𝛼−1

1

𝜏𝑟
[1 −

�̃�(1 + 𝛼)

(1 − 𝛼)
𝐿𝑡
𝛼𝑋𝑡

−𝛼(𝐴𝑡
𝐴)−𝛼]

] 

Under the steady-state values, the Jacobian matrix is given by: 

𝐽(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) =

[
 
 
 
 
𝑑𝐴𝐴(𝐴𝑠𝑠

𝐴 , 𝐿𝑠𝑠)

𝑑𝐴𝑡
𝐴

𝑑𝐴𝐴(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠)

𝑑𝐿𝑡
𝑑𝐿(𝐴𝑠𝑠

𝐴 , 𝐿𝑠𝑠)

𝑑𝐴𝑡
𝐴

𝑑𝐿(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠)

𝑑𝐿𝑡 ]
 
 
 
 

= 

=

[
 
 
 
 
 

𝛿 휀 [
(1 − 𝜏𝑟)(1 − 𝛼)𝑋𝑠𝑠

𝛼

�̃�
]

−
1
𝛼

1

𝜏𝑟
�̃�𝛼

(1 − 𝛼)
[
(1 − 𝜏𝑟)(1 − 𝛼)

�̃�
]

1+𝛼
𝛼

𝑋𝑠𝑠
1 − (1 + 𝛼)(1 − 𝜏𝑟)

𝜏𝑟 ]
 
 
 
 
 

 

The eigenvalues are given by {𝜆1, 𝜆2}. We know that: 𝑑𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) = 𝜆1𝜆2 and 

𝑡𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) = 𝜆1+𝜆2 

𝑡𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) = 𝛿 +

1−(1+𝛼)(1−𝜏𝑟)

𝜏𝑟
   

𝑑𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) = 𝛿

1 − (1 + 𝛼)(1 − 𝜏𝑟)

𝜏𝑟
− 휀

1

𝜏𝑟
�̃�𝛼

(1 − 𝛼)
[
(1 − 𝜏𝑟)(1 − 𝛼)

�̃�
]

1+𝛼
𝛼 −

1
𝛼
𝑋𝑠𝑠𝑋𝑠𝑠

−
𝛼
𝛼   

⇔ 𝑑𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) =

1

𝜏𝑟
(𝛿 − (1 − 𝜏𝑟)[𝛿(1 + 𝛼)+ 휀𝛼]) 

so the equilibrium is globally stable if: 𝜆1, 𝜆2 𝜖 (−1,1). 

(1) To guarantee that the convergence to the steady state is monotonically stable: 

i. 𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) > 0; 

ii.  and 𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) > 0. 

For (i):  
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1

𝜏𝑟
(𝛿 − (1 − 𝜏𝑟)[𝛿(1 + 𝛼)+ 휀𝛼]) > 0 

⇔ 𝛿 > 𝛿(1 − 𝜏𝑟)(1 + 𝛼) + 휀𝛼(1 − 𝜏𝑟) 

Condition 1: 𝛿 > 𝛿(1 − 𝜏𝑟)(1 + 𝛼) + 휀𝛼(1 − 𝜏𝑟) is a necessary condition. We 

guarantee this condition through the parameterization of the model. 

For (ii): 𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) is always higher than zero from the inequality below: 

(1 + 𝛼)(1 − 𝜏𝑟) < 1 ⇔ 𝜏𝑟 >
𝛼

1 + 𝛼
 

Condition 2: 𝜏𝑟 >
𝛼

1+𝛼
 is a necessary condition. We will assume it in the 

parameterization of the model. 

Given the parameterization in Subsection 6.1, we guarantee that the Jacobian matrix 

𝐽(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) has real eigenvalues with modulus less than 1, meaning that the convergence to the 

steady state is monotonically stable. 

(2) To guarantee that the equilibrium is globally stable: 

i. −2 < 𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) < 2;    

ii.  −1 < 𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) < 1;    

iii.  𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) −  𝑇𝑟(𝐴𝑠𝑠

𝐴 , 𝐿𝑠𝑠) ≥ −1; 

iv. and 𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) +  𝑇𝑟(𝐴𝑠𝑠

𝐴 , 𝐿𝑠𝑠) ≥ −1. 

For (i): from before we know that 𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) > 0 > −2 

𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) < 2 

 ⇒ 𝛿 +
1−(1+𝛼)(1−𝜏𝑟)

𝜏𝑟
< 2 ⇔ 1 − (1 + 𝛼)(1 − 𝜏𝑟) < (2 −  𝛿)𝜏𝑟 ⇔ 𝜏𝑟(1 − 𝛿 − 𝛼) +

1 + 𝛼 > 1  

⇒ Condition 3: 𝛿 + 𝛼 < 1, from the parameterization of the model, this condition 

holds: 
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⇒ 𝑇𝑟(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) 𝜖 (−2,2) 

For (ii):  

𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠)  > −1: 

 

From Condition 1 we know this inequality holds. 

𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) < 1:  

 
1

𝜏𝑟
(𝛿 − (1 − 𝜏𝑟)[𝛿(1 + 𝛼)+ 휀𝛼]) < 1 

⇔ 𝛿 < 𝜏𝑟 + (1 − 𝜏𝑟)[𝛿(1 + 𝛼) + 휀𝛼]  

  ⇒ We guarantee that this condition holds under the parameterization of the model in 

Subsection 6.1 ⇒  𝐷𝑒𝑡(𝐴𝑠𝑠
𝐴 , 𝐿𝑠𝑠) < 1 

For (iii): 

1

𝜏𝑟
(𝛿 − (1 − 𝜏𝑟)[𝛿(1 + 𝛼)+ 휀𝛼])− 𝛿 −

1− (1 + 𝛼)(1 − 𝜏𝑟)

𝜏𝑟
≥ −1 

⇔
1

𝜏𝑟
[(1 − 𝛿)[(1 − 𝜏𝑟)(1 + 𝛼) − 1] − (1 − 𝜏𝑟)휀𝛼] − 𝛿 ≥ −1 

 

⇒  Condition 4: 1 ≥ 휀 + 𝛿, under the parameterization of the model this condition 

holds.                         

For (iv): 

1

𝜏𝑟
(𝛿 − (1 − 𝜏𝑟)[𝛿(1 + 𝛼)+ 휀𝛼])+ 𝛿 +

1− (1 + 𝛼)(1 − 𝜏𝑟)

𝜏𝑟
≥ −1 

⇔
1

𝜏𝑟
[1 + 𝛿 + (1 − 𝜏𝑟)[(1 + 𝛼)(𝛿 − 1) + 휀𝛼]] + 𝛿 ≥ −1 

⇔ (1 + 𝜏𝑟)(1 + 𝛿) ≥  (1 − 𝜏𝑟)[1 − 𝛿 − 𝛼(𝛿 + 휀 − 1)] 

 

If Conditions 3 and 4 hold, then this inequality will also hold. 
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Under the parameterization in Subsection 6.1, the conditions above will hold. Hence, under 

the Pre-Industrial, Pre-Malthusian regime, and under this parameterization, we guarantee that 

the equilibrium is globally stable. 

B.9 Industrial Revolution Regimes  

In this first regime the economy is governed by a three-dimensional non-linear first-order 

autonomous system: 

{
 
 

 
 
𝐴𝑡+1
𝐴 = (1 + 𝑒𝑡+1(𝐴𝑡

𝐼)𝑏)(𝐿𝑡) (𝐴𝑡
𝐴)𝛿   

𝐴𝑡+1
𝐼 = (1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼                           

𝐿𝑡+1 =
1 −

�̃�
𝑤𝑡ℎ𝑡

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝜄𝑡)𝑒𝑡+1)
𝐿𝑡            

for 𝑧𝑡 < �̃�   

The second regime is governed by the same three-dimensional system, although 

population growth does not depend on income of workers: 

{
 
 

 
 𝐴𝑡+1

𝐴 = (1 + 𝑒𝑡+1(𝐴𝑡
𝐼)𝑏)(𝐿𝑡) (𝐴𝑡

𝐴)𝛿   

𝐴𝑡+1
𝐼 = (1 + ℎ𝑡𝐿𝑡

𝛥) 𝐴𝑡
𝐼                           

𝐿𝑡+1 =
1 − 𝛾

(𝜏𝑟 + 𝑔(𝜏𝑒 , 𝜄𝑡)𝑒𝑡+1)
𝐿𝑡            

for 𝑧𝑡 ≥ �̃�   

B.10 Long-run outcomes and sensitivity analysis on the parameters of the model 

Before we start with the sensitivity analysis per se, here we also show the long run outcomes 

of the baseline scenario that appear in Subsection 6.2. As we observe in Figures 1B and 2B 

below, the paths of education, fertility, and growth rates of technology and income per capita, 

under the parameterization in Tables 1 and 2, tend to stabilize after more than 1000 periods. 
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Figure 1B. Paths of education level and annual fertility growth in the long run 

 

 

Figure 2B. Technology and income per capita paths in the long run 

All conditions necessary to assume global stability hold under the chosen 

parameterization of the model. None of these conditions are strong and are assumed under a 

typical calibration used in other papers of the literature, as the ones cited in Subsection 6.1. 

Only condition (B.2) poses a stronger assumption on the parameters. We make some 

sensitivity analysis on some of the parameters for a fair range of possible values of the 

parameters to test how sensitive the results of the numerical simulation are. The parameters 

chosen are the fixed costs with children, which depart more from the values assumed in the 
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literature, and some parameter values which are not taken from the literature. We assume a 

variation in each parameter such that, within the vicinity of the benchmark values, we can test 

if the model becomes unstable easily, and whether the results continue to hold or not. In table 

4B, we summarize the parameters analyzed in the sensitivity analysis, and which ones we 

recalibrate in each new simulation.  

Table 4B. Recalibrated parameters for new scenarios 

 

Baseline 

𝜏𝑟 = 0.2  

- only 𝜏𝑒 

recalibrated 

𝜏𝑟 = 0.2  

- 𝜏𝑒 and 𝛾 

recalibrated 

𝜙 = −0.6 휀 = 0.12 𝑏 = 0.7 휁 = 0.15 

𝛾 0.6349 0.6349 0.7950 0.6349 0.6349 0.6349 0.6349 

𝜏𝑒 0.097 0.052 0.052 0.097 0.097 0.097 0.097 

𝐿0 0.0761 0.1415 0.1415 0.0761 0.0584 0.0761 0.0761 

𝐴0
𝐴 0.8918 0.9168 0.9168 0.8918 0.6847 0.8918 0.8918 

Source: Own computations 

 

A lower level of 𝝉𝒓 

Since the literature assumes a much lower fixed cost of raising children, we lower 𝜏𝑟 to 0.20 

and analyze the results derived. We recalibrate the values of 𝜏𝑒, due to condition (B.2), as 

well as the initial conditions 𝐿0 and 𝐴0
𝐴. Note that under 𝜏𝑟 = 0.2, conditions 1 and 2 of 

Appendix B.9 do not hold. As we can observe in Figures 3B and 4B, the patterns of the 

simulation change substantially with lower costs of raising children because now the costs of 

raising children are too low and fertility rates increase too much after the industrialization 

period; however, fertility decisions are still made under the subsistence constraint (see 

equation 17). Even the rise of education does not lead to a decrease of fertility due to lower 

fixed child-raising costs. Thus, with increasing gains in technology and increasing income, 

population explodes.  
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Figure 3B. Paths of education level and annual fertility growth with a lower level of 𝝉𝒓 

 

Figure 4B. Technology and income per capita paths with a lower level of 𝝉𝒓 

 

Only with 𝜏𝑟 close to 0.35, are the dynamics of the model out of the Malthusian trap 

and lead to the demographic change dynamics.  

One of the main reasons for these patterns lies in the fact that low child-raising costs 

and high preferences for children lead to a boom in fertility. If, instead, we also recalibrate 

preferences for children by setting 𝛾 = 0.7950, then with low 𝜏𝑟 we can reach the same 

dynamics as in the baseline model. Figures 5B and 6B show exactly this.  
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Figure 5B. Paths of education level and annual fertility growth with a lower level of 𝝉𝒓, recalibrated 

 

Figure 6B. Technology and income per capita paths with a lower level of 𝝉𝒓, recalibrated 

 

However, the fertility rates are now much lower and education takes longer to emerge. 

This occurs because the growth on technology depends on population growth and if 

population grows at a slower pace, technology gains will also take longer. And, as explained 

above, landowners will wait until their rents can better benefit from industrial technology 

advancements before they begin transferring resources to support education. 

Alternatively, if we decide to break condition (B.2) by not recalibrating 𝜏𝑒, the model 

will simply not converge. With lower 𝜏𝑟, education decisions lead to negative education (see 
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equation (B.3) in Appendix B.2), leading to complete instability in the model (figures not 

shown). If, instead, 𝜏𝑟 is higher, then workers will immediately prefer to educate their 

offspring and turn fertility rates negative. Both options of relaxing condition (B.2) lead to 

model instability and to outcomes far away from the patterns observed during the pre-

industrial and industrial periods, as mentioned in Appendix B.8. Thus, condition B.2 is 

maintained throughout this paper.  

 

A less negative value of 𝝓 

The parameters that are more sensitive and create more volatility in the model is the time 

endowment cost concavity, 𝜙. Namely, under the purely calibrated parameters, changing 𝜙 

creates instability in the model in the sense that it directly influences total costs on education 

and leads to a lower effect of landowners’ transfers on workers’ education decisions. As 

depicted in Figure 7B, education levels are now significantly lower compared to the baseline 

scenario; while fertility is comparatively higher than before. Nevertheless, the patterns of 

demographic transition are still untouched since fertility increases after the Malthusian regime 

and then declines as education rises. Regarding technology growth, it is no longer a sustained 

growth picture as average growth rates keep increasing over time due to the level effects of 

population on the dynamics of both technologies (see Figure 8B). The same pattern applies to 

income per capita, which increases over time. This contradicts our expectations that in the 

long run these variables should stabilize. All in all, the main trends observed in the baseline 

model are conserved, giving confidence that, despite some instability, the fall in fertility and 

the emergence of education decisions are in accordance with the hypotheses in this paper.  
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Figure 7B. Paths of education level and annual fertility growth with a less negative value of 𝝓 

 

  

Figure 8B. Technology and income per capita paths with a less negative value of 𝝓 

 

Population effect on the agricultural technology ( 𝜺 ) 

One of the parameters assumed in the model is the level of the learning by doing effect in 

equation (11). We assumed in the baseline parameterization a quite low weight (휀) of the 

population level that composes the total “learning by doing” effect. A lower level of 휀 means 

that population and all ideas that could emerge due to a quantity of people able to think and 
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invent does not have much influence on agricultural technology. This assumption allows the 

dynamics of technology to increase at a slower pace and is in line with the same parameter for 

industrial technology Δ which is also low. However, this assumption could be debated 

because since the Industrial Revolution a huge amount of new ideas has emerged and 

reflected in agricultural technology also. Therefore, we relax the assumption of low ε and set 

a value of 0.12. What we observe is that the main results remain intact (see Figures 9B and 

10B). The timing of the escape from the Malthusian trap is almost the same as in the baseline 

scenario as well as the timing of education. Technology and income per capita grow at 

slightly higher rates and tend to stabilization in the long run.  

   

Figure 9B. Paths of education level and annual fertility growth with a lower weight of 𝜺 
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Figure 10B. Technology and income per capita paths with a lower weight of 𝜺 

 

A lower externality effect of the industrial technology ( 𝒃 ) 

We assume in our model a very high level of externalities between the industrial sector and 

the agricultural sector 𝑏 = 0.89. This affects technology growth rates which become very 

similar between sectors, as is visible in the baseline case in Section 6.2. One can argue that 

such a high externality did not occur by the time of the Industrial Revolution and the spillover 

effects might have been smaller than the ones captured in the baseline scenario. Therefore, we 

simulate the model using a lower spillover effect. As shown in Table 4B, now 𝑏 = 0.7 and all 

the other parameters remain constant. This will decrease the growth rate of agricultural 

technology and lead to a stronger migration of workers to the industrial sector, as explained in 

subsection 6.2 and depicted in equation (9). As the simulation results show, this will have an 

impact on the growth rate of the agricultural technology, which is now lower than in the 

baseline case. Additionally, the fraction of workers in the agricultural sector decreases over 

time and is reduced to almost zero in the very long run. Therefore, contrary to the baseline 

case, the dynamics of the model will end up here with a very small agricultural sector, which 

will affect rents and technology growth, and, in the end, education. This last variable 
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decreases because landowners no longer have a big incentive to promote education as they 

will not benefit as much from industrial technology and human capital in their sector. 

Nevertheless, for the medium- run, as shown in Figure 11B, the results remain stable as in the 

baseline case. These patterns tend to be more extreme the lower the parameter 𝑏. As for 

education and fertility, the results remain quite stable in comparison to the baseline scenario 

although the emergence of education occurs later than in the baseline scenario. This stems 

from the fact that industrial technology gains have less externalities in the agricultural sector, 

which creates disincentives on landowners to support education because their gains will be 

smaller for lower levels of technology. Only for a sufficiently high 𝐴𝑡
𝐼  (remember Lemma 5) 

do landowners have an interest in supporting education, therefore the spreading of education 

takes longer for a lower 𝑏. 

  

 

Figure 11B. Paths of education level and annual fertility growth with a higher level of externality, 𝒃 
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Figure 12B. Technology and income per capita paths with a higher level of externality, 𝒃 

 

Ideas effect on the industrial technology ( 𝜻 ) 

Finally, regarding the effect of the economy’s human capital level on the industrial 

technology, the value of 휁 is higher than the same effect on the agricultural sector but still 

quite reduced. If we assume a higher value of 휁 = 0.15, such that ideas and inventions 

deriving from human capital and population levels expand the industrial technology even 

more than we would expect, there will be, on the one hand, a stronger boom of the industrial 

sector and, on the other hand, higher spillovers on the agricultural sector. The final outcome 

shows that demographics and education are not significantly affected but technology growth 

and output per capita grow at a much higher rate. The main dynamics are again not affected – 

see Figures 13B and 14B. 



78 

 

Figure 13B. Paths of education level and annual fertility growth with a higher value of 𝜻 

 

 

Figure 14B. Technology and income per capita paths with a higher value of 𝜻 

B.11 Proof of Proposition 4 

To ascertain the impact of agricultural technology on the decisions of the elite we need to 

apply the Implicit Function Theorem in equation (23) so that we can derive the impact of 𝐴𝑡
𝐴 

on 𝑡𝑡. From the sensitivity analysis from Lemma 3 we already know that 
𝑑𝐺

𝑑𝑡𝑡
< 0 for the entire 
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time period, while 
𝑑𝐺

𝑑𝐴𝑡
𝐴 is oscillatory. However, for the period previous to the onset of the 

Industrial Revolution 
𝑑𝐺

𝑑𝐴𝑡
𝐴 < 0, while afterwards 

𝑑𝐺

𝑑𝐴𝑡
𝐴 > 0, which in general holds according to 

our sensitivity analysis. Therefore, for our numerical example and under the range of values 

of each parameter in the sensitivity analysis:  

𝑑𝑡𝑡

𝑑𝐴𝑡
𝐴 = −

𝑑𝐺
𝑑𝐴𝑡

𝐴

𝑑𝐺
𝑑𝑡𝑡

 {
< 0       𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑛𝑠𝑒𝑡 𝑜𝑓 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
> 0        𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑠𝑒𝑡 𝑜𝑓 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

 

From this we can conclude that the higher the value of 𝐴𝑡
𝐴 on the onset of industrialization, 

the more likely it is that this onset follows sooner. The boost will also be stronger following 

the education spillovers on both sectors’ technologies. Hence, the previous improvements in 

agriculture (during the 18th century) exert a positive influence on the early rise in education. 


