
Appendix A: Proofs

Proof of Lemma 1

Proof. Inequality (3) holds if and only if

−(c1−b)/2 + (2y − c)1−b(R1−b − 1/2)
(b− 1) > 0.

For c ∈ [0, 2y] to satisfy the above inequality, it is necessary that (R1−b −
1/2) > 0, which can be re-written as

b < 1 + ln 2/ lnR. (14)

When b and R satisfy condition (14), define cearly to be the value of c such

that inequality (3) holds as an equality. We have

cearly = 2y/[(2/Rb−1 − 1)1/(b−1) + 1].

Inequality (3) is equivalent to

c ∈ (cearly, 2y]. (15)

Proof of Lemma 2

Proof. It is easy to see that if b < 1 + ln 2/ lnR, d(c) is decreasing in c. It

changes from +∞ when c = 0 to −∞ when c = 2y. Hence there is a unique
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c = cwait ∈ (0, 2y) that solves the equation

pv[(2y − c)R] + (1− p)v(yR) = p[v(c) + v(2y − c)]/2 + (1− p)v(c).

So when b and R satisfy the condition b < 1 + ln 2/ lnR, inequality (5) is

equivalent to

c ∈ [0, cwait]. (16)

Proof of Lemma 3

Proof. If condition (14) holds, cwait and cearly are well defined. To get the

condition on b and R that implies the inequality

cwait > cearly, (17)

we merely replace c in inequality (5) by cearly. This results in

2/R

(2/Rb−1 − 1)1/(b−1) + 1 < 1. (18)

When b and R satisfy condition (14), (2/Rb−1 − 1)1/(b−1) is decreasing in b.
Hence inequality (18) is equivalent to

b < 2. (19)

To summarize: the set of c satisfying both conditions (3) and (5) is non-

empty if and only if b and R satisfy both inequality (14) and inequality (19),
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which results in condition (7).

Proof of Proposition 1

Proof. Since we have Ŵ (c) > W run(c), W (c; s) is not continuous at cearly if

s > 0. We study the two regions, [0, cearly] and (cearly, cwait], separately, and

compare the maximum values of W (c; s) in these two regions.

For c ∈ [0, cearly], W (c; s) is strictly increasing in c since cearly < ĉ. Hence
the maximum value of W (c; s) over [0, cearly] is achieved at cearly. Therefore

the best run-proof contract is c = cearly.

For c ∈ (cearly, cwait], the maximum value ofW (c; s)may not be achievable
because (cearly, cwait] is not closed. To fix this problem, we define the function

W̃ (c; s) on [cearly, cwait] by

W̃ (c; s) = (1− s)Ŵ (c) + sW run(c).

When c ∈ (cearly, cwait], W̃ (c; s) = W (c; s). When c = cearly, W̃ (c; s) <

W (c; s). Let c̃(s) be defined by

c̃(s) = arg max
c∈[cearly ,cwait]

W̃ (c; s).

We have

c̃(s) = max{ 2y

γ1/b + 1
, cearly}, (20)

where

γ =
s(1− p)(pA+ 1− p 2

Rb−1 ) + (p
2A+ (1− p)p 2

Rb−1 )

s(1− p)(1− pA) + p(2− p)A .

It can be shown that c̃(s) is continuous in s. Furthermore, c̃(s) is strictly
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decreasing in s when s is small such that c̃(s) > cearly. We also have cearly =

c̃(1) < c̃(0) = ĉ. W̃ (c̃(s); s) is continuous in s and it is also strictly decreasing

in s since Ŵ (c) > W run(c). Furthermore, we have

W̃ (c̃(0); 0) = Ŵ (ĉ) > Ŵ (cearly)

and

W̃ (c̃(1); 1) = W run(cearly) < Ŵ (cearly).

Hence there is a unique s0 ∈ (0, 1) such that

W̃ (c̃(s0); s0) = Ŵ (c
early). (21)

Obviously, we have c̃(s0) > cearly.

Hence if s < s0, we have c∗(s) = c̃(s). The optimal contract c∗(s) tolerates

runs and it is a strictly decreasing function of s. We have cearly < c∗(s) ≤ ĉ
(with equality if and only if s = 0).

If s > s0, c∗(s) = cearly. The optimal contract is run-proof.

If s = s0, W̃ (c̃(s); s) = Ŵ (cearly). So both the run-proof contract (cearly)

and the run-tolerating contract (c̃(s0)) are optimal at s = s0.

Proof of Proposition 2

Proof. The proof is similar to that for Proposition 1. The only difference

is that the ICC may bind. As before, we analyze separately the two regions

[0, cearly] and (cearly, cwait] separately, and compare the maximum values of

W (c; s) in these two regions.
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For c ∈ [0, cearly], it is easy to see that W (c; s) is strictly increasing.

Hence, as in Case 2, the best run-proof contract is c = cearly.

For c ∈ (cearly, cwait], the maximum value ofW (c; s)may not be achievable
because (cearly, cwait] is not closed. To fix this problem and characterize the

possibly binding ICC, we define the function W (c; s) on [cearly, 2y] by:

W (c; s) = (1− s)Ŵ (c) + sW run(c).

When c ∈ (cearly, cwait], we haveW (c; s) = W (c; s). When c = cearly, we have
W (c; s) < W (c; s). Let c(s) be defined by

c(s) = arg max
c∈[cearly ,2y]

W (c; s).

We have

c(s) =
2y

η1/b + 1
, (22)

where

η =
s(1− p)(pA+ 1− p 2

Rb−1 ) + (p
2A+ (1− p)p 2

Rb−1 )

s(1− p)(1− pA) + p(2− p)A .

By using the same argument as that in Proposition 2, we can show that

c(s) is continuous in s. Furthermore, c(s) is strictly decreasing in s when s

is small such that c(s) > cearly. We also have cearly = c(1) < c(0) = ĉ. Note

that in Case 3, we have cwait < ĉ. Hence there is a unique level of s ∈ (0, 1),
denoted by s2, such that

c(s2) = c
wait. (23)

That is, s2 is the threshold run probability below which the ICC binds. Next,
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we need to check, when s = s2, whether the optimal contract still tolerates

runs. To do that, we define s4 by

s4 =
Ŵ (cwait)− Ŵ (cearly)
Ŵ (cwait)−W run(cearly)

. (24)

Obviously, we have s4 ∈ (0, 1). There will be two sub-cases depending on
whether the optimal contract still tolerates runs when when s = s2.

In the first sub-case of Case 3, we have s4 > s2, that is, at the threshold

run probability which makes the ICC just become non-binding, the optimal

contract still tolerates runs. Now we need to determine the threshold run

probability beyond which the optimal contract switches to being run-proof.

That threshold level is s3 which is defined by

W (c(s3); s3) = Ŵ (c
early). (25)

Using the same argument as in Proposition 1, we know that W (c(s); s) is

continuous and strictly decreasing in s. Therefore, s3 is unique. Since s4 > s2,

we know that s3 > s2. The contract c∗(s) satisfies the following: When

s < s2, the ICC binds and c∗(s) = cwait since we have

W (cwait; s) = W (cwait; s) > Ŵ (cearly).

When s2 ≤ s < s3, the ICC no longer binds and c∗(s) = c(s) since we have

W (c(s); s) = W (c(s); s) > Ŵ (cearly).
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When s = s3, both c(s) and cearly are optimal since

W (c(s); s) = W (c(s); s) = Ŵ (cearly).

When s > s3, c∗(s) = cearly since

W (c(s); s) = W (c(s); s) < Ŵ (cearly).

To summarize, if s4 > s2 we have

c∗(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cwait if s < s2

c(s) if s2 ≤ s ≤ s3
cearly if s3 ≤ s.

In the second sub-case of Case 3, we have s4 ≤ s2, that is, at the run

probability which makes the ICC just become non-binding, the optimal con-

tract does not tolerate runs. Hence the optimal contract will switch to the

best run-proof contract (cearly) when the ICC still binds. c∗(s) satisfies the

following property: When s < s4, the ICC binds and c∗(s) = cwait since we

have

W (cwait; s) = W (cwait; s) > Ŵ (cearly).

When s = s4, both cwait or cearly are optimal since we have

W (cwait; s) = W (cwait; s4) = Ŵ (c
early).
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When s4 < s < s2, we have c∗(s) = cearly. This is because the ICC binds and

W (cwait; s) = W (cwait; s) < Ŵ (cearly).

When s2 ≤ s, c∗(s;A) is still equal to cearly. This is because the ICC no

longer binds and

W (c(s); s) = W (c(s); s) < W (c(s2); s2) = W (c
wait; s2) < Ŵ (c

early).

To summarize, if s4 ≤ s2, we have

c∗(s) =

⎧⎪⎨
⎪⎩
cwait if s ≤ s4
cearly if s ≥ s4.

We can see, in each of the two sub-cases, c∗(s) switches to run-proof if the run

probability is larger than the threshold value. Let s1 denote that threshold

run probability and we have

s1 =

⎧⎪⎨
⎪⎩
s3 if s4 > s2

s4 if s4 ≤ s2.
(26)
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Appendix B: Comparative Statics with Respect to the

Parameters p,R and b

In section 4.1 in the published paper, we analyzed the effects of the im-

pulse demand parameter A on ĉ, the contract supporting the unconstrained

efficient allocation. Next, we analyze the effects of varying the remaining

parameters, namely p,R and b, on ĉ. We limit our discussion to the set

of parameters permitting strategic complementarity, i.e., b and R satisfying

inequality (5).

Appendix B.1: Probability of Impatience p

From equation (9), it is easy to see that ĉ is increasing in p if ARb−1 < 1,

ĉ is equal to y if ARb−1 = 1, and ĉ is decreasing in p if ARb−1 > 1. Hence

how p affects ĉ depends solely on the values of A and R. The intuition is the

following: Because there is aggregate uncertainty, the economy might have

2 impatient consumers, 1 impatient consumer and 1 patient consumer, or 2

patient consumers. The parameter p affects the likelihood of the first scenario

relative to the second scenario. The first scenario requires no cross-subsidy

between the consumers. The second scenario requires a cross-subsidy, but

how it is conducted depends on A and R. If ARb−1 < 1, the subsidy is from

the impatient to the patient (i.e., ĉ < y). While if ARb−1 > 1, the subsidy

is from the patient to the impatient (i.e., ĉ > y). As p increases, the second

scenario becomes less likely compared to the first one and less subsidy is

required (i.e., ĉ should be closer to y). Hence if ARb−1 < 1, ĉ increases as p

increases. And if ARb−1 > 1, the opposite is true.
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To see how different values of p correspond to the three cases of the

optimal contract, note that cearly doesn’t depend on p and

lim
p→1
ĉ = y < cearly.

Hence we are in Case 1 whenever p is sufficiently large. Furthermore, we

have

lim
p→0
ĉ =

2y

(1/ARb−1)1/b + 1
.

Hence if we have 2y
(1/ARb−1)1/b+1 ≤ cearly, then only Case 1 obtains.

If
2y

(1/ARb−1)1/b + 1
> cearly,

which implies ARb−1 > 1, there is a unique level of p, denoted by pearly, such

that

ĉ(pearly) = cearly.

If p ≥ pearly, we are in Case 1. If p < pearly, we are in Case 2 or Case 3

depending on whether ĉ(p) is smaller than cwait or not. Note that cwait does

change with p.

Example 7 Let

b = 1.01, A = 10, y = 3, R = 1.5.

We have cearly = 4.155955. It is easy to see that if p ≥ 0.548823, we are in
Case 1. If 0.497423 ≤ p < 0.548823, we are in Case 2. If p < 0.497423, we
are in Case 3. We plot c∗ versus s and p in Figure 4.
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Appendix B.2: Return on Bank Investment R

From equation (9), it is easy to see that ĉ is increasing in R. R affects ĉ by

changing the optimal allocation when the economy has one impatient depos-

itor and one patient depositor. For larger R, on the one hand, the marginal

rate of transformation between the first period consumption and the second

period consumption is increasing in R. On the other hand, the marginal

rate of substitution between the first period consumption by the impatient

depositor and the second period consumption by the patient depositor is also

increasing in R. Since b > 1, the second effect is stronger and, therefore, the

optimal allocation allows more first-period withdrawal, i.e., ĉ increases as R

increases. It is easy to see that both cearly and cwait increase in R. If ĉ ≤
cearly, we are in Case 1. If cearly < ĉ ≤ cwait, we are in Case 2. If ĉ > cwait,

we are in Case 3.

Example 8 Let

b = 1.01, A = 10, y = 3, p = 0.5.

It is easy to see that if R ≥ 1.572948, we are in Case 1. If 1.497374 ≤ R <
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1.572948, we are in Case 2. If R < 1.497374, we are in Case 3. We plot c∗

versus s and R in Figure 5.

Appendix B.3: Risk Aversion Parameter b

The sign of ∂ĉ
∂b
is the same as the sign of

ln(
p

2− p +
2(1− p)

(2− p)ARb−1 ) +
2(1− p)b ln(R)

2(1− p) + pARb−1 .

Hence if A is smaller than a threshold level, we have ∂ĉ
∂b
> 0. Otherwise,

we have ∂ĉ
∂b
< 0. The intuition is the following: As b increases, consumption

smoothing across the two depositors is more desirable. When A is small, ĉ

is small and more consumption smoothing entails larger ĉ. When A is large,

ĉ is large and more consumption smoothing entails smaller ĉ.

Example 9 Let

A = 10, y = 3, p = 0.5, R = 1.5.

It is easy to check that if b ≥ 1.112528, we are in Case 1. If 1.00524 ≤ b <
1.112528, we are in Case 2. If b < 1.00524, we are in Case 3. We plot c∗

versus s and b in Figure 6.
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Appendix C: The Optimal Contract for non-SC Parameter Values

Appendix C.1: The Post-Deposit Game

For the non-SC parameters (i.e., where condition (7) is not satisfied), we

have either

2 ≤ b < 1 + ln 2/ lnR (27)

or

b ≥ 1 + ln 2/ lnR. (28)

For b and R satisfying inequality (27), we have cwait ≤ cearly. (This can be
seen directly from the proof of Lemma 3). In contrast to the SC parameters,

the order of cearly and cwait is reversed. Thus, compared to SC parameters,

the post-deposit game has different game forms. From the pay-off matrix

of the post-deposit game, we see that for c ∈ [0, cwait], we have T2 > T1

and T4 ≥ T3. (L,E) is the dominant strategy for each depositor. The post-
deposit game has a dominant strategy equilibrium with Pareto efficiency (i.e.,

the non-run equilibrium). For c ∈ (cearly, 2y], we have T2 < T1 and T4 < T3.
(E,E) is the dominant strategy for each depositor. For c ∈ (cwait, cearly], we
have T2 ≥ T1 and T4 < T3. The interval (cwait, cearly] is the region of c for

which the post-deposit game is “chicken” type and the patient depositors’

withdrawal decisions exhibit strategic substitutability (rather than strategic

complementarity): A patient depositor withdraws late if and only if he ex-

pects that the other depositor — if patient — to withdraw early. The chicken

behavior might seem a bit exotic in banking, but nonetheless this equilibrium

is like a partial run. Thus, in contrast to the SC parameters for which the set

of contracts with non-run as the unique BNE is a strict subset of the set of
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BIC contracts, now the two sets are the same and both of them are [0, cwait].

For b and R satisfying inequality (28), from the proof of Lemma 1, we

can see that there is not a run equilibrium for any contract c ∈ [0, 2y] in
the post-deposit game. Therefore any BIC contract is also a contract with

non-run as the unique BNE.

Appendix C.2: The Optimal Contract for the Pre-Deposit Game

According to the Revelation Principle, to find c∗(s) in the pre-deposit

game, we need only focus on the BIC contracts. As we have seen, for the

SC parameters, a BIC contract is also a contract with non-run as the unique

BNE. Hence, bank runs are not relevant for the optimal contract c∗, and c∗(s)

maximizes the expected welfare of the depositors at the non-run equilibrium:

c∗(s) = argmax
c
Ŵ (c) for s ∈ [0, 1] (29)

s.t. c satisfies ICC (i.e. condition (5))

For b and R satisfying inequality (27), we know that c satisfies (5) if and

only if c ≤ cwait. Hence the solution to problem (29) is

c∗ = min{ĉ(A), cwait}.

For b and R satisfying inequality (28), cwait is not well-defined. From the

proof of Lemma 2, we know that the difference between the left-hand side

and the right hand side of inequality (5) is no longer decreasing in c. Let

us denote that difference by Diff(c). Diff(c) is strictly decreasing in c for
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c ∈ [0, cwait] and strictly increasing in c when c ∈ [cwait, 2y], where

cwait =
2y

[ 1−p/2
−p(R1−b−1/2) ]

−1/b + 1
.

Furthermore,Diff(0) = +∞ andDiff(2y) = +∞. Therefore, ifDiff(cwait) ≥
0, (5) holds for any c ∈ [0, 2y]. If Diff(cwait) < 0, (5) holds for

c ∈ [0, cwait1] ∪ [cwait2, 2y], (30)

where cwait1 < cwait2 and cwait1 and cwait2 are the two solutions for Diff(c) =

0. Hence if Diff(cwait) ≥ 0, or Diff(cwait) < 0 but at the same time ĉ(A)
satisfies condition (??), the ICC does not bind and the solution to the prob-

lem (29) is

c∗ = ĉ(A).

If Diff(cwait) < 0 and at the same time ĉ(A) doesn’t satisfy condition (??),

the ICC binds and c∗ is equal to cwait1 or cwait2 depending on which one

delivers higher expected welfare at the non-run equilibrium Ŵ (c).
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