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I Specification, Solution and Simulation of Life-Cycle Models
We assume that the utility function is intertemporally additive and the sub-utilities are iso-elastic.
The problem of the generic household is:

max
Ct

Et

T∑
t=1

βtu(Ct)

s.t. Xt+1 = (1 +Rt+1)(Xt − Ct) + Yt+1

where Ct is nondurable consumption in period t, Xt is cash-on-hand (total financial and nonfinancial
wealth) and Yt is current labor income. We assume that durable consumption and leisure are separable
from the nondurable consumption. The income process is assumed as follows:

Yt+1 = Pt+1$t+1

Pt+1 = GPtNt+1

where G is predictable permanent income growth, Pt is permanent income which is subject to log-
normally distributed shocks Nt with mean unity and variance (eσ

2
n − 1), current income Yt equals

permanent income multiplied by a transitory shock, $t , which is distributed lognormally with mean
one and variance (eσ

2
$ − 1). The interest rate series is assumed to be generated by a stationary first

order autoregressive process with long-run mean µ and autoregressive coefficient ρ. Interest rates
shocks εt+1 are assumed to be white noise with variance, σ2

ε . The process is:

Rt+1 = (1− ρ)µ+ ρRt + εt+1.

The inter-temporal model described above does not have an analytical solution due to the assumed
income uncertainty. Therefore we utilized the standard numerical dynamic programming methods to
obtain a solution. Since the utility function is additive over the life cycle we solved the model recursively
starting from the last period of life. We assume away any bequest motive so that consumption in period
T is:

Ct(xT ) = xT .

The problem is solved via policy function iteration using the terminal value condition. Having a
nonstationary income process makes the problem harder to solve since the range of possible income
values is too large. Instead, we redefine all relevant variables in terms of their ratios to permanent
income and solve for the consumption to income ratio. By doing this we reduced the number of
state variables to two, namely the cash on hand to income ratio and the interest rate. Moreover, we
obtain an iid income process which can be approximated by standard Quadrature methods. Given the
redefinition of the variables, the Euler equation can be written as:

θt(ωt, Rt)
−γ − βEt[(1 +Rt+1)θt+1(ωt+1, Rt+1)−γn−γt+1 = 0

where θt = Ct

Pt
, ωt = xt

Pt
. At the terminal date T , consumption to income ratio is a function of only the

cash on hand to income ratio and since the bequest motive is assumed away it follows that θT = ωT .
For the income process, we use 10 point Gaussian Quadrature and we approximate the interest rate

process by forming a 10 point first order discrete Markov process. We use a cubic spline to approximate
the consumption function at each iteration. The agent is allowed to borrow the amount he can pay
back with certainty. In practice this constraint will never bind because the functional form of the
utility function implies that zero consumption results in infinite marginal utility. In models where
we do not assume an explicit borrowing limit (model 1, 2, 3 and 4), the consumption functions are
continuously differentiable. In fact, in our case where agents have iso-elastic preferences and income
uncertainty, consumption functions are strictly concave.
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In order to solve the problem, we define an exogenous grid for the cash on hand to income ratio:
{xj}Jj=1. It is important to adjust the grid as the solution goes back in time. The algorithm finds the
consumption level that makes the standard Euler equation hold for each value of x and r. We made
the grid for x finer at lower levels in order to capture the curvature of the consumption function. After
solving for the consumption function of a generic household for 80 periods, we simulate consumption
paths for 10,000 ex-ante identical households facing the same interest rate realizations. We use only
the middle 40 periods for the estimations. Table 1 presents the assumed parameter values for our
experiments.

We also show that the second order approximation to the Euler equation does not provide a superior
basis for estimation, and in fact suffers from a weak instrument problem: the standard instruments do
not have useful predictive power for the second order term.

II Second Order Approximation
Following the steps in Carroll (2001) we get:

∆logCh,t+1 = α+
1

γ
log(1 +Rt+1) +

γ + 1

2
[∆logCh,t+1]2 + vh,t+1 (1)

for the second order approximation.
The constant term α contains the discount rate (β) and the means of the higher order moments

consumption growth and interest rates ( for the second order approximation, this is the third and
higher order moments.) In either case the residual term contains (i) the true innovation in marginal
utility (or “expectation error”) between t and t + 1, εt+1, (ii) the measurement errors at t and t + 1,
and (iii) an approximation error composed of variation in the higher moments of consumption growth
and interest rates (conditional on past information).

For the second order approximation , the instruments we consider are the ones used extensively in
the literature: lagged interest rates, twice lagged consumption growth and lagged income and twice
lagged consumption growth squared to the instrument set for the second order approximation

Note that because we know the true value of the preference parameter (γ) in our simulated data,
we can use the true parameter value to construct the true residuals in the linearized Euler equation
(plus a constant). That is, inverting equations (1) and evaluating at γ = 4 gives:

for the first order approximation and

∆logCh,t+1 −
1

4
log(1 +Rt+1)− 4 + 1

2
(∆logCh,t+1)2 = α+ vh,t+1 (2)

When there are two endogenous variables, a maximum relative bias of 10% compared to OLS, a 5%
significance level and four instruments (as in our experiments with the second-order linearized Euler
equation), the critical value is 7.56 for Linear GMM , and 4.72 for LIML.

Appendix Table A1 and A2 are parallel Tables 4 and 5 in the text, but for the second-order
approximation of the Euler Equation. The first thing to note in Table A1 is that there are now strong
signs of weak instrument problems (recall that critical value for two endogenous and four instruments
at the 5% significance level is 7.56 for Linear GMM and 4.72 for LIML). The extra endogenous variable
here is the square of consumption growth, and the extra instrument the square of lagged consumption
growth, as is standard in the literature, but the instrument set has insufficient predictive power.
In commenting on the poor performance of the second-order linearization to of the Euler Equation,
Attanasio and Low (2004) postulated that the problem was the lack of a good instrument for the
second order term. The statistical tests reported in the final column of Table A1 confirm that this is
the case.

Turning to instrument validity, we see similar patterns as in Table 4. The lags of consumption
growth (and its square), and lagged income, often are not. Problems of invalid instruments are greater
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in models with impatient agents but are somewhat ameliorated by measurement error in consumption
(and the consequent use of second lags as instruments).

Table A2 reports the estimates. There are two coefficients to estimate in the second-order approxi-
mate Euler equation. The coefficient on the interest rate is the EIS, while the coefficient on the square
of consumption growth is the coefficient of relative prudence.

There are two important questions here. First, do the estimates of the coefficient of relative
prudence contain any useful information. The answer is plainly no. In almost all models the estimates
are very imprecise and suffer from substantial mean bias. The second question is whether the inclusion
of the second order term in consumption growth improves the estimate of the EIS, by reducing the scope
for approximation bias. Comparing Table A2 with Table 5 suggest no strong evidence of improvement.

III Non-linear GMM Estimation
A summary of section 5 is that with realistic data structures, linearized Euler Equation estimation
seems much less promising. An alternative strategy is estimating the full nonlinear Euler equation
(Equation (3)) using the Generalized Method of Moments methodology introduced by Hansen (1982)
, and hence eliminating problems associated with approximation. As discussed in section 2, the main
problem of this strategy is that consistent estimation requires perfect data on consumption, whereas
the available consumption data for households are almost certainly very noisy1.

Appendix Table A3 presents the results of two alternative nonlinear GMM estimation on the
consumption data with measurement error. The first non-linear GMM is Exact GMM (EGMM)
introduced by Hansen (1982). The second estimator (GMM-D), is proposed by Alan, Attanasio and
Browning (2009) takes account of the measurement error in consumption2, and uses the following
moment condition rather than Equation (3):

(
ct+1

ct

)−γ

(1 + rt+1)β −
(
ct+2

ct

)−γ

(1 + rt+1)(1 + rt+2)β2 = 0 (3)

For both of the estimators, we have 2 unknown parameters, CRRA (γ) and Discount Factor (β).
We use two sets of instruments, first one contains constant and lagged interest rate and second set
additionally includes twice lagged consumption growth 3.

For each of our estimations, we set N to 100 and T to 40. The results in Table 10 presents 999
Monte Carlo replications for four models . The results are indicating that as expected Exact Euler
Equation perform poorly in identifying CRRA, mean biases are big and estimates are very imprecise.
This is especially the case in just identified models (first row), but adding the twice lagged consumption
growth in the instrument set makes a little improvement (second row of the Table A3). Results are
also confirming that similar to linearized Euler Equations, non-linear GMM is performing better in the
patient environments.The estimations of discount factor in all models show a downward bias, mean
standard errors are relatively big, indicating also the imprecision of the estimates.

The last two rows of the Table A3 presents the results from GMM-D. It is clear from third row,
in the just identified case we don’t see a real improvement. Adding twice lagged consumption to
instrument set is improving the performance of GMM-D esspecially in the patient models, but still it
is not clearly superior to the linearized Euler Equation. This is clear in comparision of mean biases in
Table A2 and A3. Discount factor in all models still show a significant downward bias.

1It is also important to note that although large T is still required in non-linear GMM since estimation on synthetic
cohorts requires an equation that is linear in parameters, Non-Linear GMMs cannot be used in synthetic panels

2Alan et al. (2009) has exploited the iso-elastic utility assumption in agents problem that gives a ratio of consumptions
in the Euler equations. Authors showed that their proposed GMM-D estimator is performing better than EGMM in the
environments where measurement error is stationary and multiplicative.

3We also used once lagged consumption growth instead of twice lagged, our results show very large mean biases.

4



Overall, the results of this subsection do not significantly alter the findings that emerged in the
previous subsections. Specifically we find that in our environments non-linear GMM estimators do not
out perform the linearized Euler Equation.
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Figure A1: Cumulative Density Functions of EIS estimates  

 

 
 
 
Notes: The vertical reference line is at the true value of EIS (0.25.) Detailed statistics of Monte 
Carlo results are presented in the column 1 of Table 5.  
  



 
 
Notes to Table A1: 

1. All other numbers are result of 999 Monte Carlo replications. Panel length is 40 periods. 
2. For the second order approximation we use the twice lagged consumption instruments with the lag interest rate 

and lag income. 
3. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 

Instrument validity  columns report for each instrument the fraction of  t stats with absolute value greater than 
1.96 (critical value at 5% significance level) 

4. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. For the 
second order, endogenous variables are interest rate and lagged consumption growth square and instruments 
are lagged interest rate, twice lagged consumption growth, twice lagged consumption growth square and lagged 
income. Mean values of  CDF are reported. CDF values at 10 and  90 percent are in parentheses. Stock and 

Yogo (2002) - test for weak instrument 0H =bias of two stage estimation relative to OLS is greater than 10% . 

Critical Value at  5% significance level when the number of instruments is 4 and endogenous variable is 2 for 
Linear GMM = 7.56, for LIML =4.72 

Table A1: Second Order Approximation 

 Instrument Validity and Relevance Results, 999 replications with Measurement Error 

 

Instrument Validity 

Second Order : ∆݈ܥ݃݋௧ାଵ
௛ െ

ଵ

ସ
ሺ1݃݋݈ ൅ ܴ௧ାଵሻ െ

ସାଵ

ଶ
൫∆݈ܥ݃݋௧ାଵ

௛ ൯
ଶ
ൌ ߙ ൅ ௧ାଵݒ

௛  

Instrument 
Relevance 

(First Stage)
  Fraction of  t stats with absolute value greater than 1.96 CDF stat 

Model 
 

 

 
Lag Interest 

Rate 
 

Twice Lag 
Consumption 

Growth 

Lag Income 
 

Twice Lag 
Consumption 

Growth 
Square 

 [10% , 90%] 
Mean 

AL-P  [-0.23, 2.04] [-3.10, 9.26] [-9.31, 1.14] [-7.97, 2.36] [0.24, 2.47] 

  0.039 0.093 0.057 0.114 1.19 

       

AL-I  [-0.10, 36.8] [-9.33, -0.32] [-55.5, 0.15] [1.10, 4.63] [3.63, 6.22] 

  0.160 0.340 0.486 0.779 4.90 

 
      

C-P  [-5.66,  7.30] [-7.95, 2.87] [-8.93, 5.8] [-12.49, 3.56] [0.13, 6.24] 

  0.145 0.298 0.144 0.305 2.60 

       

C-I  [-8.10, 6.93] [-8.97, 2.74] [-3.18,9.67] [-6.68, 6.52]  [0.09, 25.32] 

  0.176 0.491 0.268 0.368 5.81 

       

D-P  [-1.23, 1.84] [-2.49, 10.8] [-6.45, 1.14] [-5.53, 2.37] [0.24, 2.41] 

  0.029 0.083 0.046 0.107 1.18 

       

D-I  [-0.45, 4.74] [-4.82, 5.51] [-5.21, 4.69] [-3.98, 3.35] [0.31, 4.09] 
  0.156 0.309 0.103 0.197 1.92



1. Panel length is 40 periods. 
2. For each model and estimation strategy, the first number is the mean value of the estimate of the EIS and 

Prudence in 999 Monte Carlo replications.  The second number, in brackets, is the  semi parametric confidence 
interval, third number in parenthesis is  the mean bias as the percentage of true parameter value. The last 
number is mean robust standard errors clustered on period.  

Appendix Table A2:  Second Order Approximation, Estimates of EIS and Prudence, 999 
replications, With Measurement Error

   

True Value EIS:
1

0.25

 

 
 

 PRUDENCE:
 

1
2.5

2

    
 

Model    

AL-P mean coefficient 0.293 0.38 
 [2.5%, 97.5%] [0.205 ,0.396] [-11.32, 10.71] 

(mean bias as % of true parameter value) (17.2) (-84.8) 
mean standard error 0.121 3.92 

    
AL-I mean coefficient 0.183 6.59 

 [2.5%, 97.5%] [0.008, 0.311] [4.27, 9.42] 
(mean bias as % of true parameter value) (-26.8) (163) 

mean standard error 0.189 3.02 
    

C-P mean coefficient 0.234 1.38 
 [2.5%, 97.5%] [0.150, 0.380] [-3.18, 7.09] 

(mean bias as % of true parameter value) (-6.4) (-44.8) 
mean standard error 0.102 5.06 

   
C-I mean coefficient 0.321 1.09 

 [2.5%, 97.5%] [0.175, 0.686] [-7.76, 9.35] 
(mean bias as % of true parameter value) (28.4) (-56.4) 

mean standard error 0.095 1.98 
    

D-P mean coefficient 0.292 0.832 
 [2.5%, 97.5%] [0.203, 0.387] [-9.80, 10.71] 

(mean bias as % of true parameter value) (16.8) (-66.7) 
mean standard error 0.132 3.21 

    
D-I    

 mean coefficient 0.156 5.85 
[2.5%, 97.5%] [-0.153, 0.402] [-0.80, 11.81] 

(mean bias as % of true parameter value) (-37.6) (134) 
mean standard error 0.134 5.42 

  
Notes to Table A2: 

  



 

 
 

 
                                                                                        Appendix Table A3: Non-linear GMM   

Exact Euler Equation and GMM-D, 999 replications, Long Panel With Measurement Error 
 
 

 
 
 
Notes to Appendix Table A3 

1. Panel length is 40 periods. Table reports the nonlinear GMM results using the simulated data with measurement error. The measurement error that we add to the simulated data is i.i.d log 
normal with a unit mean and a variance of 0.004. The data structure is a long panel (T=40) 

2. All other numbers are result of 999 Monte Carlo replications. For each model and estimation strategy, the first number is the mean value of the estimate of the EIS in 999 Monte Carlo 
replications.  The second number, in parenthesis, is the mean robust standard errors clustered on period. The third number which is in the square brackets is the mean bias as the percentage of 

true parameter value. RMSE reports the root mean squared error.  
 
 
 



 

 
 

 
Notes to Table A4: 

1. All other numbers are result of 999 Monte Carlo replications. The measurement error that we add to the simulated data is i.i.d log normal with a unit mean and 
a variance of 0.004 

2. For the first order approximation instruments, we use the twice lagged consumption instrument with the lag interest rate and lag income. 

Appendix Table A4:  Deaton Impatient Model - Instrument Validity and Relevance Results, 999 replications 

 
Instrument Validity 

First Order : ∆݈ܥ݃݋௧ାଵ
௛ െ

ଵ

ସ
ሺ1݃݋݈ ൅ ܴ௧ାଵሻ ൌ ߙ ൅ ݁௧ାଵ

௛  
Instrument Relevance 

(First Stage) 

   F-Stat 
Model  Lag Interest Rate Twice Lag Consumption Growth Lag Income Mean  [10%, 90%] 

  LONG PANEL MEASUREMENT ERROR  
      

D-I Cons. Excluded     
[2.5%, 97.5%] [-3.9, 2.34] [-2.84, 0.89] [-4.06, 0.75] 6681

“Fraction  of |t|>1.96” 0.130 0.224 0.139 [6572 , 6776] 
 Cons. Included     

 [2.5%, 97.5%] [-7, 4.35] [-1.99, 2.10] [-3.06, 1.95] 6967
“Fraction  of |t|>1.96” 0.322 0.343 0.282 [6431 , 7102]

 SHORT PANEL MEASUREMENT ERROR  
D-I  Cons. Excluded    

[2.5%, 97.5%] [-13.7, 0.64] [-9.06, 7.41] [-1.41, 7.87] 504 
“Fraction  of |t|>1.96” 0.319 0.706 0.234 [498, 511] 

 Cons. Included     
 [2.5%, 97.5%] [-15, -1.82] [0.99, 5.10] [1.02, 3.95] 502

“Fraction  of |t|>1.96” 0.540 0.782 0.578 [496, 508]
 SYNTHETIC PANEL MEASUREMENT ERROR  

D-I  Cons. Excluded    
[2.5%, 97.5%] [-3.02, 2.10] [-2.34, 0.98] [-2.06, 1.75] 6.36 

“Fraction  of |t|>1.96” 0.103 0.203 0.089 [3.17, 11.67] 
 Cons. Included  

 [2.5%, 97.5%] [-3.72, 0.05] [-3.9, 1.80] [-5.04, 3.45] 7.05
“Fraction  of |t|>1.96” 0.240 0.332 0.430 [2.16, 12.8] 

     



 

 
 

3. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 
a. Instrument validity  columns report for each instrument  (i) t-statistic values at 2.5 and 97.5 percent , (ii) the fraction of  t stats with absolute value 

greater than 1.96 (critical value at 5% significance level) 
b. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. For the first order approximation interest rate 

is the only endogenous variable and lagged interest rate, (twice )lagged consumption growth, lagged income are instruments. Mean values of CDF 
are reported. CDF values at 10 and  90 percent are in parentheses.  

c. Stock and Yogo (2002) - test for weak instrument 0H =bias of two stage estimation relative to OLS is greater than 10%  

i. Critical Value at 5% significance level when the number of instruments is 3 and endogenous variable is 1  for Linear GMM = 9.08, for 
LIML=6.46. 

 
 



 

 
 

 
 
 
 
 
 

1. Panel length is 40 periods. 
2. For each column, the first number is the mean value of the estimate of the EIS in 999 Monte Carlo 

replications.  The second number, in brackets is 2.5 and 97.5 percent of  EIS estimates. Third number is 
the mean robust standard errors clustered on period. Fourth number is the mean bias as the percentage of 
true parameter value.   

 
  

Appendix Table A5:  Deaton Impatient Model -Estimates of the EIS, 999  replications 

First Order Approximation, With Measurement Error,  Long Panel 

True Value   EIS:
1

0.25

 

 
 

 

D-I Model  Cons. Excluded Cons. Included 

 LONG PANEL 

 mean coefficient 0.209 0.187 
 [2.5%, 97.5%] [0.16, 0.28] [0.09, 0.31] 

(mean std. error) (0.194) (0.189) 

(mean bias as % of true parameter value) (-13.4) (-25.2) 

SHORT PANEL 
mean coefficient 0.183 0.122 

[2.5%, 97.5%] [0.032, 0.438] [0.011, 0.214] 
(mean std. error) (0.251) (0.315) 

(mean bias as % of true parameter value) (-26.8) (-51.2) 

SYNTHETIC PANEL 
mean coefficient 0.2 0.167 

[2.5%, 97.5%] [0.054, 0.378] [0.052, 0.36] 
(mean std. error) (0.401) (0.392) 

(mean bias as % of true parameter value) (-20) (-33.2) 

  



 

 
 

 

 
 
 
 
 
 
 
 

Appendix Table A6: First Order Approximation, Measurement Error, Different Data 
Structures, Confidence Intervals

 

 
  % of CI that includes 

Model 
 

 
 Mean Coefficient Mean Sd. Error either 0 or 1 both 0 or 1 

AL-P Long Panel 0.279 (0.106) 15 0
      

 Short Panel 0.211 (0.336) 100 22
      

Synthetic Cohort 0.218 (0.224) 100 15
    

AL-I Long Panel 0.284 (0.245) 97 18
      

 Short Panel 0.204 (0.356) 100 24
      

Synthetic Cohort 0.222 (0.339) 100 25
    

C-P Long Panel 0.212 (0.098) 30 2
      
 Short Panel 0.332 (0.366) 98 32
      

Synthetic Cohort 0.203 (0.232) 82 11
    

C-I Long Panel 0.298 (0.189) 45 12
      
 Short Panel 0.345 (0.285) 100 40
      

Synthetic Cohort 0.297 (0.335) 99 35
      

D-P Long Panel 0.274 (0.105) 23 3
      
 Short Panel 0.208 (0.335) 100 27
      

Synthetic Cohort 0.214 (0.223) 100 13
      

D-I Long Panel 0.209 (0.194) 96 1
      
 Short Panel 0.183 (0.251) 100 16
      

Synthetic Cohort 0.200 (0.401) 100 43
      


	Online_cover
	Euler_Appendix_2017_May
	AppendixTable

