Supplementary Appendix File

Productivity Gaps and Tax Policies Under Asymmetric Trade

(Accepted for publication in Macroeconomic Dynamics)
Lucas Bretschger, ETH Zurich
Simone Valente, University of East Anglia

B Supplementary Material

Aggregate Constraints: derivation of (17)-(18). Equation (17) is derived as follows. Substituting $n_{i} \equiv\left(V_{i} M_{i}\right) / L_{i}$ and (A.5) in (A.12), we obtain

$$
V_{h} \dot{M}_{h}=\Pi_{h} M_{h}+P_{L}^{h} L_{h}-E_{h}^{c}-F_{h} L_{h} .
$$

Plugging $V_{i} \dot{M}_{i}=P_{Y}^{i} Z_{i}$ from (5)-(A.4), and $M_{i} \Pi_{i}=M_{i} X_{i}\left(P_{X}^{i}-\varsigma P_{Y}^{i}\right)$ from (A.2), in the above equation, we obtain

$$
P_{Y}^{h} Z_{h}+E_{h}^{c}+P_{Y}^{h} \varsigma M_{h} X_{h}=M_{h} P_{X}^{h} X_{h}+P_{L}^{h} L_{h}-F_{h} L_{h},
$$

where we substitute $F_{i} L_{i}=a_{i} P_{Y}^{i} Z_{i}-b_{i} M_{i} P_{X}^{i} X_{i}-\tau_{i} P_{R} R_{i}$ from (11) to get

$$
P_{Y}^{h} Z_{h}\left(1+a_{h}\right)+E_{h}^{c}+P_{Y}^{h} \varsigma M_{h} X_{h}=M_{h} P_{X}^{h} X_{h}\left(1+b_{h}\right)+P_{L}^{h} L_{h}+\tau_{h} P_{R} R_{h} .
$$

From the final sectors' profit-maximizing conditions, we can substitute $P_{L}^{i} L_{i}=\beta P_{Y}^{i} Y_{i}$ and $M_{i} P_{X}^{i} X_{i}\left(1+b_{i}\right)=\alpha P_{Y}^{i} Y_{i}$ in the above equation, obtaining

$$
E_{h}^{c}+P_{Y}^{h} Z_{h}\left(1+a_{h}\right)+P_{Y}^{h} \varsigma M_{h} X_{h}=(\alpha+\beta) P_{Y}^{h} Y_{h}+\tau_{h} P_{R} R_{h},
$$

where we can plug $\alpha+\beta=1-\gamma$, and condition (2), to obtain

$$
\begin{equation*}
E_{h}^{c}+P_{Y}^{h} Z_{h}\left(1+a_{h}\right)+P_{Y}^{h} \varsigma M_{h} X_{h}=P_{Y}^{h} Y_{h}-P_{R} R_{h} . \tag{B.1}
\end{equation*}
$$

Substituting $E_{h}^{d} \equiv P_{Y}^{h} Z_{h}\left(1+a_{h}\right)$ and $E_{h}^{x} \equiv P_{Y}^{h} \varsigma M_{h} X_{h}$ we obtain (17). Repeating the above steps for the Foreign economy starting from constraint (A.13), and recalling that $R-R_{f}=R_{h}$, we obtain (18).

Derivation of (A.22)-(A.23). Consider Home. From (A.21), substitute $\bar{\sigma}_{h}^{d}=$ $1-\tilde{\gamma}_{h}-\bar{\sigma}_{h}^{c}-\bar{\sigma}_{h}^{x}$ in (A.20), and eliminate $\bar{\sigma}_{h}^{x}$ by (A.19), to obtain

$$
\begin{equation*}
\widehat{\bar{\sigma}}_{i}^{c}(t)=\varphi_{h} \bar{\sigma}_{h}^{c}(t)+\varphi_{h} \frac{\alpha(1-\alpha)\left(1+a_{h}\right)+\alpha^{2}}{1+b_{h}}-\varphi_{h}\left(1-\tilde{\gamma}_{h}\right)-\rho, \tag{B.2}
\end{equation*}
$$

Since $\varphi_{h}>0$, equation (B.2) is globally unstable around the unique stationary point: ruling out by standard arguments explosive dynamics in the consumption propensity, we have

$$
\begin{equation*}
\bar{\sigma}_{h}^{c}=\left(1-\tilde{\gamma}_{h}\right)-\frac{\varphi_{h}\left[\alpha(1-\alpha)\left(1+a_{h}\right)+\alpha^{2}\right]-\rho\left(1+b_{h}\right)}{\varphi_{h}\left(1+b_{h}\right)} \text { in each } t . \tag{B.3}
\end{equation*}
$$

From (A.19) and (B.3), constant values of $\bar{\sigma}_{h}^{c}$ and $\bar{\sigma}_{h}^{x}$ imply a constant $\bar{\sigma}_{h}^{d}$ which, from (A.21), equals

$$
\begin{equation*}
\bar{\sigma}_{h}^{d}=1-\tilde{\gamma}_{h}-\bar{\sigma}_{h}^{c}-\bar{\sigma}_{h}^{x}=\frac{\varphi_{h} \alpha(1-\alpha)\left(1+a_{h}\right)-\rho\left(1+b_{h}\right)}{\varphi_{h}\left(1+b_{h}\right)} . \tag{B.4}
\end{equation*}
$$

Derivation of (A.42)-(A.45). Equation (A.3) and result (21) imply

$$
\begin{equation*}
Y_{i}(t)=\frac{\left(\alpha^{2} / \varsigma\right)^{\frac{\alpha}{1-\alpha}}}{1+b_{i}} \cdot M_{i}(0)\left(v_{i}(0) L_{i}\right)^{\frac{\beta}{1-\alpha}}\left(R_{i}(0)\right)^{\frac{\gamma}{1-\alpha}} \cdot e^{\left(\Omega_{i}-\rho\right) t}, \tag{B.5}
\end{equation*}
$$

where $M_{i}(0)$ and $v_{i}(0)$ are exogenously given. Initial resource use $R_{i}(0)$ is determined by the solution of the optimal extraction problem: ${ }^{26}$

$$
\begin{equation*}
R_{h}(0)=\frac{\bar{\theta}}{1+\bar{\theta}} \rho Q_{0} \text { and } R_{f}(0)=\frac{1}{1+\bar{\theta}} \rho Q_{0} . \tag{B.6}
\end{equation*}
$$

Substituting (B.6) in (B.5) for each $i=h, f$, we obtain (A.42) and (A.43). Taking the ratio between (A.42) and (A.43), and defining $\psi_{0} \equiv\left[\frac{M_{h}(0)}{M_{f}(0)}\left(\frac{1+b_{f}}{1+b_{h}}\right)\left(\frac{v_{h}(0) L_{h}}{v_{f}(0) L_{f}}\right)^{\frac{\beta}{1-\alpha}}\right]$, we obtain (A.44). Re-writing (A.28) as

$$
\frac{P_{Y}^{h}(t)}{P_{Y}^{f}(t)}=\theta(t) \cdot \frac{1+\tau_{h}}{1+\tau_{f}} \frac{Y_{f}(t)}{Y_{h}(t)}
$$

and using (A.44) to eliminate $Y_{h}(t) / Y_{f}(t)$, we obtain (A.45).

[^0]Conditional efficiency: proof of result (28). The proof consists in three steps, characterizing (i) conditional efficiency in Home, (ii) conditional efficiency in Foreign, (iii) derivation of (28).

Step 1. Conditional efficiency in Home. By definition, the $C E$-allocation in Home solves

$$
\begin{aligned}
& \quad \max _{\left\{E_{h}^{c}, E_{h}^{x}, E_{h}^{d}, R_{h}\right\}} \int_{0}^{\infty} e^{-\rho t} \cdot \ln \left(\left(\omega / L_{h}\right) \cdot E_{h}^{c}\right) d t \text { subject to } \\
& Y_{h}=M_{h} X_{h}^{\alpha}\left(v_{h} L_{h}\right)^{\beta} R_{h}^{\gamma}, \\
& E_{h}^{x}=P_{Y}^{h} \varsigma M_{h} X_{h}, \\
& P_{Y}^{h} Y_{h}=E_{h}^{c}+E_{h}^{d}+E_{h}^{x}+P_{R} R_{h}, \\
& \dot{M}_{h}=M_{h} \varphi_{h} \cdot\left[E_{h}^{d} /\left(P_{Y}^{h} Y_{h}\right)\right],
\end{aligned}
$$

where $\omega=\omega\left(P_{Y}^{h}, P_{Y}^{f}\right)$ is taken as given and symmetry across varieties is already imposed without any loss of generality. The first constraint is the final-good technology (1), the second is the intermediate-good technology with linear cost, the third is (17), the fourth is the $\mathrm{R} \& \mathrm{D}$ technology (7) with knowledge spillovers taken into account. Recalling that $\sigma_{h}^{d} \equiv E_{h}^{d} /\left(P_{Y}^{h} Y_{h}\right)$ and combining the first three constraints, the problem becomes $\max _{\left\{E_{h}^{c}, X_{h}, \sigma_{h}^{d}, R_{h}\right\}} \int_{0}^{\infty} e^{-\rho t} \cdot \ln \left(\left(\omega / L_{h}\right) \cdot E_{h}^{c}\right) d t$ subject to

$$
\begin{align*}
& \quad P_{Y}^{h} M_{h} X_{h}^{\alpha}\left(v_{h} L_{h}\right)^{\beta} R_{h}^{\gamma}\left(1-\sigma_{h}^{d}\right)=E_{h}^{c}+P_{Y}^{h} \varsigma M_{h} X_{h}+P_{R} R_{h}, \tag{B.7}\\
& \dot{M}_{h}=M_{h} \varphi_{h} \sigma_{h}^{d}, \tag{B.8}
\end{align*}
$$

where the controls are $\left\{E_{h}^{c}, X_{h}, \sigma_{h}^{d}, R_{h}\right\}$ and the only state variable is M_{h}. The currentvalue Hamiltonian is

$$
\begin{aligned}
& \ln \left[\left(\omega_{h} / L_{h}\right) \cdot E_{h}^{c}\right]+\mu_{h}^{\prime} \cdot M_{h} \varphi_{h} \sigma_{h}^{d}+ \\
& +\mu_{h}^{\prime \prime} \cdot\left[P_{Y}^{h} M_{h} X_{h}^{\alpha}\left(v_{h} L_{h}\right)^{\beta} R_{h}{ }^{\gamma}\left(1-\sigma_{h}^{d}\right)-E_{h}^{c}-P_{Y}^{h} \varsigma M_{h} X_{h}-P_{R} R_{h}\right]
\end{aligned}
$$

where μ_{h}^{\prime} is the dynamic multiplier associated to (B.8) and $\mu_{h}^{\prime \prime}$ is the static multiplier
attached to (B.7). The optimality conditions read

$$
\begin{array}{rlrl}
\frac{\partial}{\partial E_{h}^{c}} & =0 \rightarrow & & \frac{1}{E_{h}^{c}}=\mu_{h}^{\prime \prime}, \\
\frac{\partial}{\partial X_{h}} & =0 \rightarrow & & \left(1-\sigma_{h}^{d}\right) \alpha P_{Y}^{h} Y_{h}=P_{Y}^{h} \varsigma M_{h} X_{h}, \\
\frac{\partial}{\partial \sigma_{h}^{d}} & =0 \rightarrow & & \mu_{h}^{\prime} M_{h} \varphi_{h}=\mu_{h}^{\prime \prime} P_{Y}^{h} Y_{h}, \\
\frac{\partial}{\partial R_{h}} & =0 \rightarrow & & \left(1-\sigma_{h}^{d}\right) \gamma P_{Y}^{h} Y_{h}=P_{R} R_{h} \\
\rho \mu_{h}^{\prime}-\dot{\mu}_{h}^{\prime} & =\frac{\partial}{\partial M_{h}} \rightarrow & \rho \mu_{h}^{\prime}-\dot{\mu}_{h}^{\prime}=\mu_{h}^{\prime} \varphi_{h} \sigma_{h}^{d}+\mu_{h}^{\prime \prime} P_{Y}^{h}\left[\frac{Y_{h}}{M_{h}}\left(1-\sigma_{h}^{d}\right)-\varsigma K_{h}\right], \tag{B.13}
\end{array}
$$

and imply ${ }^{27}$

$$
\begin{align*}
& \tilde{E}_{h}=\left[1-\gamma\left(1-\sigma_{h}^{d}\right)\right] \cdot P_{Y}^{h} Y_{h}, \tag{B.14}\\
& \tilde{E}_{h}^{x}=\alpha\left(1-\sigma_{h}^{d}\right) \cdot P_{Y}^{h} Y_{h}, \tag{B.15}\\
& \tilde{E}_{h}^{c}=\beta\left(1-\sigma_{h}^{d}\right) \cdot P_{Y}^{h} Y_{h}, \tag{B.16}\\
& E_{h}^{d}=\sigma_{h}^{d} \cdot P_{Y}^{h} Y_{h} . \tag{B.17}
\end{align*}
$$

Substituting (B.10) and (B.11) in (B.13) we have

$$
\begin{equation*}
\frac{\dot{\mu}_{h}^{\prime}}{\mu_{h}^{\prime}}=\rho-\varphi_{h}\left[1-\alpha\left(1-\sigma_{h}^{d}\right)\right] . \tag{B.18}
\end{equation*}
$$

Time-differentiating (B.11) and using (B.18) we have

$$
\frac{\dot{\mu}_{h}^{\prime \prime}}{\mu_{h}^{\prime \prime}}=\rho-\varphi_{h}(1-\alpha)\left(1-\sigma_{h}^{d}\right)-\frac{\dot{P}_{Y}^{h} Y_{h}}{P_{Y}^{h} Y_{h}},
$$

where we can substitute $\mu_{h}^{\prime \prime}=1 / E_{h}^{c}$ from (B.9) to obtain

$$
\begin{equation*}
\frac{\dot{E}_{h}^{c}}{E_{h}^{c}}-\frac{P_{Y}^{h} Y_{h}}{P_{Y}^{h} Y_{h}}=\varphi_{h}(1-\alpha)\left(1-\sigma_{h}^{d}\right)-\rho . \tag{B.19}
\end{equation*}
$$

From (B.16) we have $\frac{\dot{E}_{h}^{c}}{E_{h}^{c}}-\frac{P_{Y}^{h} Y_{h}}{P_{Y}^{h} Y_{h}}=-\frac{\dot{\sigma}_{h}^{d}}{1-\sigma_{h}^{d}}$ which can be combined with (B.19) to get

$$
\begin{equation*}
\dot{\sigma}_{h}^{d}=\rho\left(1-\sigma_{h}^{d}\right)-\varphi_{h}(1-\alpha)\left(1-\sigma_{h}^{d}\right)^{2} . \tag{B.20}
\end{equation*}
$$

[^1]Equation (B.20) is globally unstable around its unique steady state: ruling out explosive dynamics by standard arguments, the conditionally-efficient rate of investment in R\&D is

$$
\begin{equation*}
\tilde{\sigma}_{h}^{d}=\frac{\varphi_{h}(1-\alpha)-\rho}{\varphi_{h}(1-\alpha)} \text { and } 1-\tilde{\sigma}_{h}^{d}=\frac{\rho}{\varphi_{h}(1-\alpha)} \tag{B.21}
\end{equation*}
$$

in each point in time. Substituting (B.21) in (B.15)-(B.16) we obtain

$$
\begin{equation*}
\tilde{\sigma}_{h}^{x}=\frac{\alpha \rho}{\varphi_{h}(1-\alpha)} \text { and } \tilde{\sigma}_{h}^{c}=\frac{\beta \rho}{\varphi_{h}(1-\alpha)} \tag{B.22}
\end{equation*}
$$

Step 2. Conditional efficiency in Foreign. Following the same preliminary steps of the Home problem, the $C E$-allocation in Foreign solves

$$
\begin{align*}
& \max _{\left\{E_{f}^{c}, X_{f}, \sigma_{f}^{d}, R_{h}, R_{f}\right\}} \int_{0}^{\infty} e^{-\rho t} \cdot \ln \left(\left(\omega / L_{f}\right) \cdot E_{f}^{c}\right) d t \text { subject to } \\
P_{Y}^{f} M_{f} X_{f}^{\alpha}\left(v_{f} L_{f}\right)^{\beta} R_{f}^{\gamma}\left(1-\sigma_{f}^{d}\right) & =E_{f}^{c}+P_{Y}^{f} \varsigma M_{f} X_{f}-P_{R} R_{h}, \tag{B.23}\\
\dot{M}_{f} & =M_{f} \varphi_{f} \sigma_{f}^{d}, \tag{B.24}\\
\dot{Q} & =-R_{h}-R_{f} \tag{B.25}
\end{align*}
$$

where (B.23) follows from (18) and, differently from Home, we have the resource constraint (B.25) and also exported resources R_{h} as an additional control. The state variables are M_{f} and the resource stock Q. The Hamiltonian is

$$
\begin{aligned}
& \ln \left[\left(\omega / L_{f}\right) \cdot E_{f}^{c}\right]+\mu_{f}^{\prime} \cdot M_{f} \varphi_{f} \sigma_{f}^{d}+ \\
& +\mu_{f}^{\prime \prime} \cdot\left[P_{Y}^{f} M_{f} X_{f}^{\alpha}\left(v_{f} L_{f}\right)^{\beta} R_{f}^{\gamma}\left(1-\sigma_{f}^{d}\right)-E_{f}^{c}-P_{Y}^{f} \varsigma M_{f} X_{f}+P_{R} R_{h}\right]+ \\
& +\mu_{f}^{\prime \prime \prime} \cdot\left(-R_{h}-R_{f}\right)
\end{aligned}
$$

where μ_{f}^{\prime} is the dynamic multiplier associated to (B.24), $\mu_{h}^{\prime \prime}$ is the Lagrange multiplier attached to (B.23), and $\mu_{f}^{\prime \prime \prime}$ is the dynamic multiplier associated to (B.25). The first
order conditions read

$$
\begin{array}{rll}
\frac{\partial}{\partial E_{f}^{c}}=0 \rightarrow & \frac{1}{E_{f}^{c}}=\mu_{f}^{\prime \prime}, \\
\frac{\partial}{\partial X_{f}}=0 \rightarrow & \left(1-\sigma_{f}^{d}\right) \alpha P_{Y}^{f} Y_{f}=P_{Y}^{f} \varsigma M_{f} X_{f}, \\
\frac{\partial}{\partial \sigma_{f}^{d}}=0 \rightarrow & \mu_{f}^{\prime} M_{f} \varphi_{f}=\mu_{f}^{\prime \prime} P_{Y}^{f} Y_{f}, \\
\frac{\partial}{\partial R_{h}}=0 \rightarrow & \mu_{f}^{\prime \prime} \cdot P_{R}=\mu_{f}^{\prime \prime \prime} \\
\frac{\partial}{\partial R_{f}}=0 \rightarrow & \mu_{f}^{\prime \prime} \cdot\left(1-\sigma_{f}^{d}\right) \gamma P_{Y}^{f} Y_{f}=\mu_{f}^{\prime \prime \prime} R_{f}, \\
\rho \mu_{f}^{\prime}-\dot{\mu}_{f}^{\prime} & =\frac{\partial}{\partial M_{f}} \rightarrow & \rho \mu_{f}^{\prime}-\dot{\mu}_{f}^{\prime}=\mu_{f}^{\prime} \varphi_{f} \sigma_{f}^{d}+\mu_{f}^{\prime \prime} P_{Y}^{f}\left[\frac{Y_{f}}{M_{f}}\left(1-\sigma_{f}^{d}\right)-\varsigma K_{f}\right], \\
\rho \mu_{f}^{\prime \prime \prime}-\dot{\mu}_{f}^{\prime \prime \prime} & =\frac{\partial}{\partial Q} \rightarrow & \rho \mu_{f}^{\prime \prime \prime}-\dot{\mu}_{f}^{\prime \prime \prime}=0 . \tag{B.32}
\end{array}
$$

Notice that, from (B.29)-(B.30) and definition $R_{h}=\theta R_{f}$, we have

$$
\begin{align*}
& P_{R} \tilde{R}_{f}=\left(1-\sigma_{f}^{d}\right) \gamma P_{Y}^{f} \tilde{Y}_{f}, \tag{B.33}\\
& P_{R} \tilde{R}_{h}=\left(1-\sigma_{f}^{d}\right) \gamma \tilde{\theta} \cdot P_{Y}^{f} \tilde{Y}_{f}, \tag{B.34}
\end{align*}
$$

so that expenditures equal ${ }^{28}$

$$
\begin{align*}
& \tilde{E}_{f}=\left[1+\left(1-\tilde{\sigma}_{f}^{d}\right) \gamma \tilde{\theta}\right] \cdot P_{Y}^{f} \tilde{Y}_{f}, \tag{B.35}\\
& \tilde{E}_{f}^{x}=\alpha\left(1-\tilde{\sigma}_{f}^{d}\right) \cdot P_{Y}^{f} \tilde{Y}_{f}, \tag{B.36}\\
& \tilde{E}_{f}^{c}=(1-\alpha+\gamma \tilde{\theta})\left(1-\tilde{\sigma}_{f}^{d}\right) \cdot P_{Y}^{f} \tilde{Y}_{f}, \tag{B.37}\\
& \tilde{E}_{f}^{d}=\tilde{\sigma}_{f}^{d} \cdot P_{Y}^{f} \tilde{Y}_{f} . \tag{B.38}
\end{align*}
$$

Step 3. Derivation of result (28). The efficient relative resource use $\tilde{\theta}$ is obtained as follows. Assume a symmetric equilibrium in which both Home and Foreign exhibit a $C E$-allocation. From the balanced trade condition (A.26), we have $P_{R} R_{h}+(1-\epsilon) E_{h}^{c}=$

[^2]ϵE_{f}^{c} where we can use (B.16) and (B.37) to eliminate E_{h}^{c} and E_{f}^{c}, respectively, and also use (B.12) to eliminate $P_{R} R_{h}$, obtaining
\[

$$
\begin{equation*}
\frac{1-\tilde{\sigma}_{h}^{d}}{1-\tilde{\sigma}_{f}^{d}} \cdot \frac{P_{Y}^{h} \tilde{Y}_{h}}{P_{Y}^{f} \tilde{Y}_{f}}=\frac{\epsilon(1-\alpha+\gamma \tilde{\theta})}{\gamma+(1-\epsilon) \beta} \tag{B.39}
\end{equation*}
$$

\]

where tildas denote conditionally-efficient values. Taking the ratio between (B.12) and (B.34) we have

$$
\begin{equation*}
\tilde{\theta}=\frac{1-\tilde{\sigma}_{h}^{d}}{1-\tilde{\sigma}_{f}^{d}} \cdot \frac{P_{Y}^{h} \tilde{Y}_{h}}{P_{Y}^{f} \tilde{Y}_{f}} \tag{B.40}
\end{equation*}
$$

Combining (B.40) with (B.39) we obtain

$$
\begin{equation*}
\tilde{\theta}=\frac{\epsilon}{1-\epsilon} \cdot \frac{1-\alpha}{\gamma+\beta}=\frac{\epsilon}{1-\epsilon} \tag{B.41}
\end{equation*}
$$

which proves result (28) in the main text. Also note that since relative resource use $\tilde{\theta}$ is constant over time, combining systems (B.35)-(B.38) with (B.14)-(B.22) implies constant propensities to spend output among its competing uses within each country. As a consequence, the "efficient" policies that decentralize the symmetric CE-equilibrium are characterized by constant R\&D subsidies and taxes in each country over time.

[^0]: ${ }^{26}$ Since $R=R_{h}+R_{f}$ and $\theta=\bar{\theta}$, the intertemporal resource constraint (10) can be written as $Q_{0}=\int_{0}^{\infty} R_{f}(t)(1+\bar{\theta}) d t$ and directly integrated to obtain $R_{f}(0)$ in (B.6), from which $R_{h}(0)$ can be obtained as $\bar{\theta} R_{f}(0)$.

[^1]: ${ }^{27}$ Plugging (B.12) in constraint (17) we have (B.14). Plugging (B.10) in technology $E_{h}^{k}=P_{Y}^{h} \varsigma M_{h} K_{h}$ yields (B.15). Plugging (B.10) and (B.12) in (B.7) we have (B.16). Equation (B.17) is determined residually by $\tilde{E}_{h}^{d}=\tilde{E}_{h}-\tilde{E}_{h}^{k}-\tilde{E}_{h}^{c}$.

[^2]: ${ }^{28}$ Plugging (B.34) in (18) yields (B.35). Plugging (B.27) in technology $E_{f}^{k}=P_{Y}^{f} \varsigma M_{f} K_{f}$ yields (B.36). Plugging (B.27) and (B.34) in (B.23) we have (B.37). Equation (B.38) is determined residually by $\tilde{E}_{f}^{d}=\tilde{E}_{f}-\tilde{E}_{f}^{k}-\tilde{E}_{f}^{c}$.

