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A Background

The Household Registration System (HRS, or Hukou) heavily regulates the internal migra-

tion in China. The Hukou system records the legal residence and the family relationship of

each person in China. Migrants without local Hukou had limited access to local healthcare,

education, and welfare, and obtaining local Hukou was difficult, often requiring the purchase

of a local residence, stable employment and income, and high education and talent. Despite

these restrictions, the internal migration in China grew rapidly in the 1990s, with the total

floating population rising from 21 million in 1990 to 102 million in 2000.1 Since 2003, the

central government has gradually made local welfare accessible to migrants without local

Hukou. For example, migrants without local Hukou only needed to provide proof of local

residence and legal employment to get their children to attend a local school. At the same

time, the central government relaxed the requirement for migrants to acquire local Hukou,

starting with the smaller cities. In part as a result of these policy changes, the total floating

population grew and reached 253 million in 2014. Our study highlights a period when these

restrictions on internal migration were being relaxed.

In part because of the remaining Hukou restrictions, family separation characterizes the 

experience of many internal migrants in China. For example, it is common for working-age 

individuals to migrate and leave their young children and aging parents behind. According to 

Wei (2022), in 2020, nearly half of the rural out-migrating parents in China left their children 

behind. These children, commonly referred to as the “left-behind children,” have increased 

risk of depression, anxiety, suicidal ideation, conduct disorder, substance use, wasting, and 

stunting (Fellmeth et al., 2018). Similarly, the parents that are left behind experience lower 

utility due to less physical care and psychological support from their out-migrating children 

(Cai et al., 2022), creating the “empty nest syndrome.” Another distinct feature of partial 

out-migration is the remittances sent by the migrants to their origin households. Cheng

1See Report on China’s Migrant Population Development. https://new.qq.com/omn/20181227/2018

1227A0F4MY.html (in Chinese)
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and Xu (2005) estimate that, in 2005, the total remittances sent by rural migrants to their

families ranged from 191 to 330 billion Yuan. These remittances increase consumer demand

in their origins and boost the local economy.

In addition to the Hukou restrictions, partial out-migration also results from the differ-

ential response to incentives to migrate, in this case, finding a good job, by family mem-

bers of different age groups. In contrast, family members of different age groups likely

respond similarly to other incentives, such as local food price levels, which, in turn, lead to

whole-household out-migration. Nevertheless, partial out-migration and whole-household

out-migration should not be seen as completely distinct outcomes. In fact, households

with existing partial out-migrants are more likely to later whole-household out-migrate than

households without existing partial out-migrants. In this way, partial out-migration can be a

necessary first step towards whole-household out-migration. Assessing whether air pollution

affects the first step and/or the second step is one of the objectives of this paper.

Although rarely quoted as the primary reason to migrate, air pollution can be a conclusive

one. The Chinese government enacted the Ambient Air Quality Standard (GB3095-1996) in

1996 and started disclosing air pollution information. These data reveal a gradual worsening

of air quality until 2013, when the State Council enacted the Air Pollution Prevention and

Control Action Plan, which marked the beginning of a series of measures by the central

government to combat air pollution. As a result, air pollution in China steadily declined.

According to data from the Ministry of Ecology and Environment, the particulate matter

with a diameter of less than 10 micrometers (PM10) concentrations dropped by 22.7% across

Chinese cities from 2013 to 2017.2 Thus, the amount of air pollution in China peaked after

the time period considered in the second part of our analysis and before the time period

considered in the first part of our analysis. To the extent that people only responded to air

pollution when the air pollution was severe, the second part of our analysis, which covers an

earlier time period when the air quality in China was worse, might reveal a more substantial

2https://xmexpo.cn/216597.html (in Chinese)
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effect.

Among the primary air pollutants, particulate matter causes severe damage to residents’ 

cardiopulmonary system. At low concentrations of particulate matter in the context of the 

U.S., a 10 µg/m3 increase in particulate matter concentration has been shown to decrease life 

expectancy by 0.6 year (Pope III et al., 2009), increase heart failure by 1.3% (Dominici et al., 

2006), and lead to four-seven more infant deaths per 10,000 live births (Chay and Greenstone, 

2003). For this reasons, we center on fine particulate matter concentrations to measure air 

pollution, specifically particulate matter with a diameter of less than 2.5 micrometers (PM2.5) 

concentrations. Compared to PM10, the finer PM2.5 can reach the lower regions of the 

respiratory tract, and is more closely linked to adverse respiratory health effects (Choi et al., 

2004).

B Spatial distribution of air pollution in China

Figures A1 and A2 demonstrate the spatial distribution of annual average PM2.5 concentra-

tions across cities in China in 2014 and 2016, respectively. Air pollution was most severe in 

North China and Central China. From 2014 to 2016, a decline existed in air pollution across 

China, with the decline being the most substantial where air pollution was the most severe.

C Locations of the CLDS sample

We use the panel component of the 2014 and 2016 CLDS, i.e., 7,744 households that were

interviewed in 2014 and 2016. Figure A3 depicts the locations of cities represented by this

panel.
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Figure A1. Spatial distribution of annual average PM2.5 concentrations in 2014.
Note: The map was created based on remote-sensing satellite data provided by Hammer et al. 

(2020) and Van Donkelaar et al. (2019).
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Figure A2. Spatial distribution of annual average PM2.5 concentrations in 2016.
Note: The map was created based on remote-sensing satellite data provided by Hammer et al. 

(2020) and Van Donkelaar et al. (2019).
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Figure A3. Cities represented by the 2014 and 2016 CLDS samples.
Notes: The cities represented by the panel component of the 2014 and 2016 CLDS samples are denoted blue.

For confidentiality reasons, the CLDS does not provide geographic identifiers within a city.
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D Choice of exclusion distance

To select the exclusion distance that makes the instrument satisfy both relevance and the

exclusion restriction, we summarize the correlation between air quality measures and observ-

able local economic activities variables collected from the China City Statistical Yearbook

in table A1. The air quality measures are in the top row of table A1 and comprise average 

PM2.5 concentrations, pollution from sources>50 km, pollution from sources>80 km, and

pollution from sources>120 km. The local economic activities variables are in the left-most

column. The numbers in the parentheses are the standard errors while regressing an air qual-

ity measure on a city characteristic one characteristic at a time on a sample of cities. One

of the observable local economic activities variables, gross industrial output, is correlated

with average PM2.5 concentrations, but no observable local economic activities variable is

correlated with air pollution from distant sources.

E Marginal effects as implied by the conditional logit

model

To compare the effect of air pollution in the origin on out-migration between the linear model 

and the conditional logit model, we translate the coefficient estimates i n the conditional logit 

model i nto marginal effects with equation (5). The effect i s the largest when the probability of 

choosing a city i s 0.5 and the smallest when the probability of choosing a city i s zero or one. 

It i s the case, because, when the probability of choosing a city i s 0.5, whether someone there 

out-migrated i s most marginal; i n contrast, when the probability of choosing a city i s zero or 

one, no out-migration occurred. That i s, changing the coefficient estimates of α and γ only 

changes the scale of the marginal effect. We plot the effect of air pollution i n the origin on out-

migration over the probability that a city was chosen as i mplied by the conditional logit 

model. Figure A4 shows this plot. Since the probability of  choosing the  person’s  current
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Table A1. Correlation between air pollution measures and local characteristics
Average
PM2.5 

concentra-
tions

Pollution
from

sources>50
km

Pollution
from

sources>80
km

Pollution
from

sources>120
km

Average PM2.5 concentrations 1 0.407 0.446 0.338
(0) (0.060) (0.058) (0.061)

Per capita GDP (in million Yuan) 0.078 -3.060 -1.800 -3.044
(2.037) (2.132) (2.130) (2.123)

Gross industrial output 261.967 -0.590 49.522 6.246
(101.726) (108.599) (108.123) (108.141)

(in quadrillion Yuan)
Unemployment rate -1.466 3.246 2.476 1.429

(2.435) (2.575) (2.568) (2.569)

Notes: Each cell contains the correlation between the corresponding city characteristic (listed in the left-
hand column) and the measure of air quality (listed in the top row) in the city. The air quality measures are
average PM2.5 concentrations, air pollution from sources more than 50 km away from the receiving city, air
pollution from sources more than 80 km away from the receiving city, and air pollution from sources more
than 120 km away from the receiving city. The numbers in parentheses are the standard errors while
regressing an air quality measure on a city characteristic one characteristic at a time on a sample of cities.
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Figure A4. Effect of air pollution in the origin on out-migration as implied by the conditional 
logit model.
Note: This figure plots the effect of air pollution in the origin on out-migration over the probability that a city

was chosen as implied by the conditional logit model.
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city as implied by the model ranges from 0.91 to 1, the magnitude of the effect in this range is

comparable to that of the linear model.

F Robustness

Tables A2, A3, and A4 present robustness checks for partial out-migration, whole-household 

out-migration, and location choice, respectively. Firstly, since weather conditions may

determine air pollution, and can independently affect out-migration, in column (1) of table A2, 

we additionally control for weather conditions, including the annual averages of mean,

maximum, and minimum temperature, dew point, precipitation, and wind speed. Although

the magnitude of the coefficient estimate is larger than that of our baseline estimate, the

results are robust to the inclusion of these weather controls.

Secondly, the PM2.5 data are aggregated to the city level using city boundaries defined 

in 2019. Nevertheless, two cities in our sample, Liu’an and Kashi, ceded the jurisdiction of a 

portion of the cities to other cities between 2014 and 2019. The PM2.5 concentrations expe-

rienced by people in our sample who were potentially in the ceded areas may be incorrectly 

measured by the PM2.5 concentrations of the cities overtaking these areas. Thus, column (2) of 

table A2 estimates equation (1), excluding Liu’an and Kashi. The results are robust to the 

exclusion of these two cities.

Thirdly, as mentioned in section 3.2 of the paper, we choose 80 km as the exclusion 

distance within which the emissions do not count toward air pollution from distant sources

in our baseline results. We now test the robustness of our results to alternative exclusion

distances. This exercise is critical, because increasing this exclusion distance also reduces

the measurement error due to a source city being partially in the prevailing direction of a

receiving city. In particular, the emission level of a source city partly lying in the prevailing

wind direction but whose centroid lies outside the prevailing wind direction does not count

toward the IV of the receiving city. It mainly presents a problem for the source cities closer
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Table A2. Robustness - partial out-migration 
Dependent var.: Having a migrant in the household

(1) (2) (3) (4) (5) (6) (7)
IV IV IV IV IV IV IV

80 km 80 km 50 km 120 km 80 km 80 km 80 km
Emission Emission Emission Emission Emission PM2.5 Emission

IV Exclusion distance:
IV Pollution measure:  
Average PM2.5 concentrations 0.261 0.219 0.206 0.143 0.203 0.090 0.161

(0.103) (0.060) (0.059) (0.084) (0.122) (0.024) (0.102)

Weather controls Yes No No No No No No
Exclude cities that changed boundaries No Yes No No No No No
Alternative exclusion distance for IV No No Yes Yes No No No
Cluster standard errors at the city level No No No No Yes No No
Air pollution before interview dates No No No No No Yes No
Rotate wind direction by 90 degrees No No No No No No Yes
R2 0.08 0.07 0.07 0.08 0.07 0.05 0.08
Mean of Dep. var. 0.281 0.279 0.281 0.281 0.281 0.281 0.258
F 25.543 38.813 38.677 37.802 11.059 39.860 49.888
N 14046 13870 14046 14046 13976 14046 14046

Notes: The average PM2.5 concentrations, PM2.5 from distant sources, and air pollution from distant sources are normalized to z-scores. All
regressions have per capita GDP, gross industrial output, and the unemployment rate as city-level controls and age, years of education, and Hukou
of the household head, as well as total family income as household-level controls. In addition, column (1) controls for weather conditions, including 
the annual averages of mean temperature, maximum temperature, minimum temperature, dew point, precipitation, and wind speed. Column (2)
excludes Liu’an and Kashi, two cities in the sample that ceded the jurisdiction over a portion of the cities to other cities between 2014 and 2019.
Column (3) and column (4) apply 50 km and 120 km, respectively, as the exclusion distances in constructing the instrument. Standard errors are 
clustered at the household level in all regressions except in column (5), which clusters the standard errors at the city level. Column (6) adopts 
PM2.5 data from land-based monitoring stations between May 13th and June 12th of each survey year to measure air pollution, and uses the
average PM2.5 concentration of this month in each source city in constructing the instrument for a receiving city. Column (7) conducts a
falsification test by rotating the prevailing wind direction of each receiving city clockwise by 90 degrees. Standard errors are in parentheses.
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Table A3. Robustness - whole-household out-migration

Dependent var.: Whole household moved Away by 2016
(1) (2) (3)
IV IV IV

IV Exclusion distance: 50 km 120 km 80 km
Changes in average PM2.5

concentrations from 2014 to 2016
0.124 0.063 0.065

(0.035) (0.058) (0.042)

Yes Yes NoAlternative exclusion distance for IV 
Recode HHs with left-behind elderly No No Yes

- - -
0.262 0.262 0.214

- - -

R2

Mean of Dep. var. 
F
N 9759 9759 9759

Notes: All regressions are estimated on a cross-section of the 2014 CLDS house-
holds not due to rotate out in 2016, and use changes in air pollution from distant
sources from 2014 to 2016 as the instrument for changes in average PM2.5 concen-
trations from 2014 to 2016. The average PM2.5 concentrations and air pollution
from distant sources are normalized to z-scores. All regressions have the changes in
per capita GDP, gross industrial output, and the unemployment rate as city-level
controls. None of the columns includes any fixed effect. Column (1) and column (2) 
apply alternative exclusion distances in constructing the instrument. Column (3)
reassigns all households consisting only of left-behind elderly people in 2014 and
disappeared in 2016 to the category of not having whole-household out-migrated.
All regressions apply sampling weights. Standard errors are in parentheses.
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Table A4. Robustness - coefficient estimates of conditional logit model

Dependent var.: City being chosen
(1) (2) (3)

GMM GMM GMMEstimation method:  
IV Exclusion distance: 50 km 80 km 120 km
Location PM2.5 -0.817 -2.003 -1.318

(0.167) (0.185) (0.349)

Current 9.090 9.765 19.142
(0.198) (1.502) (10.414)

Current×Location PM2.5 1.132 -0.140 -4.776
(0.139) (0.955) (4.532)

Distance -0.276 -0.692 -0.505
(0.028) (0.152) (0.119)

N 40390360 40390360 40390360

Notes: The sample is a retrospective panel from 2003 to 2010 constructed
from the 2014 individual-level CLDS. Each year, the individuals chose
among 214 cities, determined by the cities that all individuals in the sam-
ple chose across all sample years. Location PM2.5 and the instrument, air
pollution from distant sources, are standardized to z-scores. Column (1)
and column (3) apply alternative exclusion distances in constructing the 
instrument. Standard errors are in parentheses.
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to the receiving city, since the situation where only part of a source city lies in the prevailing

wind direction cone of the receiving city occurs for a smaller share of source cities of a specific

distance from the receiving city as the distance increases. Thus, increasing the exclusion

distance should reduce this measurement error, as closer-by source cities, comprising those

that only partly lie within the prevailing wind direction of the receiving city, do not count

toward the instrument.

Column (3) and column (4) of table A2 show the results for partial out-migration with 50 

km and 120 km, respectively, as the exclusion distances. Both coefficient estimates of 

AverageP M2.5ct are positive. The coefficient estimate with 50 km as the exclusion distance is 

statistically significant at the 1 per cent level, while the coefficient estimate with 120 km as the 

exclusion distance i s statistically signficant at the 10 per cent level. This i ndicates that our 

results f or partial out-migration are robust to alternative exclusion distances. Column (1) and 

column (2) of table A3 show the results f or whole-household out-migration with 50 km and 120 

km, respectively, as the exclusion distances. The coefficient estimates f or ∆PM2.5ct are 

positive and statistically significant with 50 km as the the exclusion distance, and positive but 

statistically i nsignificant with 120 km as the exclusion distance. Thus, we cannot reject the 

hypothesis that changes i n air pollution did not affect whole-household out-migration. In 

either case, however, whole-household out-migration was less responsive to air pollution than 

partial out-migration. Column (1) and column (3) of table A4 present the results for location 

choice with 50 km and 120 km, respectively, as the exclusion distances. The coefficient 

estimates for LocationP M2.5ijt are all negative and statistically significant, suggesting that 

the result that migrants were less likely to choose a city with more air pollution is robust to 

alternative exclusion distances. The coefficient estimates for the interaction term between 

Currentijt and LocationP M2.5ijt decline with the exclusion distance. The coefficient 

estimates for the interaction term may be particularly sensitive to the exclusion distance, 

because, compared to one’s knowledge of the economic opportunities of a city he/she was 

not currently in, his/her knowledge of the economic opportunities of
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his/her current city may extend beyond 50 km from his/her current city, making an instru-

ment with a smaller exclusion distance less capable of correcting the bias in the coefficient

estimate of the interaction term due to local economic activities.

Fourthly, thus far, we have clustered the standard errors at the household level to allow for

serial correlation in the error term in all panel data regressions. In the presence of household

fixed effects, the city effects are differenced out in the demeaned regression, thereby allowing

the error terms to correlate within a city, under the assumptions of the additive random

effects model. This addresses the concern that the model systematically overpredicts (or

underpredicts) the tendency to out-migrate in a city. Nevertheless, to allow for completely

non-parametric residual correlation within a city, column (5) of table A2 reports the results 

after clustering the standard errors in  equation (1) at the city level. The coefficient estimate 

is positive and statistically significant at the 10 per cent level.

Fifthly, as mentioned in section 2.2 of the paper, we measure the air quality that each

CLDS household experienced in each survey wave by the average PM2.5 concentration of

that calendar year of the city where the household resided. Nevertheless, no household

could respond to the air quality after the interview dates in that calendar year. Since the

majority of the CLDS surveys were conducted between July and August of each survey

year, we collect air quality data from land-based monitoring stations published by the China

National Environmental Monitoring Center for the month between May 13th and June 12th

of each survey year, and let their average be an alternative measure of air quality before the

interview dates.3 To construct an instrument based on air pollution from distant sources

before the interview dates, we measure air pollution from distant sources of a receiving city

by the average PM2.5 concentrations between May 13th and June 12th of each survey year

in source cities lying in the prevailing wind direction of the receiving city. The adoption of

3We collect daily air pollution data from land-based monitoring stations, because the remote-sensing
satellite data provided by Hammer et al. (2020) and Van Donkelaar et al. (2019) are only available at the
annual frequency. We choose the time window of a month between May 13th and June 12th, because daily
air pollution data from land-based monitoring stations have only been available since May 13th, 2014. To
the best of our knowledge, no study thus far has questioned the reliability of these recent data published by
the China National Environmental Monitoring Center.
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particulate matter concentration instead of emission level in the source city in calculating the

instrument is due to the unavailability of subannual emission level data, but is consistent with

the approach taken by Barwick et al. (2018). Column (6) of table A2 depicts the second-stage 

results. The coefficient estimate is positive and statistically significant, suggesting that our

results are robust to this alternative measure of air pollution before the interview dates.

Nevertheless, if households’ migration decisions responded to air pollution at all, they

most likely responded to the air pollution in the period immediately before the interview

dates, and households that were interviewed earlier should have responded to the air pollution

in an earlier time period compared to other households in the same city. In this sense, our

alternative measure of air pollution based on mean observations between May 13th and June

12th of each survey year may still measure the true air pollution each household experienced

with an error. The Classicial Errors in Variable Model predicts a potential attenuation bias

to the coefficient estimate for air pollution. The bias to the standard error is unclear, but

the t-statistic would be biased downwards. Furthermore, although the measurement error

may be larger the farther away the interview date was from the end date of the period that

our air pollution measure spanned, there is little reason to believe that local air pollution

determined interview dates. This avoids introducing any additional bias to the standard

error. In sum, the true migration response to air pollution could be larger than the response

we estimate.

Sixthly, as mentioned in section 3.2 of the paper, we test the validity of our IV approach 

based on wind directions by conducting a falsification test after rotating the wind direction of

each receiving city clockwise by 90 degrees. Column (7) of table A2 illustrates the second-stage 

results. The coefficient estimate is not statistically significant, a finding that corroborates the

validity of our IV approach.

Lastly, as mentioned in section 2.2 of the paper, we define a household as having whole-

household out-migrated if and only if the household not due to rotate out in 2016 existed in

the 2014 CLDS but not in the 2016 CLDS. It is possible that elderly people who were alive in
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2014 were more likely to die by 2016 given an increase in air pollution, and we might mistake

households that consisted only of left-behind elderly people in 2014 and disappeared from

the sample in 2016 due to the death of the elderly people for households that had whole-

household out-migrated. If the disappearance of a household in the 2016 CLDS is due to the

death of a left-behind elderly person, under the assumption that left-behind elderly people

were more likely to die given an increase in air pollution, our baseline estimate in table 3 of the 

paper will be an upper bound of the true estimate. We provide a lower bound of the true

estimate by reassigning all the households that consisted only of left-behind elderly people in

2014 and disappeared in 2016 to the category of not having whole-household out-migrated.

These reassigned households include those that consisted only of left-behind elderly people

in 2014 and had whole-household out-migrated by 2016 and those that consisted only of

left-behind elderly people in 2014 but whose disappearance in 2016 was due to the death

of an elderly person. Under the assumption that a household that consisted only of left-

behind elderly people was not less likely to whole-household out-migrate given an increase

in air pollution, this estimate after the reassignment is a lower bound of the true estimate.

Column (3) of table A3 presents the results of this exercise. The coefficient estimate is still 

positive and statistically insignificant, but slightly smaller in magnitude than the upper bound

provided by our baseline estimate in column (2) of table 3 in the paper. The lack of a 

substantial difference between the upper and lower bounds indicates that such a bias caused

by mistaking the death of an elderly person for the household having whole-household out-

migrated should be small.
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