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A Appendix

A1 The saving rate: Proposition 1

Proof. Using the definition for the saving rate and the c onstant Φ(φ2, α; Ψ ) which fully 

characterizes the level of idiosyncratic risk in this economy, note that equation (18) can be 

rewritten as

1 = αβ(1− τK
t+1)

[ Kt+1
st
− Kt+1

Kt+1

]
Φ(φ2, α; Ψ) (A.1)

= αβ(1− τK
t+1)

[
1− st

st

]
Φ(φ2, α; Ψ) (A.2)

and solving for st yields the saving rate in general equilibrium as a function of capital

income taxes and idiosyncratic risk. �

A2 First-best allocations: Proposition 2

Proof. Here, as in Krueger et al. (2021), the government would like to maximize the fol-

lowing social welfare function using arbitrary welfare weights, δt,

max
{C1,t,C2,t(χt),Kt+1,Et}∞

t=0

δ−1

∫
log C2,0(χ0)dΨ(χ0) (A.3)

+
∞

∑
t=0

δt

[
log C1,t + β

∫
log C2,t+1(χt+1)dΨ(χ)

]

subject to resource constraint and the initial capital K0,

C1,t +
∫

C2,t(χt+1)dΨ + Kt+1 = Yt (A.4)
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Since the government is not constrained in the transfers it can implement, it is optimal 

to provide full insurance such that C2,t = C2,t(χt) for each realization of χt and for all t. 

Then, the problem reduces to

max
{C1,t,C2,t,Kt+1,Et}∞

t=0

δ−1 log C2,0 +
∞

∑
t=0

δt [log C1,t + β log C2,t+1] (A.5)

subject to the resource constraint

C1,t + C2,t + Kt+1 = Yt (A.6)

and the initial capital as before. Let µt be the Lagrange multiplier related to the feasibility 

constraint. The first-order conditions associated with this problem are then

δt

C1,t
= µt (A.7)

δtβ

C2,t+1
= µt+1 (A.8)

1
FKt+1

=
µt+1

µt
(A.9)

∑∞
i=1

µt+i

µt
θiYt+i = FEt (A.10)

However, in order to maintain the same assumption about welfare weights as in the 

benchmark model, let γ = δt+1 < 1.1 Then, it is easy to check that consumption acrossδt

generations and the Euler equation are given by

1See Gerlagh et al. (2017) for a complete characterization of climate policies with welfare weights.
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C2,t =
β

γ
C1,t (A.11)

C2,t+1 = βrt+1C1,t (A.12)

And then it follows that

C1,t =
γ

γ + β
[Yt − Kt+1] (A.13)

C2,t =
β

γ + β
[Yt − Kt+1] (A.14)

By substituting the previous expression into the Euler equation, and using the fact that

rt+1 = αYt+1
Kt+1

one obtains,

1− Kt+2

Yt+1
= αγ

[
Yt

Kt+1
− 1
]

(A.15)

It is then straightforward to show, using the definition for the saving rate, that the optimal 

saving rate is constant over time and given by

s∗ =
αγ

(1− φ2)(1− α)
(A.16)

as required. To get the optimal carbon price, we use the fact that the carbon tax uses the

market interest rate to discount future marginal costs as mentioned before, and that the

optimal saving rate is constant so that the investment share is Kt+1
Yt

= αγ,
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τE
t = ∑∞

i=1
1

∏i
j=1 rt+j

θiYt+i (A.17)

=
Yt

Yt
∑∞

i=1
1

∏i
j=1

αYt+j
Kt+j

θiYt+i

= Yt ∑∞
i=1 γiθi

�

A3 Second-best allocations: Proposition 3

Proof. Similar to the primal approach, the government would choose the optimal saving

rate in this context and it would use capital income taxes to decentralize it, which can

be derived using the result in Proposition 1. Thus, the government maximizes lifetime

utility of current and future generations,

max
{Kt+1}∞

t=0

∞

∑
t=0

γt
[

log C1,t + β
∫

log C2,t+1(χt+1)dΨ(χ)

]
(A.18)

By using the budget constraint for the households and the first-order conditions from the 

firms’ problem, the previous problem can be written as

max
{Kt+1}∞

t=0

∞

∑
t=0

γt [log[(1− φ2)(1− α)Yt − Kt+1] + β log Yt+1 + “terms"] (A.19)

where “terms” are aggregate terms which do not depend on control variables. Using the 

definition for the saving rate, the first-order condition with respect to aggregate capital,
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Kt+1, implies that

st

1− st
= αβ +

αγ

1− st+1
(A.20)

It follows that the optimal saving rate that satisfies this condition, as noted in (23), is 

constant and given by

s =
α(β + γ)

1 + αβ
∀t (A.21)

The implementation of this saving rate relies on the availability of capital income taxes. 

From (19), it turns out that the optimal capital tax is constant over time and chosen such 

that

α(β + γ)

1 + αβ
=

1
1 + 1

αβ(1−τK)Φ(φ2,α;Ψ)

(A.22)

And solving for the capital tax, it follows

1− τK =
β + γ

β(1− αγ)Φ(φ2, α; Ψ)
(A.23)

as desired. The last part of the proposition deals with optimal climate policy. Notice that 

the saving rate in this second-best scenario implies the following investment share:

Kt+1

Yt
=

α(β + γ)(1− φ2)(1− α)

1 + αβ
(A.24)

So that the carbon price can be derived as
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τE
t = ∑∞

i=1
1

∏i
j=1 rt+j

θiYt+i (A.25)

=
Yt

Yt
∑∞

i=1
1

∏i
j=1

αYt+j
Kt+j

θiYt+i

= Yt ∑∞
i=1 γ̂iθi

where the adjusted discount factor is, γ̂ ≡ (β+γ)(1−φ2)(1−α)
1+αβ . �
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