Transboundary air pollution and health: evidence from East Asia *

Jaehyun Jung^{\dagger} Anna Choi^{\ddagger} Semee Yoon^{\S}

ONLINE APPENDIX

[†]Korea Institute of Public Finance, Sejong-si, Republic of Korea.

- [‡]Department of Public Administration, Sejong University, Seoul, Republic of Korea.
- [§]Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea. Corresponding author. Email: yoonsemee@yonsei.ac.kr

Appendix 1. Figures

Figure A1. Daily PM_{2.5} concentration in Beijing and Seoul in Feb. 2014

Notes: The figure plots the PM_{2.5} concentration level in Beijing, China (solid line, left vertical axis) and in Seoul, South Korea (dotted line, right vertical axis) in February 2014.

Figure A2. Daily wind patterns by month in Seoul, South Korea in 2010-2012

Notes: This figure plots the histogram of daily wind directions and speeds. Winds blow from the direction in which the shapes are pointing. For example, in January, winds mostly blow from WNW, and the wind is strongest among all seasons.

Figure A3. Backtrajectory analysis of high PM_{2.5} days by season in 2013

Notes: Using the readings from one station in Seoul, South Korea, we choose the days with the highest readings of $PM_{2.5}$ for each season in 2013. Then, we calculate 72-hour back trajectories for every hour on that day to identify air mass pathways using NOAA HYSPLIT MODEL Backward trajectories. The arrival point at 00 UTC on each high- $PM_{2.5}$ episode is Seoul (37.57 N, 126.97 E), and 1000m above the surface is settled as the arrival height for given boundary layers. Each panel displays ten 72-hour back trajectories for every 24 hours, and each point represents a six-hour trajectory. The readings of $PM_{2.5}$ were $76.5\mu g/m^3$, $71.9\mu g/m^3$, $62.5\mu g/m^3$ and $51.75\mu g/m^3$ on Jan 13, Apr 5, Jul 26 and Nov 23, 2013, respectively.

Figure A4. Cities and pollution monitors in South Korea

Notes: Blue squares denote the pollution monitors in residential areas. Region 1 (light gray) includes 14 cities. Region 2 (darker gray) includes the remaining 7 cities.

0

Figure A5. Distributions of daily mean PM level in Beijing and in Korea

Notes: Figures plot the kernel density estimation on the distributions of daily mean PM levels by season in Beijing and in Korea. Red solid lines denote the WHO guidelines for daily exposure to $PM_{2.5}$ ($25\mu g/m^3$) and PM_{10} ($50\mu g/m^3$), respectively.

Figure A6. Locations of pollution monitors in China

Notes: The blue dot at 12 o'clock represents the monitor located at the U.S. embassy in Beijing. Shenyang is at 1 o'clock, Shanghai at 5, Guangzhou is at 7, and Chengdu is at 8, respectively.

Figure A7. Seasonality of daily fetal mortality rates by region in South Korea

Notes: Linear fits and Lowess are overlaid to detect possible trends and seasonalities over the scatter plots of daily fetal mortality rates.

Figure A8. Effects of Beijing's $PM_{2.5}$ level on local pollution levels in South Korea by region

Notes: Each panel provides the standardized point estimates and the corresponding 95% confidence intervals from linear regressions of the daily mean of five major pollutant levels in cities in South Korea on lags and leads of Beijing $PM_{2.5}$ level from t - 5 to t + 5, respectively.

Figure A9. Effects of Beijing's PM_{2.5} (from t - 5 to t + 5) on daily fetal mortality rates (\geq 20 and \geq 28 weeks) in South Korea

Notes: Each panel provides the point estimates and the corresponding 95 percent confidence intervals from linear regressions of daily fetal mortality rates (≥ 20 weeks in Panel (a) and ≥ 28 weeks in Panel (b)) in South Korea on lags and leads of Beijing PM_{2.5} level from t - 5 to t + 5 using equation (2).

Notes: Each panel provides the point estimates and the corresponding 95% confidence intervals from linear regressions of daily fetal mortality rate (≥ 16 weeks) in South Korea on lags and leads of Beijing PM_{2.5} level from t - 5 to t + 5 by public heating seasons in Beijing, China. Panel (a) shows the effects during the heating season and Panel (b) shows the effects during non-heating season in China.

Figure A11. Effects of Beijing's $PM_{2.5}(t - 1)$ deciles on levels of major pollutants and daily fetal mortality rate (≥ 16 weeks) in South Korea

Notes: The figure plots the estimated coefficients and the 95% confidence intervals from regressions of five major air pollution levels and fetal mortality rates on the dummies for each 10th percentile (decile) of Beijing's PM_{2.5} (t - 1) distribution in 2009-2013. The omitted category is the 1st decile.

Figure A12. Effects of Beijing's $PM_{2.5}(t - 1)$ deciles on meteorological optical ranges in three cities in Region 1 of South Korea

Notes: The figure plots the estimated coefficients and 95% confidence intervals from a regression of meteorological optical ranges in three cities in Region 1 of South Korea on the dummies for each 10th percentile (decile) of Beijing's PM_{2.5} (t - 1) distribution. The omitted category is the 5th decile.

Figure A13. Effects of high PM events on pollutant levels and fetal mortality rates in South Korea

Notes: This figure plots the coefficients on the indicators for *n* days away from high $PM_{2.5}$ episodes occurring at n = 0 in the regression estimating the effect on local pollution levels (Panel (a)) and daily fetal mortality rates (Panel(b)) in South Korea. The vertical bars refer to the 95% confidence intervals. Panel (a) provides the standardized point estimates, and the gray line denotes daily average $PM_{2.5}$ concentration levels in Beijing from 5 days before and after the 9th-decile event.

Notes: This figure plots the coefficients on the indicators for *n* days away from high $PM_{2.5}$ episodes occurring at n = 0 in the regression estimating the effect on local pollution levels (Panel (a)) and daily fetal mortality rates (Panel(b)) in Region 1, South Korea. The vertical bars refer to the 95% confidence intervals. Panel (a) provides the standardized point estimates, and the gray line denotes daily average $PM_{2.5}$ concentration levels in Beijing from 5 days before and after the 9th-decile event.

Notes: This figure plots the coefficients on the indicators for *n* days away from high $PM_{2.5}$ episodes occurring at n = 0 in the regression estimating the effect on local pollution levels (Panel (a)) and daily fetal mortality rates (Panel(b)) in Region 2, South Korea. The vertical bars refer to the 95% confidence intervals. Panel (a) provides the standardized point estimates, and the gray line denotes daily average $PM_{2.5}$ concentration levels in Beijing from 5 days before and after the 9th-decile event.

Appendix 2. Tables

Dependent	Daily Fetal Mortality Rate					
variables	\geq 16 weeks		\geq 20 v	weeks	\geq 28 weeks	
	(1)	(2)	(3)	(4)	(5)	(6)
Beijing $PM_{2.5}(t-1)$	0.0021*	0.0021	-0.0005	-0.0005		
	(0.0012)	(0.0013)	(0.0006)	(0.0006)		
Observations	36,020	36,020	36,020	36,020		
R-squared	0.039	0.039	0.020	0.021		
Mean of Dep. Var.	9.649	9.649	2.731	2.731		
Controls						
City FE	Yes	Yes	Yes	Yes		
Temporal Controls	Yes	Yes	Yes	Yes		
Weather Controls	Yes	Yes	Yes	Yes		
Linear time trend		Yes		Yes		
Quadratic time trend		Yes		Yes		

Table A1. Effects of Beijing $PM_{2.5}$ (t – 1) on daily fetal mortality rates in South Korea (hourly observations \geq 20 per day)

Notes: This table contains results from equation (2). Regressions are weighted by the number of live births in a city. Robust standard errors are shown in parentheses and clustered at the city level. * Significant at the 10% level.

	PM _{2.5} Concentration in South Korea ($\mu m/m^3$)						
	(1)	(2)	(3)	(4)	(5)		
Panel (a): All Regions	3						
Beijing $PM_{2.5}$ (t – 1)	0.0433***	0.0413***	0.0121***	0.0119***	0.0101***		
, ,	(0.0055)	(0.0039)	(0.0029)	(0.0030)	(0.0027)		
Observations	2,780	2,780	2,780	2,780	2,780		
R-squared	0.063	0.171	0.424	0.425	0.428		
Mean of Dep. Var.	25.006	25.006	25.006	25.006	25.006		
Panel (b): Seoul in Reg	gion 1						
Beijing $PM_{2.5}$ ($t-1$)	0.0492***	0.0465***	0.0166***	0.0164***	0.0143***		
	(0.0058)	(0.0031)	(0.0013)	(0.0015)	(0.0015)		
Observations	1,420	1,420	1,420	1,420	1,420		
R-squared	0.077	0.194	0.463	0.464	0.467		
Mean of Dep. Var.	24.180	24.180	24.180	24.180	24.180		
Panel (c): Busan in Region 2							
Beijing $PM_{2.5}$ (t – 1)	0.0235***	0.0243***	-0.0007	-0.0008	-0.0019		
	(0.0033)	(0.0035)	(0.0025)	(0.0029)	(0.0028)		
Observations	1,360	1,360	1,360	1,360	1,360		
R-squared	0.023	0.084	0.420	0.421	0.423		
Mean of Dep. Var.	25.868	25.868	25.868	25.868	25.868		
Panel (d): Seoul in Region 1 excluding JulSep.							
Beijing $PM_{2.5}$ ($t-1$)	0.0509***	0.0517***	0.0194***	0.0191***	0.0165***		
	(0.0067)	(0.0058)	(0.0031)	(0.0032)	(0.0024)		
Observations	1,071	1,071	1,071	1,071	1,071		
R-squared	0.088	0.150	0.477	0.478	0.483		
Mean of Dep. Var.	26.367	26.367	26.367	26.367	26.367		
Controls							
City FE	Yes	Yes	Yes	Yes	Yes		
Temporal Controls	100	Yes	Yes	Yes	Yes		
Weather Controls			Yes	Yes	Yes		
Linear time trend				Yes	Yes		
Quadratic time trend					Yes		

Table A2. Effects of Beijing's PM_{2.5} level in t-1 on local PM_{2.5} level in t in South Korea

Notes: This table contains results of regressions of the local $PM_{2.5}$ level in South Korea on oneday lagged $PM_{2.5}$ level in Beijing. Panel (a) presents results from the entire sample, while panel (b) uses a sample of Seoul in Region 1, and panel (c) for Busan in Region 2. Panel (d) uses a select sample of Seoul for non-summer days. Robust standard errors are shown in parentheses and clustered at the city level. *** Significant at the 1% level.

Dependent	Daily Perinatal Mortality Rate				
variables	Perinatal	mortality rate 1	Perinatal mortality rate 2		
	(1) (2)		(3)	(4)	
Beijing $PM_{2.5}$ (t – 1)	0.0021*	0.0021	-0.0006	-0.0006	
, ,	(0.0010)	(0.0010)	(0.0005)	(0.0005)	
Observations	35,934	35,934	35,934	35,934	
R-squared	0.039 0.040		0.020	0.021	
Mean of Dep. Var.	9.649 9.649		2.731	2.731	
Controls					
City FE	Yes	Yes	Yes	Yes	
Temporal Controls	Yes	Yes	Yes	Yes	
Weather Controls	Yes	Yes	Yes	Yes	
Local PM ₁₀ Levels	Yes	Yes	Yes	Yes	
Linear time trend		Yes		Yes	
Quadratic time trend		Yes		Yes	

Table A3. Effects of Beijing $PM_{2.5 t-1}$ on daily perinatal mortality rates in South Korea

Notes: This table contains results from equation (2). Perinatal mortality rate 1 uses the fetal deaths at gestational age at 20 weeks or more and the infant deaths within 28 days after birth. Perinatal mortality rate 2 uses the fetal deaths at gestational age at 28 weeks or more and the infant deaths within 7 days after birth. Regressions are weighted by the number of live births in a city. Robust standard errors are shown in parentheses and clustered at the city level. *Significant at the 10% level.

Dependent	Daily Fetal Mortality Rate					
variables	\geq 16 weeks		\geq 20 weeks		\geq 28 weeks	
	(1)	(2)	(3)	(4)	(5)	(6)
Local $PM_{10}(t)$	0.2249**	0.3107*	0.1884***	0.2455**	0.0235	0.0391
	(0.1117)	(0.1663)	(0.0720)	(0.1119)	(0.0316)	(0.0434)
Observations	36,007	36,007	36,007	36,007	36,007	36,007
R-squared	-0.008	-0.065	-0.032	-0.081	0.010	0.001
Mean of Dep. Var.	14.150	14.150	8.636	8.636	1.982	1.982
Controls						
City FE	Yes	Yes	Yes	Yes	Yes	Yes
Temporal Controls	Yes	Yes	Yes	Yes	Yes	Yes
Weather Controls	Yes	Yes	Yes	Yes	Yes	Yes
Linear time trend		Yes		Yes		Yes
Quadratic time trend		Yes		Yes		Yes

Table A4. Effects of local PM_{10} on daily fetal mortality rates in South Korea using Beijing's $PM_{2.5 t-1}$ level as instrument

Notes: This table contains results from equation (2). Regressions are weighted by the number of live births in a city. Robust standard errors are shown in parentheses and clustered at the city level. *** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

Dependent	Daily Fetal Mortality Rate					
variables	\geq 16 weeks		\geq 20 weeks		\geq 28 weeks	
	(1)	(2)	(3)	(4)	(5)	(6)
Beijing $PM_{2.5}(t-1)$	0.0025*	0.0028*	0.0025**	0.0025**	0.0006	0.0007
	(0.0013)	(0.0014)	(0.0011)	(0.0012)	(0.0006)	(0.0006)
Beijing PM _{2.5} $(t - 1) \times$ Wind (180-270 degrees)	0.0049**	0.0049**	0.0024*	0.0024*	-0.0010	-0.0010
	(0.0018)	(0.0018)	(0.0012)	(0.0012)	(0.0007)	(0.0007)
Observations	36,020	36,020	36,020	36,020	36,020	36,020
R-squared	0.058	0.058	0.042	0.043	0.016	0.016
Mean of Dep. Var.	0.5499	0.5499	0.3373	0.3373	0.0759	0.0759
Controls						
City FE	Yes	Yes	Yes	Yes	Yes	Yes
Temporal Controls	Yes	Yes	Yes	Yes	Yes	Yes
Weather Controls	Yes	Yes	Yes	Yes	Yes	Yes
Linear time trend		Yes		Yes		Yes
Quadratic time trend		Yes		Yes		Yes

Table A5. Effects of Beijing $PM_{2.5 t-1}$ on daily fetal mortality rates in South Korea using wind directions

Notes: This table contains results from equation (2). Regressions are weighted by the number of live births in a city. Robust standard errors are shown in parentheses and clustered at the city level. ** Significant at the 5% level.

* Significant at the 10% level.