Land rental market and rural household efficiency in China

Jean Paul Chavas¹, Guanming Shi¹ and Xiangyi Meng²

¹Department of Agricultural and Applied Economics, University of Wisconsin, Madison, WI, USA and ²China Institute of Public Finance and Policy, Central University of Finance and Economics, Beijing, China

Corresponding author. Email: jchavas@wisc.edu

ONLINE APPENDIX

Appendix A. Measuring production efficiency

Estimating the efficiency indexes TE in (4) and AE in (6) requires knowing the underlying technology. Consider a sample of n observations of farm-households, where (x^j, F^j, H^j, L^j) is the vector of inputs and (y^j, N^j) is the vector of outputs chosen by the j-th farm household, j = 1, ..., n. Under feasibility, we have $(x^j, F^j, H^j, L^j, y^j, N^j) \in X$, where X is the feasible set of household production activities.

These production data can be used to provide a representation of the technology X. Two methods have been proposed in the literature. The first method involves the parametric specification and estimation of a stochastic production frontier (Kumbhakar and Lovell, 2003). The second method is nonparametric and involves the smallest set containing the observed inputs and outputs (e.g., Afriat, 1972; Varian, 1984; Färe *et al.*, 1985). The nonparametric method has also been called Data Envelopment Analysis (DEA) as it involves finding the tightest envelope of observed inputs and outputs. In this paper, we follow the nonparametric approach, where X is represented by the set

$$\begin{aligned} \boldsymbol{X}^{e} &= \{ (\boldsymbol{x}, \boldsymbol{F}, \boldsymbol{H}, \boldsymbol{L}, \boldsymbol{y}, \boldsymbol{N}) \colon \boldsymbol{y} \leq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{y}^{i}, \boldsymbol{N} \leq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{N}^{i}, \boldsymbol{x} \geq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{x}^{i}, \boldsymbol{F} \geq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{F}^{i}, \\ \boldsymbol{H} \geq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{H}^{i}, \boldsymbol{L} \geq \Sigma_{i} \ \lambda_{i} \ \boldsymbol{L}^{i}, \\ \Sigma_{i} \ \lambda_{i} &= 1, \\ \lambda_{i} \geq 0, i = 1, \\ \dots, n \}. \end{aligned}$$

The set X^e is closed and convex (Afriat, 1972; Varian, 1984). Using X^e as representation of technology, the technical efficiency index *TE* in (4) for the *j*-th farmhousehold is obtained by solving the linear programming problem

$$TE(\mathbf{x}^{j}, \mathbf{F}^{j}, H^{j}, \mathbf{L}^{j}, \mathbf{y}^{j}, N^{j}, \mathbf{X}^{e}) = 1/\max_{\gamma, \lambda} \{ \gamma, \gamma \mathbf{y}^{j} \le \Sigma_{i} \lambda_{i} \mathbf{y}^{i}, \gamma N^{j} \le \Sigma_{i} \lambda_{i} N^{i}, \mathbf{x}^{j} \ge \Sigma_{i} \lambda_{i} \mathbf{x}^{i}, \mathbf{F}^{j} \ge \Sigma_{i} \lambda_{i} \mathbf{F}^{i}, H^{j} \ge \Sigma_{i} \lambda_{i} H^{i}, \mathbf{L}^{j} \ge \Sigma_{i} \lambda_{i} \mathbf{L}^{i}, \Sigma_{i} \lambda_{i} = 1, \lambda_{i} \ge 0,$$

$$i = 1, \dots, n \}.$$

$$(4')$$

Similarly, from (5), the maximum revenue for the *j*-th household under the nonparametric representation X^e is obtained from the linear programming problem $R(\mathbf{p}, \mathbf{x}^j, H^j, \mathbf{L}^j, \mathbf{X}^e) = \max_{\mathbf{y}, N, \lambda} \{\mathbf{p}'\mathbf{y} + N : \mathbf{y} \le \Sigma_i \lambda_i \mathbf{y}^i, N \le \Sigma_i \lambda_i N^i,$ $\mathbf{x}^j \ge \Sigma_i \lambda_i \mathbf{x}^i, \mathbf{F}^j \ge \Sigma_i \lambda_i \mathbf{F}^i, H^j \ge \Sigma_i \lambda_i H^i, \mathbf{L}^j \ge \Sigma_i \lambda_i \mathbf{L}^i, \Sigma_i \lambda_i = 1, \lambda_i \ge 0,$ $i = 1, ..., n\}.$ (5')

For each farm household, using $TE(\cdot)$ in (4') and $R(\cdot)$ in (5') generates estimates of the allocative efficiency index $AE(\cdot)$ in (6).

References

Afriat SN (1972) Efficiency estimation of production functions. International Economic

Review **13**, 568–598.

Färe R, Grosskopf S and Lovell CAK (1985) The Measurement of Efficiency of

Production. Boston: Kluwer-Nijhoff, Pub.

Kumbhakar SC and Lovell CAK (2003) Stochastic Frontier Analysis. Cambridge, UK:

Cambridge University Press.

Varian H (1984) The nonparametric approach to production analysis. Econometrica 54,

579–97.

Appendix B. Tables

	Remittance	Land lease-in	Land rent-out
Intercept	3.334***	0.806***	-0.053*
county1	-1.454*	-0.335**	-0.002
county2	-0.629	-0.221	0.113***
county3	1.236*	-0.009	0.016
county4	0.495	0.106	0.055***
county5	0.431	-0.142	-0.001
county6	-1.404**	0.470***	0.043*
county7	-1.060	0.328**	0.042*
county8	-1.836	-0.046	0.018
Age of hh head	-0.025*	-0.011***	0.001***
Dist_c	-0.109	0.348	0.004
Dist_b	0.268	0.305	-0.029
F-value	2.398	5.209	3.798
P-value	0.002	0.001	0.001

Table A1. First-step estimation in the control function approach

Note: The stars indicate the level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

Efficiency	Technical efficiency (TE)		Allocative efficiency (AE)	
	Nonlinear least square	Median regression	Nonlinear least square	Median regression
Intercept	2.724***	1.071	0.475**	0.178
Head_edu1	0.005	-0.038	-0.019	-0.065*
Head_edu2	0.230	-0.031	-0.107	-0.115**
Female head	0.503	0.177	0.438***	0.329***
Age of hh head	-0.007	0.002	-0.001	0.0003
Hh size	-0.041	-0.011	0.072***	0.056***
Dist_c	0.257	0.217	-0.064	0.035
Dist_b	-0.604	-0.760**	-0.237	-0.340**
Remittance	-0.163*	-0.130*	-0.039	-0.002
Land Lease-in	0.040	0.504	0.873***	0.621***
Land Rent-out	-0.378	0.215	1.214	0.501
ê-remit	0.199**	0.138*	0.072**	0.025
ê-lease	0.154	-0.498	-0.922***	-0.648***
ê-rentout	1.308	-0.145	-0.031	0.028

Table A2. Factors affecting efficiency – robustness check

Notes: The nonlinear-least-squares model is based on the specification $mean(E) = 1 - \exp(-Z\gamma)$, where mean(E) is the expected value of the efficiency index E, $Z = (Z_1, Z_2, ...)$ are the explanatory variables and $\gamma = (\gamma_1, \gamma_1, ...)'$ is the vector of corresponding parameters. The stars indicate the level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1.