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Appendix A. Data and variables 

The raw data file includes cumulative monthly rainfall data at the district level. 

Generating rainfall variables 

We start by generating the rainfall variable, which represents cumulative rainfall over the 

June-September period. A long-term average rainfall measure is then defined for each 

district. We take the average total cumulative rainfall over the growing season (June-

September) for each district over the period 1956-2009.  

For a given district, the general formula used is the following: 

𝑇𝑅𝑖𝑡 = ∑ 𝑅𝑚𝑖𝑡
𝑁
𝑚=1 , 

where the total rainfall in a given growing season for a given district i in a given year t, is 

equal to the sum of the monthly cumulative rainfall over the June-September months (m to 

M) included in the growing season. To calculate the long-term average rainfall, we use the 

following formula: 

𝐿𝑇𝐴𝑅𝑖 =
1

54
∑ 𝑇𝑅𝑖𝑡

𝑇=2009
𝑡=1956 , 

where the long-term average rainfall for a given district i is simply calculated as the average 

total rainfall in that district over the 1956-2009 period. 

Generating temperature variables 

We opt for a measure of cooling degree days (CDD) to capture accumulated heat over the 

growing season (June-September, in our main specification). This captures the number of 

degree days above a reference (average) temperature, 𝐷𝑇𝐴𝑖, over a given time period. We use 

two alternative specifications for generating this variable. 

Our first step is to define the average temperature over the growing season for each district 

between 1956 and 2009. For any given district, CDD is estimated as: 
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𝐶𝐷𝐷𝑖𝑡 = ∑ ∑ (𝐷𝑇𝑖𝑚𝑑 − 𝐷𝑇𝐴𝑖)𝐷
𝑑=1

𝑀
𝑚=1 . 

Our long-term average CDD is then calculated as follows: 

𝐿𝑇𝐴𝐶𝐷𝐷𝑖 =
1

54
∑ 𝐶𝐷𝐷𝑖𝑡

𝑇=2009

𝑡=1956

, 

where d and m represent a given day and month included in the growing season and D and M 

respectively represent the total numbers of days in a given month and the total number of 

months in the growing season; DT denotes the average daily temperature in district i in day d 

of month m; and DTA represents the average growing season daily temperature for a given 

district over the 1956-2009 period. Next we create 𝐿𝑇𝐴𝐶𝐷𝐷𝑖, which is simply the average 

cumulative degree days above the mean daily temperature experienced by district i over the 

1956-2009 period. 

Generating drought indices 

Crucial to our analysis is the construction of a novel drought index. For our purposes, we 

develop three drought indices. Below we describe the steps we carry out for each one. 

Yu-Babcock index 

We denote: total rainfall over the growing season 𝑇𝑅𝑖𝑡; the mean of total rainfall over the 

growing season over 1956-2009 𝐿𝑇𝐴𝑅𝑖; and the standard deviation of 𝑇𝑅𝑖𝑡 as 𝑠𝑑𝑇𝑅𝑖. We 

then obtain the standardized variable using the following formula: 

𝑇𝑅𝑖𝑡
𝑠𝑡𝑎𝑛𝑑 =

𝑇𝑅𝑖𝑡 − 𝐿𝑇𝐴𝑅𝑖

𝑠𝑑𝑇𝑅𝑖
 . 

We proceed analogously for our 𝐶𝐷𝐷𝑖𝑡 measure. Let: 𝐶𝐷𝐷𝑖𝑡 be cumulative cooling degree 

days above the long-term mean temperature of a district during the growing season; 

𝐿𝑇𝐴𝐶𝐷𝐷𝑖 be long-term average cumulative cooling degree days in the growing season; and 

𝑠𝑑𝐶𝐷𝐷𝑖 be the standard deviation of 𝐶𝐷𝐷𝑖𝑡. We compute the standardized variable: 
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𝐶𝐷𝐷𝑖𝑡
𝑠𝑡𝑎𝑛𝑑 =

𝐶𝐷𝐷𝑖𝑡 − 𝐿𝑇𝐴𝐶𝐷𝐷𝑖

𝑠𝑑𝐶𝐷𝐷𝑖
 . 

Following this, we use the following to compute the Yu-Babcock index: 

𝐷𝐼𝑖𝑡 = [− max(0, 𝐶𝐷𝐷𝑖𝑡
𝑠𝑡𝑎𝑛𝑑)] ∗ [min(0, 𝑇𝑅𝑖𝑡

𝑠𝑡𝑎𝑛𝑑)].                   (A1) 

Normalized indices  

We start by defining a variable that captures the deviations vis-à-vis the long-term means of 

CDD and rainfall. Specifically, we calculate the deviations of CDD from the long-term 

averages by estimating: 

𝐷𝐶𝐷𝐷𝑖𝑡 = 𝐶𝐷𝐷𝑖𝑡 − 𝐿𝑇𝐴𝐶𝐷𝐷𝑖. 

Similarly, we calculate deviations of cumulative rainfall by estimating: 

𝐷𝑇𝑅𝑖𝑡 = 𝑇𝑅𝑖𝑡 − 𝐿𝑇𝐴𝑅𝑖 . 

In contrast to the Yu-Babcock index, for the remaining indices we use a variable normalized 

between 0 and 1, rather than a standardized value. We construct a variable, 𝑀𝑇𝑅𝑖𝑡, which is 

simply the negative of 𝑇𝑅𝑖𝑡 (i.e. 𝑀𝑇𝑅𝑖𝑡 = −𝑇𝑅𝑖𝑡). The following is estimated to obtain 

𝑁𝑇𝑅𝑖𝑡 and 𝑁𝐶𝐷𝐷𝑖𝑡: 

𝑁𝑇𝑅𝑖𝑡 =
𝑀𝑇𝑅𝑖𝑡 − 𝑀𝑇𝑅𝑖

𝑚𝑖𝑛

𝑀𝑇𝑅𝑖
𝑚𝑎𝑥 −  𝑀𝑇𝑅𝑖

𝑚𝑖𝑛
 

𝑁𝐶𝐷𝐷𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡 − 𝐶𝐷𝐷𝑖

𝑚𝑖𝑛

𝐶𝐷𝐷𝑖
𝑚𝑎𝑥 −  𝐶𝐷𝐷𝑖

𝑚𝑖𝑛
 . 

We differ from Yu and Babcock (2010) in creating a normalized version of the rainfall and 

CDD variables such that they vary strictly between 0 and 1, with 1 indicating the most 

extreme value (the highest CDD and lowest rainfall) and 0 indicating the lowest value. From 

these two variables, we then create a normalized index, 𝑁𝑅𝑇𝐼𝑖𝑡, which is simply a product of 

these variables: 
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𝑁𝑅𝑇𝐼𝑖𝑡 = 𝑁𝑇𝑅𝑖𝑡 ∗ 𝑁𝐶𝐷𝐷𝑖𝑡  . 

From this, we obtain two additional indices. First, our Type 1 drought index: 

𝐷𝐼1𝑖𝑡 = {
𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝐷𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝐷𝐶𝐷𝐷𝑖𝑡 > 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

This is equivalent to a normalized version of the Yu-Babcock (2010) index. It only takes a 

non-zero value for events where rainfall deficiency and CDD are above average. 

Second, we create our Type 2 drought index analogously using the following: 

𝐷𝐼2𝑖𝑡 = {
𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝐷𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝐷𝐶𝐷𝐷𝑖𝑡 < 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

This is the category omitted by Yu and Babcock. It only takes a non-zero value for events 

where rainfall deficiency is above-average and CDD is below average. 

Determining the sample and generating trends 

After developing the drought indices, we create a data file which includes only the 

observations between 1966 and 2009, i.e., our sample period. This choice is driven purely by 

data availability. Prior to 1966, our dependent variables (production and yields) are missing 

from the ICRISAT dataset, and hence would have resulted in districts being dropped. Prior to 

starting our analysis, we also dropped any districts for which at least one observation is 

missing in order to keep a balanced panel. We then generate district-specific quadratic trends 

using the following: 

𝑡𝑟𝑒𝑛𝑑 = 𝑡 − 1965 

𝑡𝑟𝑒𝑛𝑑_𝑠𝑞 = 𝑡𝑟𝑒𝑛𝑑2 , 

where t denotes the year. 
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Appendix B. Estimating economic impact 

As is made clear in the main text, the cost estimates generated in this paper are based purely 

on yield losses, without taking into account any potential changes in the cultivated area. 

Specifically, our cost estimates are derived using a series of seven steps. We detail all the 

assumptions and steps used throughout and discuss their relative strengths and weaknesses.  

Step 1 - Obtain a national estimate of rice prices for each year: 

Crop prices. We generate a national weighted average of crop price by year (using the egen 

command and the user-written option wtmean), where the weight is determined by area of 

land under cultivation. As a result, we first generate, for each year, a weighted average of 

millet prices at the district-level.  

We then use 2008 crop prices to estimate prices (and costs) in US$: Rice prices are estimated 

at 29.947 US$/quintal. These prices are obtained by obtaining the weighted average of rice 

prices in India for 2008 (in Rupees) and converting this using the averages of the 2008 

monthly exchange rates extracted from: http://www.x-

rates.com/average/?from=USD&to=INR&amount=1&year=2008. 

The results were also computed using nominal yearly prices in Rupees and are available from 

the authors upon request.  

Weaknesses and strengths of the assumptions:  

National rice prices. For any given year, there are large differences in prices across districts. 

It could be argued that prices at the district- or state-level may be more appropriate. However, 

there are issues with missing price data at the district-level and, to a lesser extent, at the state-

level, even for cases where there is a non-zero quantity reported. This is the main reason why 

we opt for national prices.  

http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008
http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008


7 
 

Using fixed rice prices in US$. Using a fixed price throughout the sample period implies 

that the estimates of costs will vary depending on the chosen year since the choice of the year 

will, by definition, drive both the exchange rate and the price level. Yet, output losses in the 

early periods are made comparable to losses in later periods since they are given the same 

value. Using nominal prices could lead to the economic cost of drought artificially increasing 

over time as nominal prices have trended upwards over the sample period. In any case, we 

have also performed this exercise using nominal prices in rupees and the results are available 

from the authors upon request. 

Step 2 - Estimate the regression of interest:   

We estimate a fixed-effects model per (3) in the main text.  

Step 3 - Estimate the yield losses:  

After Stata has generated the output for the regression in Step 2, we operationalise the 

following steps: 

 Step 3.1 – Predict the yield for drought when  𝐷𝐼1𝑖𝑡 > 0 or  𝐷𝐼2𝑖𝑡 > 0 (i.e., when the 

given district is drought affected). We do this by using the levpredict command 

following the estimation of the regression before replacing observations not affected 

by drought with an empty observation. We denote this variable 𝑦ℎ𝑎𝑡𝑑. Note that, to 

limit potential biases in the estimates of overall costs, we remove districts with 

implausible predicted yields, which we define as yields below 100 kg/ha and above 5 

tonnes/ha). This assumption, however, affects very few observations (less than 0.01% 

of total events).  

 Step 3.2 – Predict the yield variable under no drought (i.e., when  𝐷𝐼1𝑖𝑡 = 0 or 

 𝐷𝐼2𝑖𝑡 = 0). We rename the original variables 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 and 𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡, and 

create two new temporary variables: 𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 = 0 and  𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 = 0. We then 
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use the levpredict command to obtain predicted yield and a variable denoted 𝑦ℎ𝑎𝑡𝑛𝑑. 

The variables 𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 and 𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 are deleted, and 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 and 

𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 are, respectively, renamed 𝐷𝐼1𝑖𝑡  and 𝐷𝐼2𝑖𝑡. We replace 𝑙𝑦ℎ𝑎𝑡𝑛𝑑 with 

an empty observation for every case where 𝐷𝐼1𝑡𝑒𝑚𝑝𝑖𝑡 = 0  and 𝐷𝐼2𝑡𝑒𝑚𝑝𝑖𝑡 =

0 (non-drought affected case).  

 Step 3.3 – Obtain predicted yield losses by simply subtracting the predicted yield 

under no drought (Step 3.2) by the actual predicted yield (Step 3.1) for all cases when 

 𝐷𝐼1𝑖𝑡 > 0 or  𝐷𝐼2𝑖𝑡 > 0. Formally, we calculate  𝑦𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑. 

 Step 3.4 – Obtain predicted yield losses by drought type by simply subtracting the 

predicted yield under no drought by the actual predicted yield for each type of drought 

separately. Thus, we estimate: 𝑦𝑙𝑜𝑠𝑠𝑒𝑠1 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑 𝑖𝑓 𝐷𝐼1𝑖𝑡 > 0; and 

𝑦𝑙𝑜𝑠𝑠𝑒𝑠2 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑  𝑖𝑓 𝐷𝐼2𝑖𝑡 > 0. Note that the two types of drought are 

mutually exclusive (i.e., it is impossible for a district to simultaneously have a Type 1 

and a Type 2 drought). 

Step 4 - Estimate district-level production losses:  

This requires three further steps: 

 Step 4.1 - Convert land area to ha. As highlighted in the supporting documentation,1 

the land-use data is in 000’s of ha. As a result we simply multiply cereal area by 1,000 

to derive the cereal area in ha.  

 Step 4.2 - Convert yield losses to 1,000 t/ha. Currently, our yield losses are in t/ha. 

We thus convert the yield losses to 1,000 t/ha by dividing 𝑦𝑙𝑜𝑠𝑠𝑒𝑠 by 1,000. 

 Step 4.3 – Get the total district production losses (in 1,000 t). Obtain the product of 

the variable obtained in Step 4.1 by that obtained in Step 4.2. 

                                                           
1
 See: http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf . 

http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf
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Step 5 - Estimate the district-level cost of production losses:  

To do this we perform two further steps: 

 Step 5.1 – Convert price data to million US$/1,000 t.  For the results shown in the 

paper, our price data are in US$ per quintal (as explained in Step 3.1) and our 

production loss data (estimated in Step 4.3) are in 1,000t. To obtain the price data in 

million US$ per 1,000 t we divide our price level by 100. Note that a quintal is 100 

kg. To convert it into 1,000 t (1,000,000 kg), we multiply the price data by 10,000. 

However, since we want the data in million US$ rather than US$, we divide this by 

1,000,000. Thus, price*10,000/1,000,000 = price/100. 

 Step 5.2 – Obtain total value of production losses. After obtaining prices in million 

US$/1,000 t, we multiply the variable derived in Step 5.1 by the variable derived in 

Step 4.3 to obtain the total value of production losses in US$ millions. Note that for 

our estimates in Rupees, we apply the exact same procedure using yearly nominal 

prices. 

Step 6 - Estimate total yearly production losses:  

To obtain this measure in 1,000t, we sum estimated total production losses of each affected 

district in a given year. We use the total function of the egen command. Note that the value in 

table 6 in the main text represents the unweighted average yearly loss.  

Step 7 - Estimate total yearly production costs:  

To obtain this measure in millions of Rupees, we simply sum the estimated total value of the 

production losses of each affected district in a given year. We use the egen command with the 

total function. Note again that the value in table 6 in the main text represents the unweighted 

average yearly loss.  
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Appendix C. Estimating forecasting accuracy 

For the results in appendix table A8, we estimate the forecasting accuracy of five different 

models, namely: 

 Model 1: DI1 + DI2 separate  

 Model 2: DI1 (normalized Babcock index) 

 Model 3: DI1 + DI2 in a unique index 

 Model 4: Rainfall index (proportion of rainfall below normal) 

 Model 5: CDD index – CDD above long-term average growing-season daily 

temperature for the district  

We define 2000 as the main cut-off point to evaluate the forecasting accuracy of our model. 

In addition, we also test the sensitivity to the choice of cut-off point by using alternative cut-

off points (1990, 1995, and 2004). For each cut-off point, we carry out the following steps: 

1. For each model and evaluation period, we estimate the following model (in levels) up 

to the last year of the evaluation period (e.g., up to 2000), using a fixed effects 

regression: 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛿𝑖1 ∗ 𝑡 + 𝛿𝑖2 ∗ 𝑡2 + 𝛽1𝑞 𝐷𝐼𝑖𝑡𝑞 + 𝛽2𝑞 𝐷𝐼𝑖𝑡𝑞
2 + 𝛽3𝑞 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑡 + 𝛽4𝑞 𝐷𝐼𝑖𝑡𝑞

2 ∗ 𝑡

+ 𝛽5𝑞 𝐷𝐼𝑖𝑡𝑞 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽6𝑞 𝐷𝐼𝑖𝑡𝑞
2 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝜖𝑖𝑡 . 

Note that for models 1-3 we use our drought indices. For model 4, DI becomes the rainfall 

index. For model 5, DI becomes the CDD index.  

2. Once the relationship is estimated, we predict yields for the six years following the 

last year included in the regression (i.e., if 2000 is the last year, then we estimate 

predicted values for 2001-2006) using the coefficients from the model estimated up to 

the year 2000.  
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3. We then calculate the difference between the estimated values obtained in step 2 

against the observed data. 

4. We then calculate the Mean Absolute Error (MAE) by computing the average 

absolute deviation between the predicted values and the observed values for the 

evaluation period. 

5. We then calculate the Root Mean Squared Error (RMSE) by estimating the average 

squared-error and then taking the square root of this value. 

6. For the False positives (FP) and false negatives (FN), we start by defining a ‘normal’ 

yield. We do this by calculating the district-specific median yield in the last 5 years 

included in the regression in step 1 (i.e., if 2000 is the last year included, a normal 

yield will be the median yield for the 1995-2000 period). 

7. We then define a ‘large’ deviation from normal as a 10% negative deviation. 

8. We then generate a FP dummy variable which takes the value of 1 if our model 

predicts a yield below 90% of normal (i.e., a yield lower than a 10% negative 

deviation) and the observed value is above this threshold. The dummy takes a value of 

0 otherwise. 

9. We then generate a FN dummy variable which takes a value of 1 if our model predicts 

a yield above 90% of normal when the observed yield was lower than 90% below-

normal. The dummy takes a value of 0 otherwise. 

10. Finally, we run 100 bootstrap iterations and report the bootstrap standard errors for 

the RMSE, the MAE, the FN rate and the FP rate. 

For the results in appendix table A10, the procedure is identical to the one described for 

model 1 (which is the DI1 + DI2 separate model, as before). For the other models, the 

procedure differs very slightly because the differences in yields are predicted. For the results 

in appendix table A10, we estimate four alternative models, namely: 
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 Alt1: Dependent variable in first-differences and DI1+ DI2 in a separate index. 

Specifically, we estimate the following model: 

∆𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽1 𝐷𝐼1𝑖𝑡 + 𝛽2 𝐷𝐼1𝑖𝑡
2 + 𝛽3 𝐷𝐼1𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽4 𝐷𝐼2𝑖𝑡 + 𝛽5 𝐷𝐼2𝑖𝑡

2 + 𝛽6 𝐷𝐼2𝑖𝑡

∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽7 𝑄𝐼3𝑖𝑡 + 𝛽8 𝑄𝐼4𝑖𝑡 + 𝛽9 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽10𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡
2  + 𝜖𝑖𝑡 , 

 

where ∆𝑦𝑖𝑡  is the first-difference in rice yields (levels), DI1 is the index for type 1 

droughts, DI2 is the index value for type 2 droughts, 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖 denotes the proportion 

of rice area under irrigation. 𝑄𝐼3 and QI4 are the non-drought values analogous to 

DI1 and DI2 (i.e., they represent the index values for years when rainfall was above 

average and temperature was below- (QI3) and above-average (QI4), respectively). 

Note, however, that the inclusion of QI3 and QI4 has only a marginal effect on the 

performance of the forecasting models. 

 

 Alt2: Dependent variable in first-differences and DI1+ DI2 in a unique index. 

Specifically, we estimate the following model: 

∆𝑦𝑖𝑡 = 𝛼𝑖 +  𝛽1 𝐷𝐼12𝑖𝑡 + 𝛽2 𝐷𝐼12𝑖𝑡
2 + 𝛽3 𝐷𝐼12𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽4 𝑄𝐼3𝑖𝑡 + 𝛽5 𝑄𝐼4𝑖𝑡 + 𝛽6 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡

+ 𝛽7𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡
2  + 𝜖𝑖𝑡. 

 Alt3: Dependent variable in first-differences and DI1 + DI2 in separate indices and 

disaggregated by month (choice of interactions was defined by experimenting with 

different specifications). The following model is estimated: 

o ∆𝑦𝑖𝑡 =

𝛼𝑖 +  𝛽1 𝐷𝐼1𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽2 𝐷𝐼1𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽3 𝐷𝐼1𝑗𝑢𝑙𝑦𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +  𝛽4 𝐷𝐼1𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 +

 𝛽5 𝐷𝐼1𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽6 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽7 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡
2 +

 𝛽8 𝐷𝐼1𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +  𝛽9 𝐷𝐼2𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽10 𝐷𝐼2𝑗𝑢𝑛𝑒𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +

𝛽11 𝐷𝐼2𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽12 𝐷𝐼2𝑗𝑢𝑙𝑦𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽13 𝐷𝐼2𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 +  𝛽14 𝐷𝐼2𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 +

 𝛽15 𝐷𝐼2𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽16 𝐷𝐼2𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽17 𝑄𝐼3𝑗𝑢𝑛𝑒𝑖𝑡 +
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𝛽18 𝑄𝐼3𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽19 𝑄𝐼3𝐴𝑢𝑔𝑢𝑠𝑡𝑖𝑡 + 𝛽20 𝑄𝐼3𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽21 𝑄𝐼4𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽22 𝑄𝐼4𝑗𝑢𝑙𝑦 +

𝛽23 𝑄𝐼4𝐴𝑢𝑔𝑢𝑠𝑡 + 𝛽24 𝑄𝐼4𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟 + 𝛽25 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽26𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡
2  + 𝜖𝑖𝑡  . 

 

 Alt4: Dependent variable in first-differences and DI1 + DI2 in a unique index and 

disaggregated by month (choice of interactions was defined by experimenting with 

different specifications). The estimated model is given by: 

o ∆𝑦𝑖𝑡 =

𝛼𝑖 +  𝛽1 𝐷𝐼12𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽2 𝐷𝐼12𝑗𝑢𝑛𝑒𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽3 𝐷𝐼12𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽4 𝐷𝐼12𝑗𝑢𝑙𝑦𝑖𝑡 ∗

𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +  𝛽5 𝐷𝐼12𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 +  𝛽6 𝐷𝐼12𝑎𝑢𝑔𝑢𝑠𝑡𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽7 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 +

𝛽8 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡
2 + 𝛽9 𝐷𝐼12𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 ∗ 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 + 𝛽9 𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡 +

𝛽10𝑝𝑟𝑜𝑝𝑖𝑟𝑟𝑖𝑖𝑡
2  + 𝛽17 𝑄𝐼3𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽18 𝑄𝐼3𝑗𝑢𝑙𝑦𝑖𝑡 + 𝛽19 𝑄𝐼3𝐴𝑢𝑔𝑢𝑠𝑡𝑖𝑡 +

𝛽20 𝑄𝐼3𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟𝑖𝑡 + 𝛽21 𝑄𝐼4𝑗𝑢𝑛𝑒𝑖𝑡 + 𝛽22 𝑄𝐼4𝑗𝑢𝑙𝑦 + 𝛽23 𝑄𝐼4𝐴𝑢𝑔𝑢𝑠𝑡 +

𝛽24 𝑄𝐼4𝑠𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟 + 𝜖𝑖𝑡 . 

 

The main reason why these changes are likely to improve forecasting accuracy is that the 

original model was not originally intended for forecasting, and addressing our research 

question required a large number of interactions, which may actually harm forecasting 

performance. Also, adding intra-annual drought index values is likely to be important as the 

month in which the drought occurs may have important yield implications.  

For each of these models, we define 2000 as the main cut-off point to evaluate the forecasting 

accuracy of our model. In addition, we also test the sensitivity to the choice of cut-off point 

by using alternative cut-off points (1990, 1995, and 2004). For each cut-off point, we carry 

out the following steps: 

1. For each model and evaluation period, we estimate the models described above (Alt1-

Alt4) up to the last year of the evaluation period (e.g., up to 1999 if 2000 is the 

evaluation period) using fixed effects. 
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2. Once the relationship is estimated, we predict yields for the six years following the 

last year included in the regression (i.e., if 1999 is the last year, then we estimate 

predicted values for 2000-2005) using the coefficients from the model estimated up to 

the year 1999. To predict yields, we first predict the difference in yields (which we 

now denote as 𝑑𝑦𝑖�̂�). For the first period of the forecast, we then compute predicted 

yield as follows: 

𝑦𝑖�̂� = 𝑦𝑖𝑡−1 +  𝑑𝑦𝑖𝑡 .̂  

For all other periods, we add the predicted 𝑑𝑦𝑖�̂� to the previous year predicted y (𝑦𝑖�̂�). 

For example for year t+1: 

𝑦𝑖𝑡+1̂ = 𝑦𝑖�̂� +  𝑑𝑦𝑖𝑡+1 =̂ 𝑦𝑖𝑡−1 +  𝑑𝑦𝑖�̂� +  𝑑𝑦𝑖𝑡+1̂, 

and so on for all periods. 

 

3. Steps 3-10 are the same as the steps to obtain the estimates in appendix table A8.  
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Appendix Tables and Figures 

Table A1. Correlation coefficients and Spearman correlation coefficients 
 

 
 

 

 

Table A2. R-squared 
 

 

 

 

 

 

 

Table A3. F-tests 
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Table A4. Marginal elasticities (irrigation) proportion of area irrigated 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Notes: *** denotes statistical significance at the 1% level. For 

both types of events, marginal effects are computed at the 

mean value when affected (DI1=0.493 and DI2=0.207). 

 

 

 

Table A5. Marginal elasticities (time) 

 

 

 

 

 

 

 

 

 

Notes: ** and *** denote statistical significance at the 5% 

and 1% level, respectively. For both types of events, 

marginal effects are computed at the mean value when 

affected (DI1=0.493 and DI2=0.207).  
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Table A6. Full sample results index by month 

  

  (table continues on next page)  
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Table A6. Full sample results index by month (continued) 
 

 

 

 

Notes: Values in parentheses denote clustered standard errors at the 

district level. *, ** and *** denote statistical significance at the 

10%, 5% and 1% level, respectively. Time trends denote quadratic 

district-specific trends. 

 

Table A7. F-tests (index by month) 
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Table A8. Out of sample forecasts results (rice yield) 
 

 
 

Notes:  RMSE stands for Root Mean Squared Error. MAE denotes the 

Mean Absolute Error. BSE denotes the Bootstrap Standard Errors (100 

repetitions). FN is the rate of false negatives. FP is the rate of false 

positives and FN + FP is the sum of the false positives and false negatives. 

Numbers in bold denote the models that perform best for a given metric 

(i.e., lowest RMSE, MAE, FP, FN and FN+FP). 
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Table A9. Forecasting - Models (for years below the cut-off period) 

 

 

  (table continues on next page) 
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Table A9. Forecasting - Models (for years below the cut-off period) (continued) 

 

 

Notes:  Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 

10%, 5% and 1% level, respectively. Time trends denote quadratic district-specific trends. Rainfall refers to the proportion of rainfall 

relative to the long-term average rainfall for all observations where the deviation is negative. 
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Table A10. Performance of out of sample forecasts 

results (alternative models, average) 
 

 
 

Notes:  RMSE stands for Root Mean Squared Error. MAE 

denotes the Mean Absolute Error. BSE denotes the 

Bootstrap Standard Errors (100 repetitions). FN is the rate 

of false negatives. FP is the rate of false positives and FN 

+ FP is the sum of the false positives and false negatives. 

Numbers in bold denote the models that perform best for 

a given metric (i.e., lowest RMSE, MAE, FP, FN and 

FN+FP). The reported forecasting accuracy indicators are 

the average of the metrics estimated for four different cut-

off points (1990, 1995, 2000, 2004). For each of these 

cut-off points, the models were estimated until t-1 and 

then yields were forecasted for t until t+5. See explanation 

in Appendix C. 
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Figure A1. Districts used in the sample. 

Notes: Districts in grey are those included in the final sample used for the estimation. 


