North-South diffusion of

climate-mitigation technologies: The crowding-out effect on relocation

Julie Ing* Jean-Philippe Nicolaï̀ ${ }^{\dagger}$

APPENDICES

A Proof of Proposition 1

Let us define the northern firms' incentives to relocate ($I R$):

$$
I R=\pi_{S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)-C^{R}-\pi_{N}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)
$$

Using $\pi_{S}^{c}\left(m_{S}^{c}, m_{S}^{d}, m_{N}\right)=r_{S S}^{c}\left(m_{S}^{c}, m_{S}^{d}, m_{N}\right)^{2}+r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)^{2}$ and $\pi_{N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)=r_{N S}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)^{2}+r_{N N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)^{2}$,

$$
\begin{aligned}
I R & =r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)^{2}+r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)^{2}-C^{R} \\
& -r_{N S}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)^{2}-r_{N N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)^{2} \\
& =\left(r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)-r_{N S}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right)\left(r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)+r_{N S}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right) \\
& +\left(r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)-r_{N N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right)\left(r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)+r_{N N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right. \\
& -C^{R} .
\end{aligned}
$$

[^0]To show that a decrease in the dirty southern firms' emission intensity reduces the incentives to relocate, we have to prove that $I R$ increases with μ^{d}. Using

$$
\begin{aligned}
& r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)-r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)=\frac{\left(m_{N}+m_{S}\right)(X+t)}{m_{N}+m_{S}+1} \\
& r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)-r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)=\frac{\left(m_{N}+m_{S}\right)(X-t)}{m_{N}+m_{S}+1},
\end{aligned}
$$

$I R$ can be rewritten as:

$$
\begin{aligned}
I R & =\frac{\left(m_{N}+m_{S}\right)(X+t)}{m_{N}+m_{S}+1}\left(r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)+r_{N S}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right) \\
& +\frac{\left(m_{N}+m_{S}\right)(X-t)}{m_{N}+m_{S}+1}\left(r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)+r_{N N}^{c}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)\right)
\end{aligned}
$$

Finally, using

$$
\begin{aligned}
& \frac{\partial r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)}{\partial \mu^{d}}=\frac{\partial r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}^{d}, m_{N}-1\right)}{\partial \mu^{d}} \\
& =\frac{\partial r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)}{\partial \mu^{d}}=\frac{\partial r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}^{d}\right)}{\partial \mu^{d}}=\frac{m_{S}^{d} \tau_{S}}{m_{N}+M_{S}+1} .
\end{aligned}
$$

We conclude

$$
\begin{aligned}
\frac{\partial I R}{\partial \mu^{d}} & =\frac{\left(m_{N}+m_{S}\right)(X+t)}{m_{N}+m_{S}+1} \frac{2 m_{S}^{d} \tau_{S}}{m_{N}+m_{S}+1}+\frac{\left(m_{N}+m_{S}\right)(X-t)}{m_{N}+m_{S}+1} \frac{2 m_{S}^{d} \tau_{S}}{m_{N}+m_{S}+1} \\
& =\frac{4 m_{S}^{d}\left(m_{N}+m_{S}\right) \tau_{S} X}{\left(m_{N}+m_{S}+1\right)^{2}}>0 .
\end{aligned}
$$

B Proof of Proposition 2

Using $m_{S}^{d}=m_{S}-m_{S}^{c}$, the incentives to relocate are given by:

$$
\begin{aligned}
I R & =r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)^{2}+r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)^{2}-C^{R} \\
& -r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)^{2}-r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)^{2} .
\end{aligned}
$$

Using $\frac{\partial r_{S N}^{d}}{\partial m_{S}^{c}}=\frac{\partial r_{S N}^{c}}{\partial m_{S}^{c}}=\frac{\partial r_{N N}}{\partial m_{S}^{c}}=\frac{\partial r_{S S}^{d}}{\partial m_{S}^{c}}=\frac{\partial r_{S S}^{c}}{\partial m_{S}^{c}}=\frac{\partial r_{N S}}{\partial m_{S}^{c}}=-\frac{\Delta \mu \tau_{S}}{m_{N}+m_{S}+1}$, we get:

$$
\begin{aligned}
\frac{\partial I R}{\partial m_{S}^{c}} & =2\left(r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)+r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)\right) \frac{\Delta \mu \tau_{S}}{m_{N}+m_{S}+1} \\
& -2\left(r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)+r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)\right) \frac{\Delta \mu \tau_{S}}{m_{N}+m_{S}+1}
\end{aligned}
$$

since $r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)+r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)-r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)+$ $r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)=\frac{2\left(m_{N}+m_{S}\right) X}{m_{N}+m_{S}+1}$, we deduce $\frac{\partial I R}{\partial m_{S}^{c}}=-\frac{4 \Delta \mu\left(m_{N}+m_{S}\right) \tau_{S} X}{\left(m_{N}+m_{S}+1\right)^{2}}<0$.

C Proof of Proposition 3

Using $\frac{\partial r_{N N}}{\partial m_{S}^{c}}=\frac{\partial r_{S N}^{c}}{\partial m_{S}^{c}}=-\frac{X-t}{m_{S}^{d}+m^{c}+1}$ and $\frac{\partial r_{N S}}{\partial m_{S}^{c}}=\frac{\partial r_{S S}^{c}}{\partial m_{S}^{c}}=-\frac{X+t}{m_{S}^{d}+m^{c}+1}<0$, we get:

$$
\begin{aligned}
\frac{\partial I R}{\partial m_{S}^{c}} & =2\left(r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)-r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)\right) \frac{X-t}{m_{S}^{d}+m^{c}+1} \\
& +2\left(r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)-r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)\right) \frac{X+t}{m_{S}^{d}+m^{c}+1}
\end{aligned}
$$

Using $r_{N N}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)-r_{S N}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)=-\frac{\left(m_{S}^{d}+m^{c}\right)(X-t)}{m_{S}^{d}+m^{c}+1}$ and $r_{N S}\left(m_{N}, m_{S}^{c}, m_{S}-m_{S}^{c}\right)-r_{S S}^{c}\left(m_{S}^{c}+1, m_{S}-m_{S}^{c}, m_{N}-1\right)=-\frac{\left(m_{S}^{d}+m^{c}\right)(X+t)}{m_{S}^{d}+m^{c}+1}$, we obtain:

$$
\begin{aligned}
\frac{\partial I R}{\partial m_{S}^{c}} & =-2\left(\frac{\left(m_{S}^{d}+m^{c}\right)(X-t)}{m_{S}^{d}+m^{c}+1}\right) \frac{X-t}{m_{S}^{d}+m^{c}+1}-2\left(\frac{\left(m_{S}^{d}+m^{c}\right)(X+t)}{m_{S}^{d}+m^{c}+1}\right) \frac{X+t}{m_{N}+m^{c}+1} \\
& =-\frac{4\left(m_{S}^{d}+m^{c}\right)\left(X^{2}+t^{2}\right)}{m_{S}^{d}+m^{c}+1}<0 .
\end{aligned}
$$

D Proof of Lemma 2

Note that $\frac{\partial l^{W G}}{\partial \mu^{d}}=\frac{m_{S}^{d}{ }^{0} X \tau_{S}}{X^{2}+t^{2}}$ and that $l^{W G}-l^{G}=\frac{\Delta \mu m_{S}^{d} \tau_{S}}{t^{2}+X^{2}}$.
The subsidy affects the individual production and the northern price as follows:

$$
\begin{aligned}
& r_{N N}^{W G}-r_{N N}^{G}=r_{S N}^{c}{ }^{W G}-r_{S N}^{c}{ }^{G}=p_{N}^{W G}-p_{N}^{G}=\frac{\Delta \mu m_{S}^{d^{0}} \tau_{S} t(t+X)}{\left(m_{N}^{0}+m_{S}^{d^{0}}+1\right)\left(t^{2}+X^{2}\right)}>0 \\
& r_{N S}^{W G}-r_{N S}^{G}=r_{S S}^{c}{ }^{W G}-r_{S S}^{c}{ }^{G}=p_{S}^{W G}-p_{S}^{G}=-\frac{\Delta \mu m_{S}^{d^{0}} \tau_{S} t(X-t)}{\left(m_{N}^{0}+m_{S}^{d^{0}}+1\right)\left(t^{2}+X^{2}\right)} \\
& r_{N}^{W G}-r_{N}^{G}=r_{N N}^{W G}+r_{N S}^{W G}-r_{N N}^{G}-r_{N S}^{G}=\frac{2 \Delta \mu m_{S}^{d^{0}} \tau_{S} t^{2}}{\left(m_{N}^{0}+m_{S}^{d^{0}}+1\right)\left(t^{2}+X^{2}\right)} \\
& \frac{\partial r_{S N}^{d}{ }^{W G}}{\partial \mu^{d}}=-\frac{\frac{\partial l^{W G}}{\partial \mu^{d}}(X-t)+\left(m_{N}^{0}+1\right) \tau_{S}}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
& \frac{\partial r_{S S}^{d W G}}{\partial \mu^{d}}=-\frac{\frac{\partial l^{W G}}{\partial \mu^{d}}(t+X)+\left(m_{N}^{0}+1\right) \tau_{S}}{m_{N}^{0}+m_{S}^{d^{0}}+1}<0 \\
& \frac{\partial r_{S N}^{d} W G}{\partial \mu^{d}}+\frac{\partial r_{S S}^{d}}{\partial \mu^{d}}=-\frac{2 \frac{\partial l^{W G}}{\partial \mu^{d}} X+2\left(m_{N}^{0}+1\right) \tau_{S}}{m_{N}^{0}+m_{S}^{d^{0}}+1}<0
\end{aligned}
$$

The effect of subsidy on the emissions is given by:

$$
\begin{aligned}
E^{G}-E^{W G} & =\frac{m_{S}^{d^{0}} \Delta \mu\left(2\left(\mu^{c}+\mu^{d}\right) \tau_{S}+t+2 c_{N}-a_{N}-a_{S}+2 m_{N}^{0} \Delta \mu \tau_{S}\right)}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
& +\frac{2 X\left(m_{S}^{d^{0}} \Delta \mu\left(l^{W G}-m_{N}^{0}\right)-\mu^{c}\left(l^{W G}-l^{G}\right)\right)}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
E_{N}^{G}-E_{N}^{W G} & =\frac{\mu^{c}\left(l^{G}-l^{W G}\right)\left(2 \mu^{c} \tau_{N}+t+2 c_{N}-a_{N}-a_{S}+2 X\left(l^{W G}+l^{G}+m_{S}^{d^{0}}-m_{N}^{0}\right)\right)}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
& +\frac{2 m_{S}^{d^{0}} \mu^{c} \Delta \mu\left(l^{W G}-m_{N}^{0}\right) \tau_{S}}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
E_{S}^{G}-E_{S}^{W G} & =\frac{\left(\Delta \mu m_{S}^{d^{0}}-\mu^{c}\left(l^{G}-l^{W G}\right)\right)\left(2 \mu^{c} \tau_{S}+t+2 c_{N}-a_{N}-a_{S}\right)}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
& -\frac{2 \Delta \mu m_{S}^{d^{0}}\left(\mu^{c} l^{W G}-\left(1+m_{N}^{0}\right) \mu^{d}\right) \tau_{S}}{m_{N}^{0}+m_{S}^{d^{0}}+1} \\
& -\frac{2 X\left(\mu^{c}\left(l^{G}-l^{W G}\right)\left(l^{W G}+l^{G}+m_{S}^{d^{0}}-m_{N}^{0}\right)+\Delta \mu m_{S}^{d^{0}}\left(m_{N}^{0}-l^{W G}\right)\right)}{m_{N}^{0}+m_{S}^{d^{0}}+1} .
\end{aligned}
$$

[^0]: *University of Rennes 1, CREM (Centre de Recherche en Economie et Management), Rennes, France.
 ${ }^{\dagger}$ EconomiX-CNRS, University of Paris Nanterre, France and ETH Zürich, Switzerland. Contact autor. E-mail: nicolai.jeanphilippe@parisnanterre.fr

