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Population and Geography Do Matter for
Sustainable Development

1 Proof of Proposition 1

The equilibria of the system of ordinary di¤erential equations (3) - (4) in
the main text correspond to the solutions of the following nonlinear system
of algebraic equations:

0 = L(t)

�



1 + �P
� L(t)

�
(A1)

0 = P (t)

�
�

1 + �AL(t)1��
� �P

�
: (A2)

It is straightforward to verify that the origin is an equilibrium E1 = (0; 0).
Straightforward algebra leads to the other two equilibria, E2 = (
x; 0) and
E3 = (L;P ); with:

L =

�
� � �P
�A�P

� 1
1��

(A3)
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� 1

375 : (A4)

The parametric restriction in Proposition 1 guarantees that L > 0 and
P > 0; indeed, � � �P > 0 ensures that L > 0, while 
1���A�P > � � �P
that P > 0.

The stability property of the origin E1 cannot be analyzed via the tradi-
tional linearization method. It is however possible to show that the trajec-
tories are eventually escaping from a circular sector surrounding the origin,
provided that the radius of this sector is small enough. For this purpose, let
us express the vector of the initial condition as:

L(0) = L0 (A5)

P (0) = P0 = vL0; (A6)
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where v = tan(�)�1 implicitly de�nes the direction of the vector of initial
conditions (L0; P0), whose angle with respect to the L axis is �. The idea is
to show that, 8v 2 (0;+1), the following vector �eld:

dL

dt
= L0

�



1 + �vL0
� L0

�
(A7)

dP

dt
= vL0

�
�

1 + �AL1��0

� �P
�

(A8)

has both positive components eventually, when L0 ! 0. When L0 tends to
zero, equations (A7) - (A8) can be written as:

dL

dt
' L0

�

� L0

�
(A9)

dP

dt
' vL0(� � �P ): (A10)

Given that 
 > 0, the quantity on the RHS of equation (A9) will eventually
become positive, no matter the value of v. As for equation (A10), the RHS
is always positive 8v 2 (0;+1), provided that the parametric restriction
required by Proposition 1 is met. It remains to explore the extreme case
where v = 0 or v = +1, that is the axes P = 0 and L = 0 respectively.
When P = 0, the RHS of equation (3) in the main text is eventually positive,
in the limit L0 ! 0, as shown before, while in equation (4) in the main text,
the RHS is identically null. When L = 0, the RHS in equation (3) is null,
while the RHS in equation (4) is positive, because ���P > 0 by assumption.
The trajectories are eventually escaping from a circular sector in the positive
orthant around the origin.

For what concerns the other two equilibria, linearization can be applied.
The associated Jacobian matrix is given by:

J(L;P ) =

24 

1+�P � 2L � �
L

(1+�P )2

��P (1��)�AL1��
(1+�AL1��)2L

�
1+�AL1�� � �P

35 : (A11)

Let us start with E2 = (
; 0). The Jacobian matrix (A11) evaluated at E2
reads as follows:

J(
; 0) =

"
�
 ��
2
0 �

1+�A
1�� � �P

#
:

Since the term a2;2 is negative, due to the parametric restriction required by
Proposition 1, the determinant is positive and the trace is negative, thus the
equilibrium E2 is asymptotically stable. Finally we consider E3 = (L;P ).
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Simple inspection of the Jacobian matrix (A11) shows that the terms a1;2
and a2;1 are both positive under Proposition 1. The Jacobian matrix (A11)
evaluated at E3 in this case becomes:

J(L;P ) =

24�� ���
�A�P

� 1
1��

< 0

< 0 0

35 :
Both the determinant and the trace are negative, thus the equilibrium E3
is saddle point stable.
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