Population and Geography Do Matter for Sustainable Development

Davide La Torre ${ }^{1,3}$, Danilo Liuzzi ${ }^{1}$ and Simone Marsiglio ${ }^{2 *}$
${ }^{1}$ University of Milan, Department of Economics, Management, and Quantitative Methods, Milan, Italy and ${ }^{2}$ University of Wollongong, School of Accounting, Economics and Finance, Wollongong, Australia, and ${ }^{3}$ University of Dubai, Dubai Business School, Dubai, UAE
*Corresponding author. Email: simonem@uow.edu.au

ONLINE APPENDIX

Population and Geography Do Matter for Sustainable Development

1 Proof of Proposition 1

The equilibria of the system of ordinary differential equations (3) - (4) in the main text correspond to the solutions of the following nonlinear system of algebraic equations:

$$
\begin{align*}
& 0=L(t)\left[\frac{\Omega}{1+\theta P}-L(t)\right] \tag{A1}\\
& 0=P(t)\left[\frac{\beta}{1+\tau A L(t)^{1-\alpha}}-\delta_{P}\right] \tag{A2}
\end{align*}
$$

It is straightforward to verify that the origin is an equilibrium $E_{1}=(0,0)$. Straightforward algebra leads to the other two equilibria, $E_{2}=\left(\Omega_{x}, 0\right)$ and $E_{3}=(\bar{L}, \bar{P})$, with:

$$
\begin{align*}
\bar{L} & =\left(\frac{\beta-\delta_{P}}{\tau A \delta_{P}}\right)^{\frac{1}{1-\alpha}} \tag{A3}\\
\bar{P} & =\frac{1}{\theta}\left[\frac{\Omega}{\left(\frac{\beta-\delta_{P}}{\tau A \delta}\right)^{\frac{1}{1-\alpha}}}-1\right] \tag{A4}
\end{align*}
$$

The parametric restriction in Proposition 1 guarantees that $\bar{L}>0$ and $\bar{P}>0$; indeed, $\beta-\delta_{P}>0$ ensures that $\bar{L}>0$, while $\Omega^{1-\alpha} \tau A \delta_{P}>\beta-\delta_{P}$ that $\bar{P}>0$.

The stability property of the origin E_{1} cannot be analyzed via the traditional linearization method. It is however possible to show that the trajectories are eventually escaping from a circular sector surrounding the origin, provided that the radius of this sector is small enough. For this purpose, let us express the vector of the initial condition as:

$$
\begin{align*}
L(0) & =L_{0} \tag{A5}\\
P(0) & =P_{0}=v L_{0} \tag{A6}
\end{align*}
$$

where $v=\tan (\theta)^{-1}$ implicitly defines the direction of the vector of initial conditions (L_{0}, P_{0}), whose angle with respect to the L axis is θ. The idea is to show that, $\forall v \in(0,+\infty)$, the following vector field:

$$
\begin{align*}
\frac{d L}{d t} & =L_{0}\left[\frac{\Omega}{1+\theta v L_{0}}-L_{0}\right] \tag{A7}\\
\frac{d P}{d t} & =v L_{0}\left[\frac{\beta}{1+\tau A L_{0}^{1-\alpha}}-\delta_{P}\right] \tag{A8}
\end{align*}
$$

has both positive components eventually, when $L_{0} \rightarrow 0$. When L_{0} tends to zero, equations (A7) - (A8) can be written as:

$$
\begin{align*}
\frac{d L}{d t} & \simeq L_{0}\left[\Omega-L_{0}\right] \tag{A9}\\
\frac{d P}{d t} & \simeq v L_{0}\left(\beta-\delta_{P}\right) \tag{A10}
\end{align*}
$$

Given that $\Omega>0$, the quantity on the RHS of equation (A9) will eventually become positive, no matter the value of v. As for equation (A10), the RHS is always positive $\forall v \in(0,+\infty)$, provided that the parametric restriction required by Proposition 1 is met. It remains to explore the extreme case where $v=0$ or $v=+\infty$, that is the axes $P=0$ and $L=0$ respectively. When $P=0$, the RHS of equation (3) in the main text is eventually positive, in the limit $L_{0} \rightarrow 0$, as shown before, while in equation (4) in the main text, the RHS is identically null. When $L=0$, the RHS in equation (3) is null, while the RHS in equation (4) is positive, because $\beta-\delta_{P}>0$ by assumption. The trajectories are eventually escaping from a circular sector in the positive orthant around the origin.

For what concerns the other two equilibria, linearization can be applied. The associated Jacobian matrix is given by:

$$
J(L, P)=\left[\begin{array}{cc}
\frac{\Omega}{1+\theta P}-2 L & -\frac{\theta \Omega L}{(1+\theta P)^{2}} \tag{A11}\\
-\frac{\beta P(1-\alpha) \tau A L^{1-\alpha}}{\left(1+\tau A L^{1-\alpha}\right)^{2} L} & \frac{\beta}{1+\tau A L^{1-\alpha}}-\delta_{P}
\end{array}\right]
$$

Let us start with $E_{2}=(\Omega, 0)$. The Jacobian matrix (A11) evaluated at E_{2} reads as follows:

$$
J(\Omega, 0)=\left[\begin{array}{cc}
-\Omega & -\theta \Omega^{2} \\
0 & \frac{\beta}{1+\tau A \Omega^{1-\alpha}}-\delta_{P}
\end{array}\right]
$$

Since the term $a_{2,2}$ is negative, due to the parametric restriction required by Proposition 1, the determinant is positive and the trace is negative, thus the equilibrium E_{2} is asymptotically stable. Finally we consider $E_{3}=(\bar{L}, \bar{P})$.

Simple inspection of the Jacobian matrix (A11) shows that the terms $a_{1,2}$ and $a_{2,1}$ are both positive under Proposition 1. The Jacobian matrix (A11) evaluated at E_{3} in this case becomes:

$$
J(\bar{L}, \bar{P})=\left[\begin{array}{cc}
-\left(\frac{\beta-\delta}{\tau A \delta_{P}}\right)^{\frac{1}{1-\alpha}} & <0 \\
<0 & 0
\end{array}\right] .
$$

Both the determinant and the trace are negative, thus the equilibrium E_{3} is saddle point stable.

