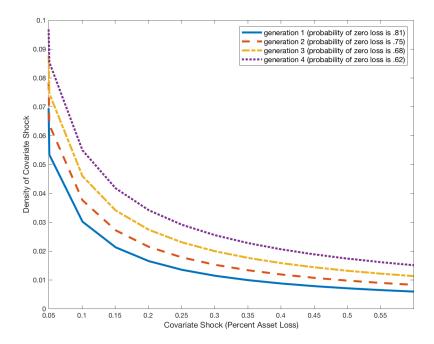
Social protection in the face of climate change: targeting principles and financing mechanisms

Michael R. Carter¹ and Sarah A. Janzen²

¹Department of Agricultural and Resource Economics, University of California, Davis, NBER and the Ginanni Foundation. Email: <u>mrcarter@ucdavis.edu</u>


²Department of Agricultural Economics & Economics, Montana State University, P.O. Box 17920, Bozeman, MT 59717-2920. *Corresponding author. Email: <u>sarah.janzen@montana.edu</u>

Online Appendix

Table A1: Functional forms and parameters used in numerical simulations

Production Technology and Parameters
$F^{h}(H) = \alpha H_{t}^{\gamma_{L}} + \underline{f}$ $F^{l}(H) = \alpha H_{t}^{\gamma_{H}}$ $\gamma_{L} = 0.28$ $\gamma_{H} = 0.56$ $\underline{f} = 2.95$
Utility Function and Parameters
$u'(c_t) = \frac{c_t^{1-\rho}-1}{1-\rho}$ $\beta = 0.95$ $\rho = 1.5$ Insurance Contract Parameters
s = .15 Actuarially fair premium by climate change scenario Base Case: $p = .0182$ Generation 2: $p = .0248$ Generation 3: $p = .0331$ Generation 4: $p = .0433$

Figure A1: Assumed shock scenarios used in numerical simulations

This graph shows the assumed probability of observing a negative shock of a certain magnitude under each climate scenario. We assume a discretized approximation of a lognormal distribution: $ln(x) \sim N(\mu, \sigma^2)$, where $\sigma = 4$ and μ varies aross each climate change scenario. Specifically, for the base case we assume $\mu = 0$, for generation 2 we assume $\mu = 1$, for generation 3 we assume $\mu = 2$, and for generation 4 we assume $\mu = 3$.

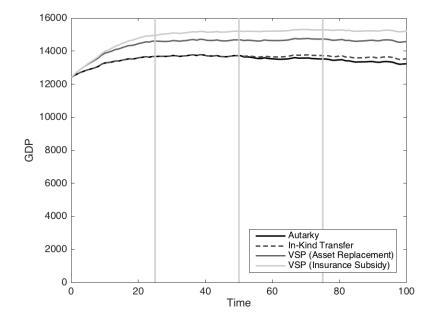


Figure A2: GDP growth with & without social protection

Figure A3: Budget remaining for in-kind transfers to the destitute

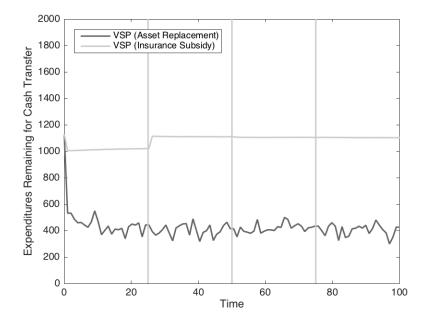
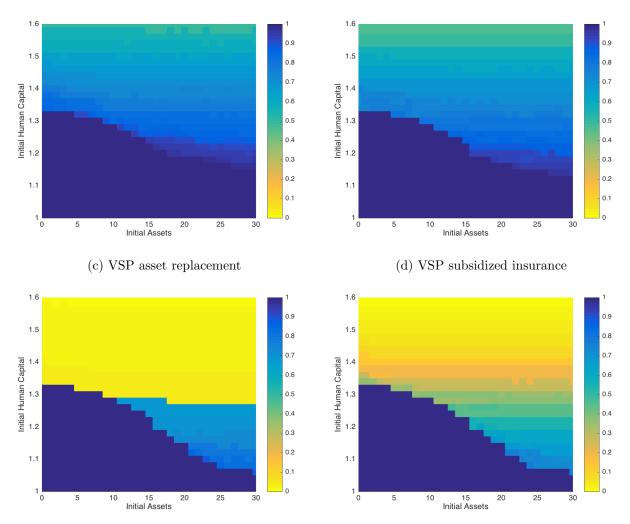



Figure A4: Chronic poverty maps with and without social protection under heightened climate risk

(a) No social protection

(b) In-kind transfers to destitute

Color scale indicates probability of collapse to low equilibrium.