Land tenure security and technical efficiency: new insights from a case study in Northwest China

XIANLEI MA

China Centre for Land Policy Research & College of Public Administration, Nanjing Agricultural University, Nanjing, China. Email: maxianlei@njau.edu.cn

NICO HEERINK

Department of Social Sciences, Wageningen University, Wageningen, the Netherlands; China Centre for Land Policy Research & College of Public Administration, Nanjing Agricultural University, Nanjing, China; College of Public Administration, Zhejiang University, Hangzhou, China. Email: nico.heerink@wur.nl

SHUYI FENG

China Centre for Land Policy Research & College of Public Administration, Nanjing Agricultural University, Nanjing, China. Email: shuyifeng@njau.edu.cn

XIAOPING SHI (Corresponding author)

China Centre for Land Policy Research & College of Public Administration, Nanjing Agricultural University, No.6, Tongwei Road, Nanjing, Jiangsu, China, 210095. Tel: +86(0)2584395078. Email: serena2@njau.edu.cn

Online Appendix

Appendix 1. Production frontier

Table A1 presents the definitions of the variables, and their mean values and standard deviations in the production frontier. The dependent variable in the production frontier is the aggregated value of all crops cultivated by a household. Input factors include land, labor, machinery, seed, inorganic fertilizer, water and organic fertilizer.¹ Land is measured by the cultivated land area (in mu). Its mean value equals 19.83 mu (i.e. 1.32 hectare). Since the average cultivated land area by rural households in China is around 9 mu, farmers in Minle County cultivate more than twice the national average. The amount of labor used for agricultural production is measured in man-days. We asked farmers to estimate their own labor inputs as well as the amounts of hired labor used for cultivating each major crop, distinguishing different activities such as land preparation, seeding, weeding, fertilization and pesticide application, and harvesting. On average, a household used 147.0 man-days of labor in the year 2009. Hired labor constituted only 5.8 per cent of the total labor use. Machinery is measured by its costs (in *yuan*),² and comprises farmers' own machinery cost (e.g. the cost of gasoline) and the cost of hired machines. Seed is also measured by its costs, and includes farmers' own retained seed as well as purchased seed, with retained seed valued at market prices. Since farmers apply different types of inorganic fertilizer that cannot easily be aggregated, inorganic fertilizer is also measured by the costs paid for buying it through the market. Irrigation water is measured by the costs of the water fees charged by the water users association. Out of these four variable inputs, inorganic fertilizer constitutes the largest cost

¹ In our research area, farmers also use pesticide and plastic film, but the total costs of these two inputs account for only 4.5 per cent of the total value of purchased inputs. These two inputs have a large number of zero observations. For example, 62 per cent of the households did not use plastic film in the year 2009. We therefore neglect these two inputs in the analysis.

 $^{^{2}}$ 1 USD = 6.83 *yuan* in 2009.

item, namely 43 per cent of the total costs of these items. Seed costs are relatively high, i.e. 30 per cent of the total costs, because many farmers in the region plant cash crops like rapeseed, garlic, Chinese medicine, sesame, seed maize, and caraway seed. Machinery and irrigation water constitute 18 per cent and 9 per cent of the total costs of these four inputs, respectively. The last agricultural input in our model, organic fertilizer, is measured by the amount of organic fertilizer used by farmers (in kg). It is generally not traded within the research area. We further include two dummy variables, representing the first two agroecological zones, in the production frontier to account for major differences in length of the growing season and in precipitation between the three agro-ecological zones. The third zone, i.e. the one with the highest altitude and the highest precipitation, serves as the base.

Variable	Definition	Mean	S.D.	
Dependent variable				
Output value	Aggregated value of all crops cultivated (yuan)	1323	1049	
		3	5	
Input variables				
Land	Total land area cultivated (mu)	19.83	12.77	
Labor	Amount of labor used for agricultural production (man			
	-days)	147.0	141.6	
Machinery	Expenditures on own machinery and hired machines			
	(yuan)	984.1	725.3	
Seed	Costs of seed, including retained seed (yuan)	1640	1074	
Inorganic	Costs of inorganic fertilizers (yuan)			
fertilizer		2380	1677	
Water	Costs of irrigation water (yuan)	484.8	487.7	
Organic	Quantity of organic fertilizer used (kg)		2584	
fertilizer		9677	8	
Regional characteristics				
Agro-ecological	1= farmer resides in Agro-ecological zone 1; 0=			
zone 1 dummy	otherwise	0.23	0.42	
Agro-ecological	1= farmer resides in Agro-ecological zone 2; 0=			
zone 2 dummy	otherwise	0.50	0.50	

Source: Household survey.

Table A2 presents the maximum likelihood estimates of the parameters in the production frontier, given the specifications for the inefficiency effects.³ The estimated value of γ is 0.828, and is significant at the 1 per cent testing level. This finding indicates the presence of significant technical inefficiency, and implies that the production frontier parameters cannot be consistently estimated by using ordinary least squares.

Explanatory variable	Coefficient	t-ratio
Constant	5.714***	3.488
ln(Land)	-0.271	-0.292
ln(Labor)	-0.301	-0.651
ln(Machinery)	0.066	0.205
ln(Seed)	0.754	1.486
ln(Inorganic fertilizer)	0.062	0.208
ln(Water)	-0.159	-0.444
ln(Organic fertilizer)	-0.128	-1.415
$\ln(\text{Land})^2$	-0.115	-0.865
$\ln(\text{Labor})^2$	-0.028	-0.995
ln(Machinery) ²	0.002	0.275
$\ln(\text{Seed})^2$	0.079*	1.679
ln(Inorganic fertilizer) ²	0.038**	1.951
$\ln(\text{Water})^2$	0.022**	2.026
ln(Organic fertilizer) ²	0.001	0.539
$\ln(\text{Land}) \times \ln(\text{Labor})$	-0.073	-0.798
$\ln(\text{Land}) \times \ln(\text{Machinery})$	0.011	0.139
$\ln(\text{Land}) \times \ln(\text{Seed})$	-0.161	-1.425
$\ln(\text{Land}) \times \ln(\text{Inorganic fertilizer})$	0.317***	2.182
$\ln(\text{Land}) \times \ln(\text{Water})$	0.114*	1.697
$\ln(\text{Land}) \times \ln(\text{Organic fertilizer})$	-0.010	-0.574
$\ln(\text{Labor}) \times \ln(\text{Machinery})$	-0.013	-0.294
$\ln(\text{Labor}) \times \ln(\text{Seed})$	-0.061	-1.051
$\ln(\text{Labor}) \times \ln(\text{Inorganic fertilizer})$	0.173***	2.317
$\ln(\text{Labor}) \times \ln(\text{Water})$	-0.021	-0.781
$\ln(\text{Labor}) \times \ln(\text{Organic fertilizer})$	0.014*	1.737
$\ln(Machinery) \times \ln(Seed)$	0.018	0.319
$\ln(Machinery) \times \ln(Inorganic fertilizer)$	-0.058	-1.106
$\ln(Machinery) \times \ln(Water)$	0.051	1.046
$ln(Machinery) \times ln(Organic fertilizer)$	-0.013***	-2.330
$\ln(\text{Seed}) \times \ln(\text{Inorganic fertilizer})$	-0.177***	-2.830

Table A2. Estimation results for stochastic production frontier, maximum likelihood

³ A test of the choice of functional form (Cobb–Douglas versus translog) confirms that the translog production function is a better representation of the production structure. We use the likelihood ratio tests to test the hypothesis that the coefficients of the interactions between inputs are equal to zero (H0: $\beta_{jk} = 0$). The likelihood ratio test statistic (χ^2) is 70.69, and the p-value is 0.00. The null hypothesis is therefore rejected.

$\ln(\text{Seed}) \times \ln(\text{Water})$	0.000	0.003
$\ln(\text{Seed}) \times \ln(\text{Organic fertilizer})$	0.031***	2.928
$\ln(\text{Inorganic fertilizer}) \times \ln(\text{Water})$	-0.073*	-1.515
$\ln(\text{Inorganic} \text{ fertilizer}) \times \ln(\text{Organic} \text{ fertilizer})$	-0.007	-0.361
$\ln(\text{Water}) \times \ln(\text{Organic fertilizer})$	0.000	0.038
Ecological zone 1 dummy	0.066	0.917
Ecological zone 2 dummy	0.083*	1.597
Model diagnostics		
$\sigma^2 = \sigma_{\vartheta}^2 + \sigma_{\mu}^2$	0.320***	4.202
$\gamma = \sigma_{\mu}^2 / (\sigma_{\vartheta}^2 + \sigma_{\mu}^2)$	0.828***	14.749
Observations	312	
Log likelihood function	-66.56	
χ^2 - statistic (p-value) ^a	1.24 (0.26)	

Notes: *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels respectively. ^a Breusch-Pagan / Cook-Weisberg test for heteroskedasticity.

The corresponding estimated input-output elasticities of the variables in the production frontier are reported in table A3. The sum of the estimated input-output elasticities is 1.027. This is slightly larger than Chen *et al.* (2009), who obtained a scale elasticity of 1.00 for farm households in Hebei and Shanxi in northern China based on data collected from 1995 to 1999, and also larger than Tan *et al.* (2010), who estimated scale elasticities ranging between 0.782 and 0.927 for rice farmers in Jiangxi province based on data collected for the year 2000. Consistent with earlier studies (Nguyen *et al.*, 1996; Feng, 2008), our results indicate that land is the most important production factor in the present agricultural production system in China. The output elasticity of land is estimated at 0.625 (significant at the 5 per cent testing level). Seed is the second most important input factor. Its output elasticity is estimated at 0.215 (significant at the 10 per cent testing level). Previous production frontier studies for rice production systems in Jiangxi province in central-south China found small and negative output elasticities for seed (Feng, 2008; Tan *et al.*, 2010). The positive and statistically significant elasticity that we estimate for our research area in

northwest China suggests that improved seed technology (pesticide-resistant seed, droughtresistant seed) plays an important role in the production of cash crops, such as oilseed rape, Chinese medicine, sesame, seed maize, and caraway seed, in the region. The other agricultural inputs in the production frontier – labor, machinery, inorganic fertilizer, water and organic fertilizer – have minor and insignificant elasticities.

The estimated coefficient of the dummy for agro-ecological zone 2 is positive and statistically significantly different from zero, while the estimated coefficient of the dummy for agro-ecological zone 1 is not significantly different from zero. This means that the total factor productivity (TFP) of efficient farmers in the second agro-ecological zone (where the largest share of the rural households in Minle County is living) is significantly higher than the TFP of farmers in the third zone (where precipitation is highest), while the TFP of farmers in agro-ecological zone 1 is comparable to that of farmers living in the third zone.

Input	Elasticity	t-ratio ^a
Land	0.625**	1.939
Labor	-0.032	-0.174
Machinery	-0.027	-0.299
Seed	0.215*	1.461
Inorganic fertilizer	0.198	0.826
Water	0.040	0.373
Organic fertilizer	0.007	0.307
Scale elasticity	1.027	-

Table A3. Input-output elasticities derived from production frontier

Notes: Calculated from the estimated coefficients presented in table A2 and the mean values of the logarithms of dependent and explanatory variables.

* and ** indicate statistical significance at the 10% and 5% levels, respectively.

^a We combined the estimated coefficients and household-specific information to estimate the input-output elasticities for all households in our sample. Standard errors and t-ratios of the input-output elasticities are derived from those household-specific estimates.

References

- Chen, Z., W.E. Huffman, and S. Rozelle (2009), 'Farm technology and technical efficiency: evidence from four regions in China', *China Economic Review* **20**(2): 153-161.
- Feng, S. (2008), 'Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China', NJAS-Wageningen Journal of Life Sciences 55(4): 363-378.
- Nguyen, T., E. Chen, and C. Findlay (1996), 'Land fragmentation and farm productivity in China in the I990s', *China Economic Review* **7**(2): 169-180.
- Tan, S., N. Heerink, A. Kuyvenhoven, and F. Qu (2010), 'Impact of land fragmentation on rice producers' technical efficiency in South-East China', NJAS-Wageningen Journal of Life Sciences 57(2): 117-123.

Appendix 2. Robustness checks

Explanatory variable	Coefficient	t-ratio ^b
Land tenure security variables	· · ·	
Village perception on land reallocations	0.475*	1.760
Village perception on land certificates	-0.189**	-2.120
Input variables	· · ·	
ln(Land)	0.610***	5.860
ln(Labor)	0.023	0.860
ln(Machinery)	-0.035	-0.910
ln(Seed)	0.184**	2.410
ln(Inorganic fertilizer)	0.034	1.370
ln(Water)	0.052**	2.250
ln(Organic fertilizer)	-0.003	-0.490
Village characteristics		
Distance to town	0.021**	2.250
Household characteristics		
Age	0.003	0.960
Education	0.011*	1.610
ln(Wealth)	-0.019	-0.750
Female ratio	-0.005	-0.030
Land characteristics		
ln(Number of plots)	0.082*	1.730
Land fertility	0.056	1.180
Land slope	0.116	0.750
Observations	312	
\mathbb{R}^2	0.75	
Mean VIF	2.	58
χ^2 - statistic (p-value) ^c	1.34	(0.25)

Table A4. Estimation results for agricultural production function, OLS^a

Notes: *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

^a Results for regional characteristics (see table 1) are not reported.

^b The t-ratios are based on cluster –adjusted standard errors, adjusted for the 21 villages in the sample.

^c Breusch-Pagan / Cook-Weisberg test for heteroskedasticity.

Explanatory variable	Coefficient	t-ratio
Constant	5.778***	3.294
ln(Land)	-0.351	-0.407
ln(Labor)	-0.268	-0.582
ln(Machinery)	0.064	0.202
ln(Seed)	0.742	1.433
ln(Inorganic fertilizer)	0.062	0.211
ln(Water)	-0.155	-0.420
ln(Organic fertilizer)	-0.118	-1.289
$\ln(\text{Land})^2$	-0.128	-0.981
$\ln(\text{Labor})^2$	-0.022	-0.755
ln(Machinery) ²	0.002	0.223
$\ln(\text{Seed})^2$	0.074*	1.562
ln(Inorganic fertilizer) ²	0.038**	1.917
$\ln(\text{Water})^2$	0.022**	1.996
ln(Organic fertilizer) ²	0.001	0.381
$\ln(\text{Land}) \times \ln(\text{Labor})$	-0.077	-0.841
$\ln(\text{Land}) \times \ln(\text{Machinery})$	0.017	0.226
$\ln(\text{Land}) \times \ln(\text{Seed})$	-0.166	-1.419
$\ln(\text{Land}) \times \ln(\text{Inorganic fertilizer})$	0.336**	2.492
$\ln(\text{Land}) \times \ln(\text{Water})$	0.116*	1.784
$\ln(\text{Land}) \times \ln(\text{Organic fertilizer})$	-0.009	-0.472
$\ln(\text{Labor}) \times \ln(\text{Machinery})$	-0.016	-0.345
$\ln(\text{Labor}) \times \ln(\text{Seed})$	-0.066	-1.082
$\ln(\text{Labor}) \times \ln(\text{Inorganic fertilizer})$	0.170**	2.278
$\ln(\text{Labor}) \times \ln(\text{Water})$	-0.022	-0.840
$\ln(\text{Labor}) \times \ln(\text{Organic fertilizer})$	0.014*	1.769
$\ln(\text{Machinery}) \times \ln(\text{Seed})$	0.030	0.529
$\ln(Machinery) \times \ln(Inorganic fertilizer)$	-0.068	-1.374
$\ln(Machinery) \times \ln(Water)$	0.050	1.012
$\ln(\text{Machinery}) \times \ln(\text{Organic fertilizer})$	-0.014**	-2.334
$\ln(\text{Seed}) \times \ln(\text{Inorganic fertilizer})$	-0.173***	-2.735
$\ln(\text{Seed}) \times \ln(\text{Water})$	0.003	0.049
$\ln(\text{Seed}) \times \ln(\text{Organic fertilizer})$	0.031***	2.949
$\ln(\text{Inorganic fertilizer}) \times \ln(\text{Water})$	-0.074*	-1.584
$\ln(\text{Inorganic fertilizer}) \times \ln(\text{Organic fertilizer})$	-0.008	-0.435
$\ln(\text{Water}) \times \ln(\text{Organic fertilizer})$	0.000	0.006
Ecological zone 1 dummy	0.056	0.786
Ecological zone 2 dummy	0.086*	1.565
Model diagnostics	•	
$\sigma^2 = \sigma_\vartheta^2 + \sigma_\mu^2$	0.347***	3.788
$\gamma = \sigma_{\mu}^2 / (\sigma_{\vartheta}^2 + \sigma_{\mu}^2)$	0.842***	15.048
Observations	312	
Log likelihood function	-68.51	
χ^2 - statistic (p-value) ^a	1.65 (0.20)	

Table A5. Estimation results for stochastic production frontier,maximum likelihood (IV method)

Notes: *,**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

^a Breusch-Pagan / Cook-Weisberg test for heteroskedasticity.

Input	Elasticity	t-ratio ^a
Land	0.617*	1.813
Labor	-0.038	-0.211
Machinery	-0.027	-0.269
Seed	0.154	0.618
Inorganic fertilizer	0.188	0.768
Water	0.118	1.024
Organic fertilizer	0.006	0.251
Scale elasticity	1.019	-

Table A6. Input-output elasticities derived from production frontier

Notes: Calculated from the estimated coefficients presented in table A5 and the mean values of the logarithms of dependent and explanatory variables.

* indicates statistical significance at the 10% level.

^a We combined the estimated coefficients and household-specific information to estimate the input-output elasticities for all households in our sample. Standard errors and t-ratios of the input-output elasticities are derived from those household-specific estimates.

Explanatory variable	Coefficient	Elasticities ^b	t-ratio
Constant	9.013***	-	3.853
Household perception on land reallocations ^c	2.617***	1.285***	3.949
Household perception on land certificates ^c	-0.580*	-2.955*	-1.919
Age	0.000	0.000	0.031
Education	0.015	0.139	0.787
ln(Wealth)	-0.497***	-6.439***	-5.303
Female ratio	1.393**	0.793**	2.149
ln(Number of plots)	0.806***	2.476 ***	3.253
Land fertility	0.251**	0.763 **	2.018
Land slope	-0.403	-0.524	-0.955
ln(Land)	-1.395***	-4.768***	-5.615
Distance to town	0.042**	0.268**	2.107
<i>Tongziba</i> Dummy	-0.012	1.285	-0.029
Hongshuihe Dummy	-0.456	-2.955	-1.108
Haichaoba Dummy	-1.584***	0.000***	-2.763
Daduma Dummy	-1.619***	0.139***	-3.071
Observations	312		
Log likelihood function	-68.51		
F-statistic for instruments in first stage	17.61(0.00) for perception on land		nd
estimations (p-value)	reallocations		
	11.76(0.00) for perception on land cert		nd certificates
F-statistic for test of endogeneity (p-value)	4.06 (0.03)		

Table A7. Estimation results for technical efficiency model, maximum likelihood (IV method)^a

^a Estimated together with the frontier function in a single stage procedure using Frontier 4.1 software package.

^bElasticities are evaluated at mean values.

^c Household perceptions on tenure security are predicted values using average values of all household perceptions in a village as instruments.

Explanatory variable	Coefficient	t-ratio ^b
Land tenure security variables		
Household perception on land reallocations ^c	0.567**	2.270
Household perception on land certificates ^c	-0.172*	-1.530
Input variables		
ln(Land)	0.520***	3.280
ln(Labor)	0.018	0.420
ln(Machinery)	0.008	0.320
ln(Seed)	0.153*	1.770
ln(Inorganic fertilizer)	0.044	1.430
ln(Water)	0.058**	1.920
ln(Organic fertilizer)	-0.002	-0.320
Village characteristics		
Distance to town	0.026***	3.290
Household characteristics		
Age	0.001	0.240
Education	0.002	0.270
ln(Wealth)	-0.043	-1.360
Female ratio	0.194	0.980
Land characteristics		
ln(Number of plots)	0.122**	2.220
Land fertility	0.083	1.450
Land slope	-0.005	-0.030
Observations	312	
R^2	0.59	
Mean VIF	2.58	
χ^2 - statistic (p-value) ^d	1.31 (0.23)	
F-statistic for instruments in first stage	17.61(0.00) for perception on land	
estimations (p-value)	reallocations	
	11.76(0.00) for perception on land	
	certificates	
F-statistic for test of endogeneity (p-value)	4.06 (0.03)

Table A8. Estimation results for agricultural production function, IV method^a

^a Results for regional characteristics (see table 1) are not reported.

^b The t-ratios are based on cluster –adjusted standard errors, adjusted for the 21 villages in the sample.

^c Household perceptions on tenure security are predicted values using average values of all household perceptions in a village as instruments.

^d Breusch-Pagan / Cook-Weisberg test for heteroskedasticity.

Explanatory variable	Coefficient	Elasticities ^b	t-ratio
Constant	3.748***	-	3.469
Village perception on land reallocations	2.029***	1.000***	3.538
Age	0.010*	0.570	1.529
Education	0.044**	0.409*	2.333
ln(Wealth)	-0.354***	-4.606***	-5.144
Female ratio	0.552	0.316	0.924
ln(Number of plots)	0.566**	1.746**	2.868
Land fertility	0.224	0.684	1.931
Land slope	0.246	0.321	0.633
ln(Land)	-0.977***	-3.354***	-4.903
Distance to town	0.032*	0.205*	1.590
<i>Tongziba</i> Dummy	-0.204	-0.072	-0.543
Hongshuihe Dummy	-0.407	-0.165	-1.211
Haichaoba Dummy	-1.497***	-0.177***	-2.859
Daduma Dummy	-1.542***	-0.268***	-3.136
Observations	312		
Log likelihood function	-70.66		

Table A9. Estimation results for technical efficiency model, maximum likelihood (with land
reallocations variable as tenure security indicator)^a

^a Estimated together with the frontier function in a single stage procedure using Frontier 4.1 software package.

^b Elasticities are evaluated at mean values.

Explanatory variable	Coefficient	Elasticities ^b	t-ratio
Constant	11.424***	-	3.572
Village perception on land certificates	-0.995**	-5.066**	-2.378
Age	0.010*	0.567*	1.503
Education	0.069**	0.639**	2.848
ln(Wealth)	-0.500***	-6.474***	-5.471
Female ratio	1.012**	0.576**	2.098
ln(Number of plots)	0.677**	2.078**	2.944
Land fertility	0.082	0.249	0.603
Land slope	0.181	0.235	0.398
ln(Land)	-1.255***	-4.287***	-5.560
Distance to town	0.059**	0.376**	2.381
<i>Tongziba</i> Dummy	-0.462	-0.163	-1.031
Hongshuihe Dummy	-1.000**	-0.404**	-2.207
Haichaoba Dummy	-1.554***	-0.183***	-2.584
Daduma Dummy	-1.446***	-0.250***	-2.742
Observations	312		
Log likelihood function	-72.20		

Table A10. Estimation results for technical efficiency model, maximum likelihood (with land
certificate variable as tenure security indicator)^a

^a Estimated together with the frontier function in a single stage procedure using Frontier 4.1 software package.

^b Elasticities are evaluated at mean values.

Appendix 3. Additional figures

Figure A1. Frequency of households with different perceptions on land certificates for households that expect (no) land reallocations, respectively

Note: The scale of 1 to 5 indicates household perceptions on land certificates, 1=not important, 2= not very important, 3= neither unimportant nor important, 4=important, 5=very important

Figure A2. Scatterplot of actual and predicted technical efficiency