
Economic growth and energy use during different stages of development: an empirical analysis

FILIPPO LECHTHALER Swiss Tropical and Public Health Institute, University of Basel, P.O. Box 4002 Basel, Switzerland. Tel.: +41 61 284 88 13. Email: f.lechthaler@unibas.ch

Online Appendix

1. Stylized Facts

Aggregation (corr= -0.23)

Figure A1. *Energy use and economic growth (both per capita) Data source:* World Bank and Penn World Table (PWT 6.3)

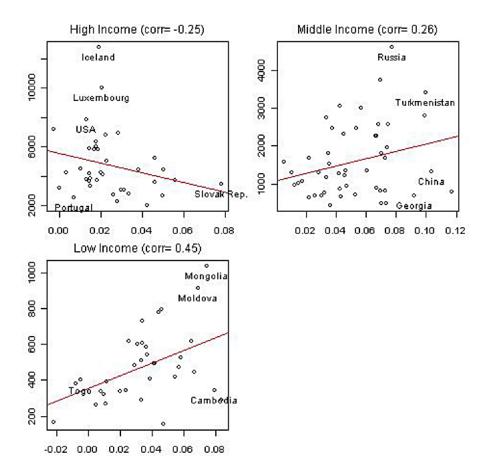


Figure A2. *Energy use and economic growth (both per capita) for country groups Data source:* World Bank and Penn World Table (PWT 6.3)

2. Data

Table A1. Countries included in the analysis by income groups

High income group

Australia, Austria, Belgium, Brunei, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea Republic, Luxembourg, Malta, Netherlands, New Zealand, Norway, Oman, Portugal Saudia Arabia, Singapore, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, the UK, and USA.

Middle income group

Albania, Algeria, Argentina, Armenia, Belarus, Bosnia and Herzegovina, Botswana, Brazil Bulgaria, Chile, China, Colombia, Costa Rica, Dominican Republic, El Salvador, Gabon Georgia, Guatemala, India, Iran, Jamaica, Jordan, Kazakhstan, Latvia, Lebanon, Libya Lithuania, Macedonia, Malaysia, Mexico, Morocco, Namibia, Panama, Paraguay, Peru Poland, Romania, Russia, Serbia, South Africa, Syrian Arab Republic, Thailand, Tunisia Turkey, Turkmenistan, Ukraine, Uruguay, and Venezuela.

Low income group

Bangladesh, Benin, Bolivia, Cambodia, Cameroon, Democratic Republic of the Congo Egypt, Eritrea, Ethiopia, Ghana, Haiti, Honduras, Indonesia, Kenya, Kyrgyz Republic Moldova, Mongolia, Mozambique, Nepal, Nicaragua, Nigeria, Pakistan, the Philippines The Republic of Congo, Senegal, Sri Lanka, Sudan, Tajikistan, Tanzania, Togo Togo, Vietnam, Yemen, and Zambia.

3. Results

Collapsed instruments: growth regression

Parameter estimates do not change considerably when collapsing the number of instruments from 30 to 10 for GMM models and from 43 to 23 for SYS-GMM models (see table A2). Especially for SYS-GMM estimates, parameter signs and magnitude remain robust. Significance with regard to GMM estimates is weaker for population growth and openness. Energy neutrality and the positive effect for capital accumulation remain robust throughout all specifications. According to the Hansen tests in table A5, validity of the instruments is rejected in more cases when instruments are collapsed (for 8 out of 12 specifications).

All countrie	es N=732		High i	ncome cou	intries N=233
	GMM	SYS-GMM		GMM	SYS-GMM
	(1)	(2)		(5)	(6)
y(-1)	0.158^{***}	-0.186***	y(-1)	-0.151**	-0.179***
	(0.127)	(0.048)		(0.079)	(0.048)
enuse	-0.158	0.015	enuse	0.104	0.086*
	(0.130)	(0.054)		(0.099)	(0.052)
ci	0.267^{***}	0.198^{***}	ci	0.185^{**}	0.271^{***}
	(0.059)	(0.037)		(0.090)	(0.048)
popg	-1.209	-1.834***	popg	2.679^{***}	1.023
	(1.501)	(0.599)		(0.894)	(0.845)
openc	0.014	0.135^{***}	openc	0.205^{**}	0.068*
	(0.062)	(0.025)		(0.096)	(0.036)
Instruments	10	23		10	23
Middle inco	me countri	es, N=280	Low in	ncomce cou	intries, N=209
	GMM	SYS-GMM		GMM	SYS-GMM
				GMM (5)	SYS-GMM (6)
	GMM	SYS-GMM	y(-1)		
y(-1)	GMM (1)	SYS-GMM (2)	y(-1)	(5)	(6)
	GMM (1) 0.266***	SYS-GMM (2) -0.081***	y(-1) enuse	(5) -0.523*	(6) 0.103***
y(-1)	GMM (1) 0.266*** (0.206)	SYS-GMM (2) -0.081*** (0.086)		(5) -0.523* (0.285)	(6) 0.103*** (0.087)
y(-1)	GMM (1) 0.266*** (0.206) -0.246	SYS-GMM (2) -0.081*** (0.086) -0.038		(5) -0.523* (0.285) 0.091	(6) 0.103*** (0.087) -0.166
y(-1) enuse	GMM (1) 0.266*** (0.206) -0.246 (0.154	SYS-GMM (2) -0.081*** (0.086) -0.038 (0.098)	enuse	(5) -0.523* (0.285) 0.091 (0.236)	$(6) \\ 0.103^{***} \\ (0.087) \\ -0.166 \\ (0.135)$
y(-1) enuse	GMM (1) 0.266*** (0.206) -0.246 (0.154 0.360***	SYS-GMM (2) -0.081*** (0.086) -0.038 (0.098) 0.195***	enuse	$(5) \\ -0.523^* \\ (0.285) \\ 0.091 \\ (0.236) \\ 0.188^{**}$	(6) 0.103*** (0.087) -0.166 (0.135) 0.086
y(-1) enuse ci	GMM (1) 0.266*** (0.206) -0.246 (0.154 0.360*** (0.083)	SYS-GMM (2) -0.081*** (0.086) -0.038 (0.098) 0.195*** (0.058)	enuse ci	(5) -0.523* (0.285) 0.091 (0.236) 0.188** (0.088)	(6) 0.103*** (0.087) -0.166 (0.135) 0.086 (0.080)
y(-1) enuse ci	GMM (1) 0.266*** (0.206) -0.246 (0.154 0.360*** (0.083) -4.620***	SYS-GMM (2) -0.081*** (0.086) -0.038 (0.098) 0.195*** (0.058) -2.575***	enuse ci	$(5) \\ -0.523^* \\ (0.285) \\ 0.091 \\ (0.236) \\ 0.188^{**} \\ (0.088) \\ -3.301^* \\ (-3.301^* \\ (-3.301^* \\3.301^* \\ (-3.301^* \\3.301^* \\ (-3.301^* \\3.301^* \\ (-3.301^* \\3.301^* \\ (-3.301^* \\3.301^* \\3.301^* \\ (-3.301^* \\3.301^* \\3.301^* \\ (-3.301^* \\ -$	$\begin{array}{c} (6) \\ \hline 0.103^{***} \\ (0.087) \\ -0.166 \\ (0.135) \\ 0.086 \\ (0.080) \\ -2.703^{*} \end{array}$
y(-1) enuse ci popg	GMM (1) 0.266*** (0.206) -0.246 (0.154 0.360*** (0.083) -4.620*** (1.207)	SYS-GMM (2) -0.081*** (0.086) -0.038 (0.098) 0.195*** (0.058) -2.575*** (0.875)	enuse ci popg	$\begin{array}{c} (5) \\ \hline -0.523^{*} \\ (\ 0.285) \\ 0.091 \\ (0.236) \\ 0.188^{**} \\ (0.088) \\ -3.301^{*} \\ (2.024) \end{array}$	$\begin{array}{c} (6) \\ \hline 0.103^{***} \\ (0.087) \\ -0.166 \\ (0.135) \\ 0.086 \\ (0.080) \\ -2.703^{*} \\ (1.621) \end{array}$

Table A2. Growth	regressions:	all samples wit	h collapsed i	instruments only
		real real real real real real real real	·····	

Notes: Robust standard errors in parenthesis *** p-value ≤ 0.01 , ** p-value ≤ 0.05 , * p-value ≤ 0.1

Collapsed instruments: capital regression

Collapsing the number of instruments (from 15 to 5 for GMM and from 27 to 17 for SYS-GMM) partly affects the significance level for energy use in the case of the GMM estimator, whereas the corresponding signs and magnitudes remain robust for SYS-GMM estimates (see table A3). Validity of instruments according to the Hansen tests remains stable after reducing the number of instruments.

=233 MM
MM
**
*
=209
MM

Table A3. Capital regressions: all samples with collapsed instruments only

Notes: Robust standard errors in parenthesis

*** p-value \leq 0.01, ** p-value \leq 0.05, * p-value \leq 0.1

All countri	All countries, with human capital, N	an capital, N	1 = 693			High i	ncome cou	High income countries, with human capital N=220	i human caj	oital N=220	
	OLS	RE	FE	GMM	SYS-GMM		OLS	RE	FE	GMM	SYS-GMM
	(11)	(12)	(13)	(14)	(15)		(16)	(11)	(18)	(19)	(20)
y(-1)	-0.013*	-0.016**	-0.068***	-0.032	-0.053	y(-1)	-0.030**	-0.025	-0.023	- 0.222*	-0.190***
	(0.008)	(0.00)	(0.024)	(0.081)	(0.044)		(0.013)	(0.018)	(0.035)	(0.114)	(0.041)
emuse	emn-	ennn-	-0.0US	8700	Tion-	enuse	-mm	TIMD-	-0.004	97.1-0	0.039
	(0.008)	(0.008)	(0.025)	(0.092)	(0.054)		(0.011)	(0.018)	(0.038)	(101.0)	(0.049)
ci	0.033***	0.037***	0.046**	0.227***	0.161***	5	0.035***	0.060***	0.044	0.231***	0.273***
	(0.008)	(0.009)	(0.022)	(0.038)	(0.037)		(0.015)	(0.017)	(0.032)	(0.066)	(0.053)
Bdod	-1.033***	-1.053***	-0.850*	-1.215	-2.139***	Bdod	-0.065	-0.138	-0.172	1.531	1.918
	(0.219)	(0.207)	(0.444)	(1.232)	(0.611)		(0.394)	(0.507)	(1.096)	(1.474)	(1.140)
openc	0.020***	0.024***	0.081***	0.058	***160.0	openc	0.026***	0.029***	0.097***	0.221 **	0.071 ***
	(0.005)	(0.006)	(0 00 6)	(0.051)	(0.030)		(0.005)	(0.008)	(0.033)	(0.092)	(0.022)
enroll	0.002	0.002	0.001	-0.001	0.014**	enroll	0.001	0.002	0.005*	-0.001	-0.008
	(0.003)	(0.002)	(0.003)	(0.007)	(0.007)		(0.003)	(0.002)	(0.003)	(0.004)	(0.008)
R-squared	0.133	0.127	0.101				0.271	0.256	0.185		
Wald	<2.2e-16	<2.20-16	<2.2e-14	<2.2e-16	$<2.20 \cdot 16$		<2.2e-14	<2.2e-12	<2.2e-8	$<2.20 \cdot 16$	<2.20 - 16
Sargan				0.001	200.0					0.264	0.057
Instruments				30	43					30	43
Middle inc	Middle income countries, with hum	ies, with hun	an capital,	N=240		Low in	come cout	Low income countries, with human capital N=203	human capi	ital N=203	
	OLS	RE	FЕ	GMM	SYS-GMM		OLS	RE	FE	GMM	SYS-GMM
	E	(12)	(13)	(14)	(15)		(16)	(11)	(18)	(19)	(20)
v(-1)	-0.057***	-0.058***	-0.139***	-0.148*	-0.034	(1-)v	-0.004	-0.010	-0.081**	- 0.559***	0.104
	(0017)	(0.014)	(0.013)	(0.088)	(0.016)		(0.013)	(0.012)	(0.035)	(0.180)	(0.085)
enuse	0.004	0.003	0.012	0.043	-0.006	enuse	-0.019	-0.021	0.028	0.078	-0.121
	(0.015)	(0.012)	(0.038)	(0.118)	(0.064)		(0.016)	(0.015)	(0.035)	(0.184)	(0.128)
ci.	0.037***	0.042***	0.121***	0.263***	0.093	c;	0.021 *	0.023*	0.028	0.179***	0.038
	(0.013)	(0.015)	(0.021)	(0.054)	(0.073)		(0.012)	(0.013)	(0.034)	(0.053)	(0.041)
Bdod	-1.245^{***}	-1.298***	-1.865***	-3.456***	-3.070***	popg	-1.159**	-1.085**	-0.794	-3.324***	-4.139***
	(0.364)	(0.278)	(0.542)	(1.225)	(0.554)		(0.473)	(0.514)	(0.671)	(1.269)	(0.905)
openc	0.022**	0.025***	0.107***	0.086	0.043	openc	0.014	0.022*	0.069***	0.067	-0.004
:	(0.009)	(0.009)	(0.030)	(0.0777)	(0.039)	:	(0.015)	(0.011)	(0.023)	(0.055)	(0.051)
enroll	0.005	0.004	-0.006	0.001	0.018	enroll	-0.001	0.001	0.003	0.010	0.026
	(0.005)	(0.005)	(0.006)	(0000)	(0.013)		(0000)	(0.005)	(0.006)	(0.014)	(0.026)
R-squared	0.169	0.176	0.160				0.040	0.064	0.103		
Wald	<2.2e-10	<2.20-9	<2.2e-8	<2.2e-16	<2.20 - 16		0.027	0.034	0.001	<2.20-7	<2.2 - 16
Sargan				0.234	0.328					0.107	0.127
Instruments				30	43					30	43
				Notes: Rob	Notes: Robust standard errors in parenthesis	rors in p	arenthesis				
			* *	p -value ≤ 0 .	*** p-value ≤ 0.01 , ** p-value ≤ 0.05 , * p-value ≤ 0.1	× 0.05, ∗	[°] p-value ≤	0.1			

Table A4. Growth regressions: all samples including school enrollment

Growth Regressions							
	Hausmann (1)	Hansen test GMM (2) all instr. (3) co	GMM (3) collapsed inst.	Hansen test SYS-GMM (4) all instr. (5) collapse	SYS-GMM (5) collapsed instr.	Difference-in (6) all instr.	Difference-in-Hansen test (6) all instr. (7) collapsed instr.
All countries	5.545e-07	0.008	0.003	0.005	0.001	0.125	0.023
High income countries	0.001	0.205	0.014	0.039	0.017	0.801	0.650
Middle income countries	3.053e-05	0.311	0.044	0.625	0.001	0.930	0.003
Low income countries	0.005	0.764	0.156	0.182	0.071	0.735	0.056
Capital Regressions							
	Hausmann (1)	Hansen test GMM (2) all instr. (3) co	GMM (3) collapsed inst.	Hansen test SYS-GMM (4) all instr. (5) collapse	SYS-GMM (5) collapsed instr.	Difference-in (6) all instr.	Difference-in-Hansen test (6) all instr. (7) collapsed instr.
All countries	6.736e-14	0.001	0.001	0.001	0.003	0.132	0.147
High income countries	7.568e-08	0.121	0.601	0.286	0.222	0.680	0.142
Middle income countries	0.569	0.217	0.019	0.095	0.043	0.114	0.231
Low income countries	5.935e-15	0.128	0.278	0.258	0.077	0.601	0.076
		Nc	Notes: All numbers reported are p-values	orted are p-value	SS		

+

Table A5. Specification tests

8