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ONLINE APPENDIX 



A The expected discounted value of the profit flow Ψθδt

The profit flow π (θ) = Ψθδ, where θ follows the geometric jump-diffusion process (2). We want to

calculate the expected discounted present value

V (θ0) = E0

[ˆ ∞

0

e−rtΨθδdt

]
.

Let us define f(θ) = ln
(
θδ
)
. Ito’s Lemma in the case of jump-diffusion processes is given in Cont and

Tankov (2004)

df (θt, t) =
∂f (θt, t)

∂t
dt+ µθt

∂f (θt, t)

∂θ
dt+

σ2

2
θ2t

∂2f (θt, t)

∂θ2
dt+ σθt

∂f (θt, t)

∂θ
dWt+

+ [f (θt− +△θt, t)− f (θt−, t)] ,

where the derivatives are ∂f(θ)
∂θ = δ 1

θ and ∂2f(θ)
∂θ2 = −δ 1

θ2 .

By applying Ito’s formula to ln
(
θδ
)

ln
(
θδt
)
= ln

(
θδ0
)
+

(
µ− σ2

2

)
δt+ σδWt +

Qt∑
i=1

ln (Yi)
δ
,

which can be written as

θδt = θδ0e
(µ− 1

2σ
2)δt+σδWt+

∑Qt
i=1 ln(Yi)

δ

,

and whose expectation is

E0

[
θδt
]
= θ0e

(µ+ 1
2σ

2(δ−1))δtE0e
∑Qt

i=1 δln(Yi).

Using this result we can now compute the expected discounted value of the profit flow Ψθδt

V (θ0) =


∞̂

0

e−rtΨθδ0e
(µ+ 1

2σ
2(δ−1))δtE0 exp

[
δ

Qt∑
i=1

ln (Yi)

]
dt



= Ψθδ0


∞̂

0

e−rte(µ+
1
2σ

2(δ−1))δte(λt(E(Y
δ)−1))dt


=

Ψθδ0
r − µδ − 1

2σ
2δ (δ − 1) + λδ

α+δ

.
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B Proofs

Proof of Lemma 1. The characteristic equation (10) can be rewritten as G (ϕ) = 0, where

G (ϕ) =

[
1

2
σ2ϕ (ϕ− 1) + µϕ− r

]
(α+ ϕ)− λϕ

It is easy to see that G (0) = −rα − λϕ < 0. Therefore, since G (−α) > 0 and limϕ→−∞G (ϕ) =

−∞ a first negative root ϕ1 between −α and 0 and a second negative root ϕ2 < −α exists. Since

limϕ→∞G (ϕ) = ∞, to prove that ϕ3 > δ it is sufficient to show that G (δ) < 0. Because of Assumption

1, r > µδ + 1
2σ

2δ (δ − 1), and thus

G (δ) =

[
1

2
σ2δ (δ − 1) + µδ − r

]
(α+ δ)− λδ < −λδ < 0

which proves the result.

Using the implicit function theorem dϕ3

dλ = −Gλ

Gϕ
. Since Gλ (ϕ3) < 0 and Gϕ (ϕ3) > 0, dϕ3

dλ > 0.

Moreover, for λ → ∞, ϕ3 → ∞.

Proof of Proposition 1. Consider first the firm’s optimal investment decision. The first order

condition for the maximization problem (8) is

εδλΨθδ

Dis (α (I))
2
(α+ δ + εI)2

= 1,

which yields

Ibe =
1

ε

[√
εδλΨθδ − λδ

Dis (∞)
− (α+ δ)

]
.

Substituting Ibe into Ωm,be (θ; I) we obtain

Ψθδ

Dis (∞)
− 2

√
λδΨθδ

Dis (∞)
√
ε
+

λδ

εDis (∞)
+

1

ε
(α+ δ) . (B.1)

We have to solve (6) with termination value (8) under conditions (11) - (13) at the critical threshold

θbe. The general solution to (6) is Vd,be (θ) =
Ψ

Dis(α)θ
δ +Φ1,beθ

ϕ1 +Φ2,beθ
ϕ2 +Φ3,beθ

ϕ3 . Since roots ϕ1

and ϕ2 are negative, boundary condition (11) requires that the coefficients Φ1,be and Φ2,be are zero.

Consequently, we can rewrite the firm value before exercising the option to invest in mitigation as

Vd,be (θ) =
Ψ

Dis(α)θ
δ +Φ3,beθ

ϕ3 . In order to find the critical threshold of investing in mitigation θbe and
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the constant Φ3,be we use the value-matching condition (12)

Φ3,beθ
ϕ3

be = Ψθδbe
Dis (α)−Dis (∞)

Dis (α)Dis (∞)
− 1

Dis (∞)

(
2

√
δλΨθδbe

ε
− λδ

ε

)
+

1

ε
(α+ δ) (B.2)

and the smooth pasting condition (13)

Φ3,beϕ3θ
ϕ3

be =
Dis (α)−Dis (∞)

Dis (∞)Dis (α)
Ψδθδbe −

δ

Dis (∞)

√
δλΨθδbe

ε
(B.3)

Hence, substituting (B.3) into (B.2) gives

ϕ3 − δ

ϕ3

Dis (α)−Dis (∞)

Dis (α)
Ψz2 − 2ϕ3 − δ

ϕ3

√
δλΨ

ε
z +

α+ δ

ε
Dis (α) = 0.

where z =

√
(θbe)

δ and where Dis (α)−Dis (∞) = λδ
α+δ . This second order equation has two positive

roots

z =


(α+δ)Dis(α)√

εδλΨ

2ϕ3

2ϕ3−2δ

(α+δ)Dis(α)√
εδλΨ

Since Ibe > 0 we need that

z >
α+ δ√
εδλΨ

Dis (α)

As a consequence the value function in the continuation and termination region is, respectively,

Vd,be (θ) =
Ψθδ

Dis (α)
+

 1

Dis (∞)

(√
Ψθδbe −

√
λδ

ε

)2

+
1

ε
(α+ δ)− Ψθδbe

Dis (α)

( θ

θbe

)ϕ3

, (B.4)

Ωm,be (θ) =
1

Dis (∞)

(
√
Ψθδ −

√
λδ

ε

)2

+
1

ε
(α+ δ) . (B.5)

and thus results in the proposition can be obtained. (B.4) is the firm value as long as θ < θbe, while

once θ ≥ θbe, the firm invests in mitigation and the firm value becomes (B.5). The second term in

(B.4) represents the investment option value, which is always positive (this can be seen by substituting

(14) into (B.4)).

Proof of Corollary 1. Take the derivative of Ωm,be (θ) with respect to ε and evaluate the result
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at θbe and we obtain

∂Ωm,be (θ)

∂ε

∣∣∣∣
θ=θbe

=
1

Dis (∞)

(
1

ε2
(α+ δ)Dis (α)

ϕ3

ϕ3 − δ
− λδ

ε2

)
− 1

ε2
(α+ δ)

After rearranging terms it is easy to see that ∂Ωm,be(θ)
∂ε

∣∣∣
θ=θbe

> 0 which proves the result.

Proof of Proposition 2. Consider the firm’s optimal investment decision. The first order condi-

tion for the maximization problem Ωm,ca (θ; I) is

εδλΨθδ

Dis (α (I))
2
(α+ δ + εI)2

[1−Dis (∞)κ] = 1,

which yields

Ica =
1

ε

[√
εδλΨθδ [1−Dis (∞)κ]− δλ

Dis (∞)
− (α+ δ)

]

Substituting Ica into Ωm,ca (θ; I) we obtain

Ψθδ

Dis (∞)
− 2

√
δλΨθδ (1− κDis (∞))

Dis (∞)
√
ε

+
Dis (α)

εDis (∞)
(α+ δ) .

In order to find the critical threshold of investing in mitigation θca and the constant Φ3,ca we use

the value-matching (12) and the smooth pasting condition (13). We solve the resulting system and we

follow exactly the same calculations as in Proof of Proposition 1 (changing in an appropriate manner

the definition of z).1

The value function in the continuation and termination region is, respectively,

Vd,ca (θ) =
Ψθδ (α+ δ + κλδ)

Dis (α) (α+ δ)
+

Ψθδca − 2
√

1
εΨθδcaδλ (1− κDis (∞)) + 1

εDis (α) (α+ δ)

Dis (∞)
− Ψθδca (α+ δ + κλδ)

Dis (α) (α+ δ)

( θ

θca

)ϕ3

,

Ωm,ca (θ) =
1

Dis (∞)

[
Ψθδ − 2

√
1

ε
Ψθδδλ (1− κDis (∞)) +

1

ε
Dis (α) (α+ δ)

]
.

and thus results in the proposition can be obtained.

Proof of Proposition 3. Comparing thresholds θca and θbe it is easy to see that θca > θbe for
1Details are available upon request.
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any κ > 0. Moreover, it is immediate to show that Ica and Ibe are identical.

Proof of Proposition 4. Consider the firm’s optimal investment decision. The first order condi-

tion for the maximization problem Ωm,re (θ; I) is

εδλΨθδ

Dis (α (I, ξ))
2
(α+ δ + εI + ξ)2

= 1,

which yields

Ire =

[√
εδλΨθδ − δλ

Dis (∞)
− (α+ δ + ξ)

]
1

ε
(B.6)

Substituting Ire into Ωm,re (θ; I) we obtain

Ψθδ

Dis (∞)
− 2

√
δλΨθδ√

εDis (∞)
+

Dis (α (ξ))

εDis (∞)
(α+ δ + ξ).

In order to find the critical threshold of investing in mitigation θre and the constant Φ3,re we use the

value-matching condition (12) and the smooth pasting condition (13). We solve the resulting system

and we follow exactly the same calculations as in Proof of Proposition 1 (changing in an appropriate

manner the definition of z).

The value function in the continuation and termination region is, respectively,

Vd,re (θ) =
Ψθδ

Dis (α (ξ))
+

 1

Dis (∞)

[√
Ψθδre −

√
δλ

ε

]2
+

1

ε
(α+ δ + ξ)− ΨθδRe

Dis (α (ξ))

( θ

θre

)ϕ3

,

Ωm,re (θ) =
1

Dis (∞)

[
√
Ψθδ −

√
δλ

ε

]2
+

1

ε
(α+ δ + ξ).

and thus results in the proposition can be obtained.

Proof of Proposition 5. Straightforward calculations show that θre > θbe is true for any ξ > 0.

Proof of Proposition 6. For any given ξ, it follows that if κ < κ∗, then θca < θre , where

κ∗ =
1−

(
(α+δ)Dis(α)

(α+δ+ξ)Dis(α(ξ))

)2
Dis (∞)

Therefore, it is sufficient to show that κ̃ < κ∗, where κ̃ = 1
α+ξ+δ ξ is the inverse function of ξ̃ in (17).
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Inequality κ̃ < κ∗ can be written as

Dis (α+ ξ) < 1

which, in view of Assumption 1, is always true.

Appendix B

In this Appendix we discuss how base-case parameter values in Table 1 are obtained.

The construction of a hurricane-resistant small ruminant housing unit incorporates building design

features to securely bolt down the roof and reinforce the foundation of the structures. The estimated

investment cost (I) is US$ 3000 for materials plus labor which is 40 percent of material cost.2

Hurricane classification is based on the intensity of the storm, which reflects damage potential. The

most commonly used categorization method is the one developed by H. Saffir and R.H. Simpson. The

Saffir-Simpson hurricane wind scale is a 1 to 5 rating based on a hurricane’s sustained wind speed.3

Levels of storm surge fluctuate greatly due to atmospheric and bathymetric conditions. Thus, the

expected storm surge levels are general estimates of a typical hurricane occurrence. According to

data published by the Caribbean Hurricane Network,4 only 14 hurricanes have moved closer than 60

miles to St. Lucia since 1850. Of those, none has reached Category 5 on the Saffir-Simpson scale,

only one has been Category 4 and one Category 3. The islands easterly location also insures that

most hurricanes don’t spend enough time over open water to build strength in their destructive wind

forces. This is why almost every hurricane to hit the island is category 1 or 2. In the last 10 years

five major hurricanes affected the country, including hurricanes Lili (2002), Ivan (2004), Emily (2005),

Dean (2007) and Tomas (2010) where the last two were Category 2 storms. Banana, root crops and

livestock of small scale farmers and fisherfolk were all severely affected.

The information on economic damages presented here is taken from the EM-DAT: Emergency

Disasters Database.5 Looking at the EM-DAT data on top natural disasters in St. Lucia for the

period 1900 to 2014 sorted by economic damage costs, we see that 14 major tropical storms hit St.

Lucia with total damages of US$ 1.137 billion and an average damage per event of about US$ 142

million. There are several methodologies to quantify the cost of disasters, but there is no standard
2See more at: http://teca.fao.org/technology/construction-hurricane-resistant-small-ruminant-shelter-st-lucia.
3Source: http://www.nhc.noaa.gov/aboutsshws.php.
4See more at: stormcarib.com
5In order for a disaster to be entered into this database at least one of the following criteria has to be fulfilled: 10

or more people reported killed, 100 people reported affected, declaration of a state of emergency, call for international
assistance.
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measure to determine a global figure for economic impact. Here, total estimated damages include

damages and economic losses directly or indirectly related to the tropical storm. Moreover, these

are calculated as money damage in relation to the GDP of St. Lucia. Nonsignificant disasters were

excluded, a significant disaster being defined as one that caused economic losses greater than 500000

US$.

Table A1 summarizes top 8 tropical storms in St. Lucia for the period 1900 to 2014 sorted by

economic damage costs 6:

( Table A1 about here)

Hence, average damage per event is estimated at about 30 percent of GDP. Throughout we assume

that the damage is uniformly distributed over all firms and hence, if a hurricane occurs, the expected

loss for each is E
(
1− Y δ

)
= δ

α+δ = 0.3.

Next we calculate how often St. Lucia gets affected by tropical storms. We consider the period

1963-2014 when major hurricanes occurred. In 51 years 8 major hurricanes hit the island and thus

the mean waiting time is 6.4 years. Hence, since 1
λ = 6.4, the annual frequency (λ) of hurricanes is

λ = 0.16.

Livestock productivity can be measured by the amount of meat or milk (wool, eggs etc.) produced

per animal per year.7 Higher productivity is a compound of higher off-take rates (shorter production

cycles by, for example, faster fattening), and higher dressed weight or milk or wool yields. We assume

that the small ruminant’s productivity in St. Lucia, proxied by the average sheep and goat dressed

weight, is identical to the one in Latin America and the Caribbean, which is θt = 16 kg for each

animal.8 Market prices for sheep and goat meat in various Caribbean islands are given in Singh et al.

(2006). The average market price for small ruminants meat in St. Lucia is US$ 2.88 for each kg of

living animal9 and we assume that the price for each kg of dressed weight (p) is US$ 2.

The elasticity of small ruminant meat with respect to capital stock (livestock and other equipments)

is the percentage increase in livestock output resulting from a 1 percent increase in the capital stock.
6We are indebted with Paul Cashin for providing us with data for GDP. See also Cashin (2006). *St. Lucia real GDP

in 1963 and 1967 are 193 and 228 Million EC$, respectively. Nominal GDP is computed using exchange rates 1.7 (1963)
and 1.8 (1967) and using the consumer price index to approximate the GDP deflator. Source: World Bank and Federal
Reserve Bank of St. Louis; for the year 1963 we considered a Consumer Price Index of 9.

7Source: World Agriculture: Towards 2015/2030. An FAO perspective. Ch. 5.
8Source: http://www.fao.org/docrep/005/y4252e/y4252e07.htm.
9See more at: http://www.caricom.org/jsp/community/agribusiness_forum/small_ruminant_competitiveness_development.pdf,

p. 62. Values based on 2006/07 data.
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The estimation of the Cobb-Douglas production function for small ruminants meat industry suggests

that livestock products are rather sensitive to change in capital stock. For the following we assume

a = 0.5 which gives δ = 2. Using this latter figure and the expression for the average loss we get an

estimation of α = 4.7.

Taking a unit cost of capital ρ = 0.2 we get πt = (1− a)
(

a
ρ

) a
1−a

(pθt)
1

1−a = 1280$ which is in

keeping with the empirical evidence provided by Singh et al. (2006) who report a projected annual

gross farm income for St. Lucia island of about 1300 US$/year.

We calibrate ε assuming that the optimal investment size if there is no financial aid (which is

identical to the investment size in the case of cash aid) is Ica = Ibe = 4200$. In this way we obtain

ε = 0.00229336 and hence that the expected damage after the investment without financial aid and

with cash aid is 12.2% of income. We further assume that after the occurrence of a major hurricane

the firm expects financial aid in cash or through a productivity restoration program equivalent to 10%,

20%, 30%, 40% and 50% of its profit losses, that is κ = 0.1, 0.2, 0.3, 0.4 and 0.5. Aid strategies are

compared using (17) which implies that their benefits in terms of firm profits are the same.

Other parameter values are assumed as follows: r = 0.07 (long run estimate from World Bank

database), µ = 0.01 (drift-rate of the productivity shock) and σ = 0.1 (volatility of the productivity

shock).
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Table A1: Top 8 storms in St. Lucia sorted by economic damage costs

Date Damage (current prices US$×106) GDP (current prices US$×106)
31/07/1980 88 136
08/09/2004 0.5 831
30/10/2010 0.5 1203
17/08/2007 40 1063
25/09/1963 3.5 15*
07/09/1967 3 17*
01/09/1983 1.3 157
11/09/1988 1000 344

Total 1137 3768

More information and data on: www.emdat.be/; http://www.econstats.com/weo/CLCA.htm.
Source of data: (1) EM-DAT: The OFDA/CRED International Disaster Database, University
catholique de Louvain, Brussels; (2) IMF World Economic Outlook.
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