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Appendix A: The basic model 

A.1. Reaction functions 

In this section, we derive and characterize the reaction functions presented and analyzed in 

the paper. 

From the main text, the cost function satisfies the following properties: 
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In addition, the properties of the penalty functions are: 

 '( ) 0ItG h  , ''( ) 0ItG h  , '( ) 0ItF h  , ''( ) 0ItF h  .  (A2) 

From section 2.1, we have the following first-order conditions for the private optimum: 
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   Lt th Q .   (A5) 

We can express the equation system (A3)-(A5) as the reaction function presented in the main 

text: 

 ( , , )It It t th h Q x  .   (A6) 

Total differentiating (A3)-(A5) yields the following: 
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Lt tdh dQ  .     (A9) 

Inserting equation (A9) into (A7) and (A8) yields: 
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Note that equation (A11) only depends on Itdh . Using this equation, we can now find It

t

dh

dx
 

by setting 0td dQ   : 
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In (A12), the denominator is positive because 0 1  , 
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(cf. equations (A1) and (A2)). From (A1) we also have that 
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, which implies that 

0It

t

dh

dx
 .  

Turning to Itdh

d
, we set 0t tdx dQ   in (A11) and obtain: 
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The denominator is identical to the one in equation (A12), and is thus positive, and from (A2) 

we have that '( )ItG h > 0 and '( )ItF h >0. Consequently, we find that 0Itdh

d
 .  

Let us finally determine the effect of quota on illegal harvest. We let 0td dx    in (A11), 

and arrive at: 
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From before, we know that both the denominator and the numerator are positive, since 
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A.2 Enforcement costs 

In this section, we derive and characterize the enforcement cost function used in the paper. 

We start out by inverting the reaction function in (A6), which yields: 

 ( , , )t t ItQ x h  .    (A15) 

Total differentiating (A15) produces: 
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Next, we define the probability of being detected as a function of enforcement effort, ( )te , 

and we assume that: 
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Note that we can invert ( )te  to yield ( )te  , and because of (A17) we obtain the following: 
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Substituting the inverted reaction function into ( )te   gives ( ( , , ))t t t t Ite e Q x h 

( , , )t t ItQ x h . Now, we want to find the sign of the derivatives of ( , , )t t ItQ x h . First, we 

investigate the sign of 
Ith




 by using:     
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From (A18), we have that 0te







 and we note that: 
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Concerning the sign of 
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 we have that: 
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. By setting dQt = 0 in (A16) and solving for 
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Setting dxt = 0 in (A16) and solving for 
tQ




 we get:  
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Let us next turn to the enforcement cost function, ( )tK e . We assume that: 
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From above ( ( , , ))t t t t Ite e Q x h  ( , , )t t ItQ x h  and inserting this into the enforcement cost 

function gives ( ( ( , , )))t t t ItK e Q x h = ( ( , , )) ( , , )t t It t t ItF Q x h E Q x h  . We now want to 

determine the signs of the derivatives of the enforcement cost function, and we start by 

considering 
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Appendix B: Share of profit 

B.1. Reaction functions 

From section 3 we have the following first-order conditions: 
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We also have the following wage scheme from section 3: 

         , 1 , ,Lt It t Lt It Lt It t ItW h h p h h c h h x F h         . (B4) 

From the wage scheme in (B4) we may obtain: 
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(B5) can be substituted into (B1) and (B6) into (B2). This gives the following rewritten first-

order conditions: 
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(B7) - (B9) may be total differentiated which gives: 
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(B12) can be substituted into (B10) and (B11) which gives: 
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Itdh  is the only variable that enters in (B14) and, therefore, (B14) can be used to characterize 

the reaction function.  

In (B14) we may set 0td dx    and reach: 
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From (B15) we have that the denominator is positive and, in addition, the nominator in (B16) 
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From above the denominator is positive. In addition, we have that 
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B.2. Enforcement costs 

The inverted reaction function is:  

 ( , , )t t ItQ x h  .    (B18) 

From (B18) we get:  
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Now ( )te  is the probability of being detected as a function of enforcement effort and we 
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Now the enforcement cost function is given as ( )tK e  and we assume that: 
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From before ( ( , , ))t t t t Ite e Q x h  ( , , )t t ItQ x h  and inserting this in the enforcement cost 
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Appendix C: Share of revenue 

C.1. Reaction functions 

With the share of revenue rule the wage function is: 

    ,Lt It t Lt ItW h h p h h  .    (C1) 

The general first-order conditions for the employee are given by (B1)-(B3) in appendix B.1. 

Inserting the derivatives of (C1) in the first-order conditions gives: 
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By total differentiating (C2) - (C4) we get that: 
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(C7) can be inserted into (C5) and (C6) which yields: 
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Since (C9) only depends on Itdh , this equation is the one we will consider to derive the 

properties of the reaction function.  
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C.2. Enforcement costs 

As before we have an inverted the reaction function given by: 

 ( , , )t t ItQ x h  .    (C13) 

(C13) can be total differentiating:  
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Now the probability of being detected is defined as ( )te  and we have that: 
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(C13) can be substituted into ( )te   to obtain ( ( , , ))t t t t Ite e Q x h  ( , , )t t ItQ x h . Now we 
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Now the enforcement cost function is given as ( )tK e  and we assume that: 
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