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A. The Phase Diagram (Figure 1)

The PS locus is derived from points that satisfy x =M(4,%,). From (26) we get

4, :K;B,éf = G(k,) such that G' >0, G(0)=0 and G(0) —> 0. The CS locus is derived from
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points that satisfy 4 =K(4,). Using £, =4 in (25) and rearranging yields
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- =1 or, alternatively, ®(4,,#,)=1. First, we can check that
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The next step is to analyse the derivative,
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R {OI(CETON ©-£7) W) X, |
L > M If we replace L for Flx) in the third term of the expression inside brackets, and
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then add the first term of the same expression, we get 1— _PB& ! After substituting (17) and
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Y, = y, = B&’, this expression becomes 1-2f which is non-negative given that g S% holds by

assumption. However, if this expression is non-negative when using — then it is certainly
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positive when using % <—. Consequently, ®, >0 and equation (25) defines a function
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! The second term

©—£7) is obviously positive.
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4, = J(%,) such that |'=-— qf’ <0. In addition, #, =0 implies W(-)=41 and £, = [@n)l ’
+

Ky

while z, > implies W(-)=0 and 4, =0. The construction of the diagram is completed by
observing that K, <0 (see Appendix B below) and M, >0. These imply that above (below)

the CS schedule we have £,,, <4, (4, > 4,) and on the left (right) of the PS schedule we have

+1

U <p, (f>p,).

B. Proof of Lemmal

The Jacobian matrix associated with the dynamical system of (25) and (26) is

K, (ki) K, (ki)
Mk, (’énl}) Mﬁ/ (’é’/&)

The trace and the determinant are given by T=K, (,é, m+M, (/é, ) and

D=K, (/é, mM, (/é, n-K, (,é, M, (/é, u) respectively. It is well known that the stability of the

equilibrium is established when the conditions (1+D-T)>0, (1+D+7T)>0, D| <1 and
T €(-2,2) hold simultaneously.
From equation (25), we have
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Substituting (27) and (28) in (A1) yields

K, (k, /)= OO
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Let us consider the expression
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In the steady-state we have x=<=— 5 = , therefore (A3) becomes 25. Of
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course, 25<1 given that f<1/2 by assumption. Since ——=>¥'(x) also holds then
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. Consequently, if (A3) cannot take a value above unity then, from

(A2), it is certainly 0 <K, (/é,,z}) <1.

Using  equation (26) we get M, (/é, #)=7€(0,1)  which implies that
0<T=7+K, (/é, #) < 2, thus the condition T €(-2,2) is satisfied. Furthermore, we can use (25)
and (26) to derive

M, (k, )= ppBE"™ >0, (A4)

and
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Thus, (A4) and (AS5), combined with  previous results, imply that

D=yK, (&, /1) - K, (/é,,z})M,e/ (k,7)>0 and 1+ D+T > 0. Additionally, we can derive
D-T+1=/K, (bi)-K, (b, i)M, (b, 0)—p—K, (ki) +1=
D-T+1=1-7-(1-pK, (k,i)—K, (&, i)M, (k, jr) =
D-T+1=(1-p)[1-K, (& i)]-K, (& i)M, (k).
Given (A4), (A5) and 0<K, (/é, #)<1, we have D—-T +1>0. Consequently, since D>0, we

need to show that D <1 in order to establish the stability of the equilibrium.

Substitution of (28) in (A5) yields
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Using (27) in (A4) yields
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Combining (A6) and (A7), we can derive

—O(l—p) W) pBI+P()
P'B+POr @ w()

K, (/é,,i/)Mk, (kyp1)=

WNVTE e t ) 4O
K, (k,i)M, (k, i) = . A8
, (s )M, (%, 1) S WO+ (A8)

Next, we can combine (A2) and (A8) to derive the determinant
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Now, consider the expression
ﬂ(m%—l_”j- (A10)
In the steady-state we have x = 1_—77 Substituting in (A10) yields f(1+7) <1 because f<1/2
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and 0<y<1. However, it is lA> qj(i() > qu(x) — because M>‘IJ'(§<) holds by
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assumption. This implies that, if (A10) is below 1, then, given (A9), we can conclude that D <1

as well. Hence, we have proven that the equilibrium £, #>0 is locally stable. =

C. Proof of Proposition 1

From (27) we can derive
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From (28) we have
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After some manipulation, equations (A11) and (A12) can be written as
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respectively. Now consider the expression m—j which, given x=——, -equals
P <1 because g <1/2 holds. However, we know that l > it (f) > — EC) — holds by
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assumption. Taking account of equations (20) and (21), we conclude that o >0 and o >0. =
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