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A.  The Phase Diagram (Figure 1) 

The PS locus is derived from points that satisfy Μ( , )t t tμ k μ . From (26) we get 
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points that satisfy Κ( , )t t tk k μ . Using 1t tk k   in (25) and rearranging yields 
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 or, alternatively, Φ( , ) 1t tk μ  . First, we can check that 
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while tμ   implies Ψ( ) 0   and 0tk  . The construction of the diagram is completed by 

observing that Κ 0
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  (see Appendix B below) and Μ 0
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the CS schedule we have 1t tk k   ( 1t tk k  ) and on the left (right) of the PS schedule we have 

1t tμ μ   ( 1t tμ μ  ).   ■  

 

B.  Proof of Lemma 1 

The Jacobian matrix associated with the dynamical system of (25) and (26) is  
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The trace and the determinant are given by ˆ ˆˆ ˆΚ ( , ) Μ ( , )
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Substituting (27) and (28) in (A1) yields 

 

1
1 2 11

1
2

ˆΨ( ) Ψ( ) Ψ ( )ˆ ˆΚ ( , ) Θ Θ
1 Ψ( ) 1 Ψ( ) [1 Ψ( )] ˆ

1

t

β
β ββ
β

k
β

Bk
k μ β

pB
k
η


 


 
                 

  

 



 
1

2

ˆ1 Ψ ( ) (1 )ˆ ˆΚ ( , ) Θ
Θ [1 Ψ( )]t

β

k

η k
k μ β

p

       
   

 

 

1
1

1
1

2

1 Ψ ( ) 1 Ψ( )ˆ ˆΚ ( , ) Θ Θ
Θ [1 Ψ( )] 1 Ψ( )t

β
β

β
β

k

η
k μ β

p


 


 
               

 

 
Ψ ( ) 1ˆ ˆΚ ( , ) 1

Ψ( )[1 Ψ( )]tk

η
k μ β

p

   
     

. (A2) 

Let us consider the expression  
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Thus, (A4) and (A5), combined with previous results, imply that 
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Combining (A6) and (A7), we can derive  
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Next, we can combine (A2) and (A8) to derive the determinant  
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C.  Proof of Proposition 1 

From (27) we can derive  
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From (28) we have  
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After some manipulation, equations (A11) and (A12) can be written as  
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