Foreign aid and oil taxes: helping the poor in oil-rich countries*

RUXANDA BERLINSCHI

LICOS, Centre for Institutions and Economic Performance, Catholic University of Leuven, Belgium. Email: ruxanda.berlinschi@econ.kuleuven.be.

JULIEN DAUBANES (Corresponding author)

CER-ETH at ETHZ, Swiss Federal Institute of Technology Zurich, Zürichbergstrasse 18, 8092
Zurich, Switzerland. Tel: +41 4463224 27. Fax: +41 4463213 62. Email: jdaubanes@ethz.ch.

Appendix

[^0]
Proof of Proposition 1

1. Let us prove that production and consumption variables grow at the rate $g=$ $(1-\alpha) g_{A}-\alpha \rho$.

The production functions (1) imply $Y_{N} / Y_{S}=\left(L_{N} / \varphi L_{S}\right)^{1-\alpha}\left(R_{N} / R_{S}\right)^{\alpha}$. The first-order conditions (8) imply $\quad R_{N} / R_{S}=\left(Y_{N} /\left(1+\theta_{N}\right)\right) /\left(Y_{S} /\left(1+\theta_{S}\right)\right)$. Then, $Y_{N} / Y_{S}=\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{\alpha /(1-\alpha)}$. As L_{N} and L_{S} are inelastic and θ_{N} and θ_{S} are constant, then $g_{Y_{N}}=g_{Y_{S}}=g_{Y}$. The world resource constraint (7) implies $g_{Y}=g_{C}$. The Ramsey-Keynes conditions (15) then give $g_{Y}=r-\rho$. Using the first-order conditions (8) and $g_{Y_{N}}=g_{Y_{S}}$, one obtains $g_{R_{N}}=g_{R_{S}}=g_{R}$. The Hotelling rule (10) can be rewritten using (8) like $g_{R}=g_{Y}-r$. Then. $g_{Y}=r-\rho$ above implies $g_{R}=-\rho$. Finally, the production functions (1) give $g_{Y}=(1-\alpha) g_{A}+\alpha g_{R}$. Using $g_{R}=-\rho$, it yields $g_{Y}=(1-\alpha) g_{A}-\alpha \rho$. Overall, $g_{Y}=$ $(1-\alpha) g_{A}-\alpha \rho=g_{Y_{N}}=g_{Y_{S}}=g_{C}=g_{C_{N}}=g_{C_{S}}$.
2. This immediately follows from $Y_{N} / Y_{S}=\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{\alpha /(1-\alpha)}$ proven above.
3. Let us show that $C_{N}(t)=\left(1-\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(t)-F(t), C_{S P}(t)=(1-\alpha) Y_{S}(t)+F(t)$ and $C_{S R}(t)=\left(\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(t)+\alpha Y_{S}(t)$.

Let us first develop the instantaneous budget constraints of the three groups. From the firstorder conditions (9), $w_{N}=(1-\alpha) Y_{N} / L_{N}$ and $w_{S}=(1-\alpha) Y_{S} / L_{S}$. From the first-order conditions (8), $p \theta_{N} R_{N}=\alpha Y_{N} \theta_{N} /\left(\theta_{N}+1\right), \quad p \theta_{S} R_{S}=\alpha Y_{S} \theta_{S} /\left(\theta_{S}+1\right)$ and $p\left(R_{N}+R_{S}\right)=$ $\alpha Y_{N} /\left(\theta_{N}+1\right)+\alpha Y_{S} /\left(\theta_{S}+1\right)$. By substituting these revenues into (11), (12) and (13) and rearranging, the instantaneous budget constraints become $C_{N} / L_{N}+\dot{B}_{N} / L_{N}=\left(1-\alpha /\left(\theta_{N}+\right.\right.$ 1)) $Y_{N} / L_{N}+r B_{N} / L_{N}-F / L_{N}, \quad C_{S P} / L_{S}+\dot{B}_{S P} / L_{S}=(1-\alpha) Y_{S} / L_{S}+r B_{S P} / L_{S}+F / L_{S} \quad$ and
$C_{S R}+\dot{B}_{S R}=\alpha Y_{N} /\left(\theta_{N}+1\right)+\alpha Y_{S}+r B_{S R}$.
Moreover, we have shown above that $g_{Y}=r-\rho$ and $g_{Y}=(1-\alpha) g_{A}-\alpha \rho$. These equations imply $r=(1-\alpha)\left(g_{A}+\rho\right)$.

Next, solving the instantaneous budget constraints as first-order differential equations in B_{N}, $B_{S P}$ and $B_{S R}$, one obtains the following intertemporal budget constraints satisfied for all $T \geq 0$: $B_{N}(T) e^{-r T}+\int_{0}^{T} C_{N}(t) e^{-r t} d t=\left(1-\alpha /\left(\theta_{N}+1\right)\right) \int_{0}^{T} Y_{N}(t) e^{-r t} d t-\int_{0}^{T} F(t) e^{-r t} d t+B_{N}(0)$, $B_{S P}(T) e^{-r T}+\int_{0}^{T} C_{S P}(t) e^{-r t} d t=(1-\alpha) \int_{0}^{T} Y_{S}(t) e^{-r t} d t+\int_{0}^{T} F(t) e^{-r t} d t+B_{S P}(0) \quad$ and $B_{S R}(T) e^{-r T}+\int_{0}^{T} C_{S R}(t) e^{-r t} d t=\frac{\alpha}{\theta_{N}+1} \int_{0}^{T} Y_{N}(t) e^{-r t} d t++\alpha \int_{0}^{T} Y_{S}(t) e^{-r t} d t+B_{S R}(0)$.

The no-Ponzi-game conditions (14) write $\lim _{T \rightarrow \infty} B_{i}(T) e^{-r T}=0, i=N, S P, S R$. Thus, taking the limit as T goes to infinity and using the assumption $B_{N}(0)=B_{S P}(0)=B_{S R}(0)=0$, we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} C_{N}(t) e^{-r t} d t=\left(1-\frac{\alpha}{\theta_{N}+1}\right) \int_{0}^{\infty} Y_{N}(t) e^{-r t} d t-\int_{0}^{\infty} F(t) e^{-r t} d t \\
& \int_{0}^{\infty} C_{S R}(t) e^{-r t} d t=\frac{\alpha}{\theta_{N}+1} \int_{0}^{\infty} Y_{N}(t) e^{-r t} d t+\alpha \int_{0}^{\infty} Y_{S}(t) e^{-r t} d t \text { and } \\
& \int_{0}^{\infty} C_{S P}(t) e^{-r t} d t=(1-\alpha) \int_{0}^{\infty} Y_{S}(t) e^{-r t} d t+\int_{0}^{\infty} F(t) e^{-r t} d t
\end{aligned}
$$

We know that $C_{N}, C_{S P} C_{S R} Y_{N}, Y_{S}$ and F grow at the same rate $r-\rho$. Note that for any variable X such that $g_{X}=r-\rho$, we have $\int_{0}^{\infty} X(t) e^{-r t} d t=\int_{0}^{\infty} X(0) e^{(r-\rho) t} e^{-r t} d t=$ $X(0) \int_{0}^{\infty} e^{-\rho t} d t=X(0) / \rho$. Therefore, the intertemporal budget constraints imply

$$
\begin{aligned}
& C_{N}(0)=\left(1-\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(0)-F(0), \\
& C_{S P}(0)=(1-\alpha) Y_{S}(0)+F(0), \\
& C_{S R}(0)=\left(\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(0)+\alpha Y_{S}(0), \text { and } \\
& C_{N}(t)=\left(1-\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(t)-F(t) \equiv C_{N}\left(\theta_{N}, \theta_{S}, F\right)(t),
\end{aligned}
$$

$$
\begin{aligned}
& C_{S R}(t)=\left(\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(t)+\alpha Y_{S}(t) \equiv C_{S R}\left(\theta_{N}, \theta_{S}\right)(t) \text { and } \\
& C_{S P}(t)=(1-\alpha) Y_{S}(t)+F(t) \equiv C_{S P}\left(\theta_{N}, \theta_{S}, F\right)(t)
\end{aligned}
$$

These expressions imply that for given $Y_{N}(t)$ and $Y_{S}(t), \theta_{N}$ has a positive effect on $C_{N}(t)$, a negative effect on $C_{S R}(t)$ and no effect on $C_{S P}(t)$ while θ_{S} has no effect on the consumption levels.

Proof of Proposition 2

From the above expressions of the consumption functions, note that $C_{N}\left(\theta_{N}, \theta_{S}, F\right)(t)=$ $C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(t)-F(t)$ and $C_{S P}\left(\theta_{N}, \theta_{S}, F\right)(t)=C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(t)+F(t)$.
a. Let us show that the governments' optimization problems reduce to the constrained maximization of date 0 utilities.

From Proposition $1, C_{N}, C_{S P}, C_{S R}$ and F grow at the same rate $g=(1-\alpha) g_{A}+\alpha g_{R}$. Then, $C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(t)=C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0) e^{g t}, \quad C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(t)=C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0) e^{g t}$, $C_{S R}\left(\theta_{N}, \theta_{S}\right)(t)=C_{S R}\left(\theta_{N}, \theta_{S}\right)(0) e^{g t}$ and $F(t)=F(0) e^{g t}$.

Therefore, the North and South governments’ optimization problems become respectively $\max _{\theta_{N}, F(0)}\left[L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)+F(0)}{L_{S}}\right)\right] \int_{0}^{\infty} e^{-\rho t} d t+\left[L_{N}+\right.$ $\left.\delta L_{S}\right] \int_{0}^{\infty} g t e^{-\rho t} d t$, subject to $\quad F(0) \geq 0, \quad$ and $\quad \max _{\theta_{S}} \ln \left(C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)\right) \int_{0}^{\infty} e^{-\rho t} d t+$ $\int_{0}^{\infty} g t e^{-\rho t} d t$. Since neither the second terms of these sums nor the factor $\int_{0}^{\infty} e^{-\rho t} d t$ include the control variables, the problems are respectively equivalent to $\max _{\theta_{N, F(0)}}\left[L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)+F(0)}{L_{S}}\right)\right]$, subject to $F(0) \geq 0$, and $\max _{\theta_{S}} \ln \left(C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)\right)$.
b. Let us develop the expressions of $C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0), C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)$ and $C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)$.

We have shown in Proposition 1 that $C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0)=\left(1-\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(0)$, $C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)=(1-\alpha) Y_{S}(0) \quad$ and $\quad C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)=\left(\frac{\alpha}{\theta_{N}+1}\right) Y_{N}(0)+\alpha Y_{S}(0)$. Let us compute $Y_{N}(0)$ and $Y_{S}(0)$ as functions of θ_{N} and θ_{S}. The production functions (1) imply $Y_{N}(0)=\left(A_{0} L_{N}\right)^{1-\alpha} R_{N}(0)^{\alpha}$ and $Y_{S}(0)=\left(A_{0} \varphi L_{N}\right)^{1-\alpha} R_{S}(0)^{\alpha}$. Let us thus compute $R_{N}(0)$ and $R_{S}(0)$. From Proof of Proposition 1, $g_{R}=-\rho$. Note now that the stock of resource is asymptotically exhausted because extraction costs are nil. Then, from (3), $Q_{0}=\int_{0}^{\infty} R(t) d t=$ $\int_{0}^{\infty} R(0) e^{-\rho t} d t=R(0) / \rho$. Thus, we have $R(0)=Q_{0} \rho$. Moreover, the first-order conditions (8) imply $\quad R_{N} / R_{S}=\left(Y_{N} /\left(1+\theta_{N}\right)\right) /\left(Y_{S} /\left(1+\theta_{S}\right)\right)$. Using (1), we then find $Y_{N} / Y_{S}=\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{\alpha /(1-\alpha)}$. This, in turn, implies $R_{N}(0) / R_{S}(0)=$ $\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{1 /(1-\alpha)} L_{N} /\left(\varphi L_{S}\right)$, which, using $R_{N}(0)+R_{S}(0)=R(0)$, results in $R_{N}(0)=\rho Q_{0} /\left[1+\left(\varphi L_{S} / L_{N}\right)\left(\left(\theta_{N}+1\right) /\left(\theta_{S}+1\right)\right)^{1 /(1-\alpha)}\right]$ and $R_{S}(0)=\rho Q_{0} /\left[1+\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{1 /(1-\alpha)}\right]$.

Finally, we have
$Y_{N}(0)=\left(A_{0} L_{N}\right)^{1-\alpha}\left[\rho Q_{0} /\left[1+\left(\varphi L_{S} / L_{N}\right)\left(\left(\theta_{N}+1\right) /\left(\theta_{S}+1\right)\right)^{1 /(1-\alpha)}\right]\right]^{\alpha}$ and
$Y_{S}(0)=\left(A_{0} \varphi L_{S}\right)^{1-\alpha}\left[\rho Q_{0} /\left[1+\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{1 /(1-\alpha)}\right]\right]^{\alpha}$,
and then
$C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0)=\left(1-\frac{\alpha}{\left(\theta_{N}+1\right)}\right)\left(A_{0} L_{N}\right)^{1-\alpha}\left[\frac{\rho Q_{0}}{\left[1+\left(\frac{\varphi L_{S}}{L_{N}}\right)\left(\frac{\theta_{N}+1}{\theta_{S}+1}\right)^{1 /(1-\alpha)}\right.}\right]^{\alpha}$,
$C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)=(1-\alpha)\left(A_{0} \varphi L_{S}\right)^{1-\alpha}\left[\frac{\rho Q_{0}}{\left[1+\left(\frac{L_{N}}{\varphi L_{S}}\right)\left(\frac{\theta_{S}+1}{\theta_{N}+1}\right)^{1 /(1-\alpha)}\right.}\right]^{\alpha}$ and

$$
C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)=
$$

$\frac{\alpha}{\left(\theta_{N}+1\right)}\left(A_{0} L_{N}\right)^{1-\alpha}\left[\frac{\rho Q_{0}}{\left[1+\left(\frac{\varphi L_{S}}{L_{N}}\right)\left(\frac{\theta_{N}+1}{\theta_{S}+1}\right)^{1 /(1-\alpha)}\right.}\right]^{\alpha}+\alpha\left(A_{0} \varphi L_{S}\right)^{1-\alpha}\left[\frac{\rho Q_{0}}{\left[1+\left(\frac{L_{N}}{\varphi L_{S}}\right)\left(\frac{\theta_{S}+1}{\theta_{N}+1}\right)^{1 /(1-\alpha)}\right.}\right]^{\alpha}$.
Let us finally find an expression of the resource price $p(t)$. From (1) and (8), one has $R_{N}=\left(\frac{\alpha}{p\left(\theta_{N}+1\right)}\right)^{1 /(1-\alpha)} A L_{N}$ and $R_{S}=\left(\frac{\alpha}{p\left(\theta_{S}+1\right)}\right)^{1 /(1-\alpha)} \varphi A L_{S}$. Using now $R_{N}(t)+R_{S}(t)=$ $R(t)=\rho Q_{0} e^{-\rho t}$, one gets $p(t)=\left[\frac{A_{0} e^{(x+\rho) t}}{\rho Q_{0}}\left(\left(\frac{\alpha}{\theta_{N}+1}\right)^{1 /(1-\alpha)} L_{N}+\left(\frac{\alpha}{\theta_{S}+1}\right)^{1 /(1-\alpha)} \varphi L_{S}\right)^{1-\alpha}\right]$.
c. Let us solve the South's maximization problem.

This program amounts to the maximization of $C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)$ with respect to θ_{S}. After some simplifications, $\partial C_{S R}\left(\theta_{N}, \theta_{S}\right)(0) / \partial \theta_{S}<0$ can be shown to be equivalent to $\left(\frac{L_{N}}{\varphi L_{S}}\right)^{1-\alpha}\left[\frac{1+\left(\varphi L_{S} / L_{N}\right)\left(\left(\theta_{N}+1\right) /\left(\theta_{S}+1\right)\right)^{1 /(1-\alpha)}}{1+\left(L_{N} / \varphi L_{S}\right)\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{1 /(1-\alpha)}}\right]^{-\alpha-1} \frac{\varphi L_{S}}{L_{N}}\left(\frac{\left(\theta_{S}+1\right)}{\left(\theta_{N}+1\right)}\right)^{-1 /(1-\alpha)}<$
$\left(\frac{L_{N}}{\varphi L_{S}}\right)\left(\frac{\theta_{S}+1}{\theta_{N}+1}\right)^{1 /(1-\alpha)}\left(\theta_{N}+1\right)$. This condition can still be reduced to $\left(\theta_{N}+1\right)^{-1}\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{\alpha /(1-\alpha)}<\left(\left(\theta_{S}+1\right) /\left(\theta_{N}+1\right)\right)^{1 / 1-\alpha}$, which is equivalent to $\left(\theta_{S}+1\right)>1$. Thus, $\theta_{S}{ }^{e}=0$ maximizes $C_{S R}\left(\theta_{N}, \theta_{S}\right)(0)$ for all θ_{N}.
d. Let us solve the North's optimization problem.

Taking as given the South's dominant strategy $\theta_{S}{ }^{e}=0$, the North solves the program $\max _{\theta_{N}, F(0)}\left[L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, 0,0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, 0,0\right)(0)+F(0)}{L_{S}}\right)\right]$, subject to $F(0) \geq 0$. The associated Lagrangian function writes $\mathcal{L}=L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, 0,0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, 0,0\right)(0)+F(0)}{L_{S}}\right)+\pi F(0)$, where π is the multiplier
associated to the constraint. The first-order conditions are the following:

$$
\begin{align*}
& \partial \mathcal{L} / \partial \theta_{N}=0, \tag{C1}\\
& \partial \mathcal{L} / \partial F(0)=0, \tag{C2}
\end{align*}
$$

$$
\begin{equation*}
\pi F(0)=0, \tag{C3}
\end{equation*}
$$

$$
\begin{equation*}
F(0) \geq 0 \tag{C4}
\end{equation*}
$$

- Case 1: $F(0)=0$.
(C1) becomes $\frac{L_{N}}{C_{N}\left(\theta_{N}, 0,0\right)(0)} \frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\delta L_{S}}{C_{S P}\left(\theta_{N}, 0,0\right)(0)} \frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}=0$.
Let us show that this has a unique solution $\theta_{N}^{e}(\delta)>0$.
Using the expressions of $C_{N}\left(\theta_{N}, 0,0\right)(0)$ and $C_{S P}\left(\theta_{N}, 0,0\right)(0)$ computed in b and after some simplifications, (C1) is equivalent to $Z 1\left(\theta_{N}\right)=0$, where

$$
Z 1\left(\theta_{N}\right) \equiv \frac{\left(\theta_{N}+1\right)^{-1 /(1-\alpha)}}{\theta_{N}+1-\alpha}+\frac{\left(\varphi L_{S} / L_{N}\right)}{\theta_{N}+1-\alpha}-\frac{\left(\varphi L_{S} / L_{N}\right)}{1-\alpha}+\left(\frac{\delta L_{S}}{L_{N}}\right) \frac{1}{1-\alpha}\left(\theta_{N}+1\right)^{-1 /(1-\alpha)} . \quad \text { For } \quad \text { any }
$$

$\theta_{N} \leq \alpha-1, C_{N}\left(\theta_{N}, 0,0\right)(0)$ is negative and the objective is not defined. Let us then look for solutions on $\theta_{N}>\alpha-1$. On this set, one can check that $Z 1^{\prime}\left(\theta_{N}\right)<0, Z 1(0)>0$ and $\lim _{\theta_{N} \rightarrow+\infty} Z 1\left(\theta_{N}\right)<0$. These properties imply that for all $\delta \geq 0$, there exists a unique $\theta_{N}^{e}(\delta)$ such that $Z 1\left(\theta_{N}^{e}(\delta)\right)=0$. Moreover, $\theta_{N}^{e}(\delta)>0$. In this case, (C2) and (C5) require $\delta \leq$ $\left(C_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)(0) / L_{S}\right) /\left(C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)(0) / L_{N}\right)$. As $\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}>0$ for all θ_{N}, implies that θ_{N}^{e} is such that $\frac{\partial C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)(0)}{\partial \theta_{N}}<0$.

Let us show that $\theta_{N}^{e}(\delta)$ is increasing in δ.
$Z 1\left(\theta_{N}\right)=0$ can be rearranged to give $\delta=\frac{1-\alpha}{L_{S} / L_{N}}\left[-\frac{1}{\theta_{N}+1-\alpha}+\frac{\varphi L_{S} / L_{N}}{1-\alpha}\left(\theta_{N}+1\right)^{1 /(1-\alpha)}-\right.$ $\left.\frac{\varphi L_{S}}{L_{N}} \frac{\left(\theta_{N}+1\right)^{1 /(1-\alpha)}}{\theta_{N}+1-\alpha}\right]$. Here, it is straightforward that the first term into brackets is increasing in θ_{N}.

The derivative of the second and third terms is of the same sign as $\frac{\left(\theta_{N}+1\right)^{\alpha /(1-\alpha)}}{\left(\theta_{N}+1-\alpha\right)^{2}}\left(\left(\frac{\theta_{N}+1-\alpha}{1-\alpha}\right)^{2}-\right.$ $\left.\left(\frac{\theta_{N}+1-\alpha}{1-\alpha}\right)\right)+\left(\theta_{N}+1\right)^{1 /(1-\alpha)}$, which is positive for all $\theta_{N}>0$. Thus, the solution $\theta_{N}{ }^{e}(\delta)$ is increasing in $\delta \geq 0$.

In particular, let us denote by θ_{0} the solution for $\delta=0$, i.e. $\theta_{0} \equiv \theta_{N}^{e}(0)$. Its definition is then $\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}=0$. Hence, $\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}<0$ if and only if $\theta_{N}>\theta_{0}$. Note that $\theta_{N}^{e}(\delta) \geq \theta_{0}$ for all $\delta \geq 0$.

- Case 2: $F(0)>0$.
(C3) implies $\pi=0$ and (C2) implies $F(0)=\frac{\delta L_{S} C_{N}\left(\theta_{N}, 0,0\right)(0)-L_{N} C_{S P}\left(\theta_{N}, 0,0\right)(0)}{L_{N}+\delta L_{S}}$. Replacing $F(0)$ in (C1) and simplifying, one gets $\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)}{\partial \theta_{N}}=0$.

Let us show that this equation has a unique solution $\underline{\theta}>0$.
Using the expressions of $C_{N}\left(\theta_{N}, 0,0\right)(0)$ and $C_{S P}\left(\theta_{N}, 0,0\right)(0)$ computed in b and simplifying, (C1) becomes $Z 2\left(\theta_{N}\right)=0$, where
$Z 2\left(\theta_{N}\right) \equiv\left(L_{N} / \varphi L_{S}\right)\left(\theta_{N}+1\right)^{-(1 /(1-\alpha))}+(2-\alpha) /(1-\alpha)-\left(\theta_{N}+1\right) /(1-\alpha)$.
One can check that $Z 2^{\prime}\left(\theta_{N}\right)<0$ for all $\theta_{N}, \lim _{\theta_{N} \rightarrow+\infty} Z 2\left(\theta_{N}\right)<0$ and $Z 2(0)>0$. These properties imply that there exists a unique $\underline{\theta}$ such that $Z 1(\underline{\theta})=0$. Moreover, $\underline{\theta}>0$.

In this case, (C4) requires $\delta \geq\left(C_{S P}(\underline{\theta}, 0,0)(0) / L_{S}\right) /\left(C_{N}(\underline{\theta}, 0,0)(0) / L_{N}\right) \equiv \underline{\delta}$.

- Using Cases 1 and 2, let us check that the North’s problem has a unique solution for all δ.

First, note that when $\delta=\left(C_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)(0) / L_{S}\right) /\left(C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)(0) / L_{N}\right)$, then $\theta_{N}^{e}(\delta)=$ $\underline{\theta}$. Thus, as $\theta_{N}^{e}(\delta)$ is increasing in $\delta, \delta>\frac{\left(\frac{c_{S P}(\theta, 0,0)}{L_{S}}\right)}{\left(\frac{C_{N}(\theta, 0,0)}{L_{N}}\right)}=\underline{\delta}$ is equivalent to $\theta_{N}^{e}(\delta)>\underline{\theta}$. Second,
after some computations, one can show that $\frac{\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}{\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}=1+\frac{L_{N}}{\varphi L_{S}}\left(\theta_{N}+1\right)^{-1 /(1-\alpha)}-\frac{\theta_{N}+1-\alpha}{1-\alpha}$, which is decreasing in θ_{N}. Hence, $-\frac{\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}{\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}$ is also decreasing in θ_{N}. Since $-\frac{\frac{\partial C_{S P}(\theta, 0,0)(0)}{\partial \theta_{N}}}{\frac{\partial C_{N}(\underline{\theta}, 0,0)(0)}{\partial \theta_{N}}}=1$, by definition of $\underline{\theta}$, then $-\frac{\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}{\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}<1$ if and only if $\theta_{N}>\underline{\theta}$.

- Assume $\delta>\frac{\left(\frac{C_{S P}(\theta, 0,0)}{L_{S}}\right)}{\left(\frac{C_{N}(\underline{\theta}, 0,0)}{L_{N}}\right)}=\underline{\delta}$. Then, $\theta_{N}^{e}=\underline{\theta}$ and $F^{e}(0)=\frac{\delta L_{S} C_{N}(\underline{\theta}, 0,0)(0)-L_{N} C_{S P}(\underline{\theta}, 0,0)(0)}{L_{N}+\delta L_{S}}$ is a solution (from Case 2). Let us now show that $\theta_{N}^{e}=\theta_{N}^{e}(\delta)$ and $F^{e}(0)=0$ is not a solution (i.e. we cannot be under Case 1).

First, since $\theta_{N}^{e}(\delta)$ is increasing in δ, in this case, $\theta_{N}^{e}(\delta)>\underline{\theta}$. Second, by definition of $\theta_{N}^{e}(\delta)$ above, $\frac{\left(\frac{c_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)}{L_{S}}\right)}{\left(\frac{c_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)}{L_{N}}\right)}=-\delta \frac{\frac{\partial c_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)(0)}{\partial \theta_{N}}}{\left(\frac{\partial c_{N}\left(\theta_{N}(\delta), 0,0\right)(0)}{\partial \theta_{N}}\right)}$, which is lower than δ because $\theta_{N}^{e}(\delta)>\underline{\theta}$. Finally, $\delta>\left(C_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right) / L_{S}\right) /\left(C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right) / L_{N}\right)$, i.e. we cannot be in Case 1.

- Assume $\delta<\frac{\left(\frac{C_{S P}(\theta, 0,0)}{L_{S}}\right)}{\left(\frac{c_{N}(\underline{\theta}, 0,0}{}\right)}=\underline{\delta}$. Then $\theta_{N}^{e}=\underline{\theta}$ and $F^{e}(0)=\frac{\delta L_{S} C_{N}(\underline{\theta}, 0,0)(0)-L_{N} C_{S P}(\underline{\theta}, 0,0)(0)}{L_{N}+\delta L_{S}}$ is not a solution (because we cannot be in Case 2). Let us show that $\theta_{N}^{e}=\theta_{N}^{e}(\delta)$ and $F^{e}(0)=0$ is a solution (i.e. we are in Case 1).

First, in this case, $\theta_{N}^{e}<\underline{\theta}$. Second, $\frac{\left(\frac{c_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)}{L_{S}}\right)}{\left(\frac{c_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)}{L_{N}}\right)}=-\delta \frac{\frac{\partial C_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right)(0)}{\partial \theta_{N}}}{\left(\frac{\partial C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right)(0)}{\partial \theta_{N}}\right)}$ is greater than δ.
Finally, $\delta<\left(C_{S P}\left(\theta_{N}^{e}(\delta), 0,0\right) / L_{S}\right) /\left(C_{N}\left(\theta_{N}^{e}(\delta), 0,0\right) / L_{N}\right)$, i.e. we are in Case 1.

- To sum up, the solution to the North's problem is $\left(\theta_{N}^{e}, F^{e}(0)\right)$ such that

$$
\theta_{N}^{e}=\theta_{N}^{e}(\delta) \text { and } F^{e}(0)=0 \text {, if } \delta \leq \frac{\left(\frac{c_{S P}(\theta, 0,0)}{L_{S}}\right)}{\left(\frac{c_{N}(\theta, 0,0)}{L_{N}}\right)}=\underline{\delta} \text {, where } \theta_{N}^{e}(\delta) \text { is increasing from } \theta_{0}=
$$

$\theta_{N}^{e}(0)$ to $\underline{\theta}=\theta_{N}^{e}(\underline{\delta})$, and

$$
\theta_{N}^{e}=\underline{\theta} \text { and } F^{e}(0)=\frac{\delta L_{S} C_{N}(\theta, 0,0)(0)-L_{N} c_{S P}(\theta, 0,0)(0)}{L_{N}+\delta L_{S}} \geq 0 \text {, if } \delta \geq \frac{\left(\frac{c_{S P}(\theta, 0,0)}{L_{S}}\right)}{\left(\frac{c_{N}(\theta, 0,0)}{L_{N}}\right)}=\underline{\delta} \text {. }
$$

Proof of Proposition 3

Whether the contract is accepted or not, the South's problem remains unchanged. In particular, if the contract is accepted, $I(t)$ is taken as given and the South seeks to maximize its consumption. Thus, $\theta_{S}^{c}=\theta_{S}^{e}=0$.

The same way as in Proposition 2, one can check that the North's problem reduces to the maximization of date 0 utility:

$$
\max _{\theta_{N}, I(0), F(0)} L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, \theta_{S}, 0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)+F(0)+I(0)}{L_{S}}\right), \text { subject to } F(0) \geq 0,
$$ $I(0) \geq 0$ and $C_{S R}\left(\theta_{N}^{e}, 0\right)(0) \leq C_{S R}\left(\theta_{N}, 0\right)(0)-I(0)$. Since the North's objective function is increasing with $I(0)$, the South's participation constraint is binding: $I(0)=C_{S R}\left(\theta_{N}, 0\right)(0)-$ $C_{S R}\left(\theta_{N}^{e}, 0\right)(0)$. Here, $C_{S R}\left(\theta_{N}, 0\right)$ can be shown to decrease with θ_{N} : From Proof of Proposition 2 b, one can see that $C_{S R}\left(\theta_{N}, 0\right)(0)=p(0) R(0)=\frac{\alpha}{\theta_{N}+1} Y_{N}(0)+\alpha Y_{S}(0)$, where $p(0) R(0)$ appears to be decreasing in θ_{N}. Hence, $I(0) \geq 0$ is equivalent to $\theta_{N} \leq \theta_{N}^{e}$. Taking as given the South's dominant strategy $\theta_{S}^{c}=0$, the North's problem becomes

$$
\begin{aligned}
& \max _{\theta_{N}, F(0)} L_{N} \ln \left(\frac{C_{N}\left(\theta_{N}, 0,0\right)(0)-F(0)}{L_{N}}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, 0,0\right)(0)+F(0)+C_{S R}\left(\theta_{N}, 0\right)-C_{S R}\left(\theta_{N}^{e}, 0\right)}{L_{S}}\right) \text {, subject to } \\
& F(0) \geq 0 \quad \text { and } \quad \theta_{N} \leq \theta_{N}^{e} . \quad \text { The associated Lagrangian function writes } \\
& \mathcal{L}=L_{N} \ln \left(\frac{C_{N}\left(\theta_{N, 0,0)(0)-F(0)}\right)+\delta L_{S} \ln \left(\frac{C_{S P}\left(\theta_{N}, 0,0\right)(0)+F(0)+C_{S R}\left(\theta_{N}, 0\right)-C_{S R}\left(\theta_{N}^{e}, 0\right)}{L_{N}}\right)+\mu F(0)+}{L_{S}}\right)
\end{aligned}
$$

$\vartheta\left(\theta_{N}{ }^{e}-\theta_{N}\right)$, where μ and ϑ are respectively the multipliers associated to the positivity constraint on $F(0)$ and to the constraint on the tax rate. The first-order conditions are the following:

$$
\begin{align*}
& \partial \mathcal{L} / \partial \theta_{N}=0, \tag{C6}\\
& \partial \mathcal{L} / \partial F(0)=0, \tag{C7}\\
& \mu F(0)=0, \tag{C8}\\
& F(0) \geq 0, \tag{C9}
\end{align*}
$$

$$
\begin{equation*}
\mu \geq 0 \tag{C10}
\end{equation*}
$$

$$
\begin{align*}
& \vartheta\left(\theta_{N}^{e}-\theta_{N}\right)=0 \tag{C11}\\
& \vartheta \geq 0 \tag{C12}\\
& \theta_{N} \leq \theta_{N}^{e}
\end{align*}
$$

- Case 1: $\theta_{N}=\theta_{N}^{e}, F(0)=0$.

Then, (C6) is equivalent to

$$
\frac{L_{N}}{C_{N}\left(\theta_{N}, 0,0\right)(0)} \frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\left.\frac{\delta L_{S}}{C_{S P}\left(\theta_{N}, 0,0\right)(0)}\left[\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}\right]\right|_{\theta_{N}=\theta_{N}^{e}}=\vartheta \geq 0 .
$$

Using the expressions of the consumption levels and after some computations, one can check that $\frac{-\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}}{\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}=1+\frac{L_{N}}{\varphi L_{S}}\left(\theta_{N}+1\right)^{-1 /(1-\alpha)}$. This implies that $\frac{-\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}}{\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}}>1$ for all θ_{N}, which is equivalent to $\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}<0$, since $\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}=(1-\alpha) \frac{\partial Y_{S}(0)}{\partial \theta_{N}}>$ 0 . Hence, from the expression of (C6) above, θ_{N}^{e} is such that $\left.\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}\right|_{\theta_{N}=\theta_{N}^{e}}>0$ which is contradicted by $\left.\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}\right|_{\theta_{N}=\theta_{N}^{e}}<0$ from Proof of Proposition 2. Thus, $\theta_{N}=\theta_{N}^{e}, F(0)=0$ cannot be a solution.

- Case 2: $\theta_{N}=\theta_{N}^{e}, F(0)>0$.

Then, (C6) is equivalent to

$$
\frac{L_{N}}{C_{N}\left(\theta_{N}, 0,0\right)(0)-F(0)} \frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\left.\frac{\delta L_{S}}{C_{S P}\left(\theta_{N}, 0,0\right)(0)+F(0)}\left[\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}\right]\right|_{\theta_{N}=\theta_{N}^{e}}=\vartheta .
$$

For the same reason as in Case 1, this cannot be a solution.

- Case 3: $\theta_{N}<\theta_{N}^{e}, F(0)=0$.

Then, (C6) is equivalent to

$$
\frac{L_{N}}{C_{N}\left(\theta_{N}, 0,0\right)(0)} \frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\delta L_{S}}{C_{S P}\left(\theta_{N}, 0,0\right)(0)+C_{S R}\left(\theta_{N}, 0\right)-C_{S R}\left(\theta_{N}^{e}, 0\right)}\left[\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}\right]=
$$

0 . Let us denote any solution to this equation by $\theta_{N}^{c}(\delta)$. As $\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}<0$ from above, $\theta_{N}^{c}(\delta)$ is such that $\frac{\partial C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}>0$. Note that, from Proof of Proposition 2, $\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}>0$ is equivalent to $\theta_{N}<\theta_{0}$, thus implying that any solution $\theta_{N}^{c}(\delta)$ is such that $\theta_{N}^{c}(\delta)<\theta_{0}$ for all $\delta>0$. One can check that $\theta_{N}^{c}(0)=\theta_{0}$.

Moreover, (C7) implies $\quad \mu=\frac{L_{N}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}-\frac{\delta L_{S}}{C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)}$.
Hence, (C10) requires $\delta \leq \frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}}$.

- Case 4: $\theta_{N}<\theta_{N}^{e}, F(0)>0$.

Then, (C7) implies $F(0)=\frac{\delta L_{S} C_{N}\left(\theta_{N}, 0,0\right)(0)-L_{N}\left[C_{S P}\left(\theta_{N}, 0,0\right)(0)+C_{S R}\left(\theta_{N}, 0\right)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right]}{L_{N}+\delta L_{S}}$.
Replacing $F(0)$ and simplifying, (C6) becomes $\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}=$ $\frac{\partial Y_{N}(0)}{\partial \theta_{N}}+\frac{\partial Y_{S}(0)}{\partial \theta_{N}}=\frac{\partial Y(0)}{\partial \theta_{N}}=0$. One can check that the unique solution to this equation is $\theta_{N}=0$.

Moreover $F(0)>0$ requires $\delta>\frac{\left(C_{S P}(0,0,0)(0)+C_{S R}(0,0)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right) / L_{S}}{C_{N}(0,0,0)(0) / L_{N}} \equiv \underline{\delta}$.

- Let us now review the solutions to the North's problem for all δ.

First, one can check that for $\delta=\frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}}, \theta_{N}^{c}(\delta)=0$. Second, as $\theta_{N} \geq 0$ is equivalent to $\frac{\partial Y(0)}{\partial \theta_{N}} \leq 0$, it is also equivalent to $-\left[\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\right.$ $\left.\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}\right] \geq \frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}$.

- Assume $\delta>\underline{\underline{\delta}}$.

Then, $\theta_{N}^{c}=0$ and $F^{c}(0)=\frac{\delta L_{S} C_{N}(0,0,0)(0)-L_{N}\left[C_{S P}(0,0,0)(0)+C_{S R}(0,0)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right]}{L_{N}+\delta L_{S}}$ is a solution. Let us show that $\theta_{N}^{c}=\theta_{N}^{c}(\delta)$ and $F^{c}(0)=0$ cannot be solution. From Case 3, any $\theta_{N}^{c}(\delta)$ must satisfy $\quad \delta \leq \frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}} \equiv \delta\left(\theta_{N}^{c}(\delta)\right)$, where $\delta\left(\theta_{N}^{c}(\delta)\right) \quad$ is strictly decreasing in $\theta_{N}^{c}(\delta)$ since $\theta_{N}^{c}(\delta)$ is such that $\frac{\partial C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}>0$ and $\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+$ $\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}<0$ for all θ_{N}. Moreover, $\delta(0)=\underline{\underline{\delta}}$. Hence, if $\delta\left(\theta_{N}^{c}(\delta)\right) \geq \delta>\underline{\underline{\delta}}$, then any $\theta_{N}^{c}(\delta)$ is strictly negative Then, by definition of $\theta_{N}^{c}(\delta)$, $\delta\left(\theta_{N}^{c}(\delta)\right)=\frac{\left(c_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}}=$ $-\frac{\delta\left[\frac{\partial C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)}{\partial \theta_{N}}\right]}{\frac{\partial C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}}$, which is strictly lower than δ since $\theta_{N}^{c}(\delta)<0$ is equivalent to $-\left[\frac{\partial C_{S P}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}, 0\right)(0)}{\partial \theta_{N}}\right]<\frac{\partial C_{N}\left(\theta_{N}, 0,0\right)(0)}{\partial \theta_{N}}$. Thus, $\delta\left(\theta_{N}^{c}(\delta)\right)=\frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}}<\delta$, i.e. we cannot be in Case 3.

- Assume $\delta<\underline{\underline{\delta}}$.

Then $\theta_{N}^{c}=0$ and $F^{c}(0)=\frac{\delta L_{S} C_{N}(0,0,0)(0)-L_{N}\left[C_{S P}(0,0,0)(0)+C_{S R}(0,0)(0)-C_{S R}\left(\theta_{N}^{e}, 0\right)(0)\right]}{L_{N}+\delta L_{S}}$ is not a solution. Let us show that any $\theta_{N}^{c}(\delta)$ together with $F^{c}(0)=0$ is solution. From above, $\theta_{N}^{c}(\delta)$
cannot be negative. Then, $\theta_{N}^{c}(\delta) \geq 0$, thus implying $\delta\left(\theta_{N}^{c}(\delta)\right)=\frac{\left(c_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)-C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0) / L_{N}}=$ $\frac{\delta\left[\frac{\partial C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}+\frac{\partial C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)(0)}{\partial \theta_{N}}\right]}{\frac{\partial C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)(0)}{\partial \theta_{N}}} \geq \delta$, which is consistent with Case 3.

- Since we are restricting our attention to $\delta \geq \underline{\delta}, \theta_{N}^{e}=\underline{\theta}$ from Proposition 2. Hence,
$\underline{\delta} \equiv \frac{\left(C_{S P}(0,0,0)(0)+C_{S R}(0,0)(0)-C_{S R}(\underline{\theta}, 0)(0)\right) / L_{S}}{C_{N}(0,0,0)(0) / L_{N}}$.
Then, to sum up, the solution to the North's problem is
$I^{c}(0)=C_{S R}\left(\theta_{N}^{c}, 0\right)(0)-C_{S R}(\underline{\theta}, 0)(0)$ and $\theta_{N}^{c}=0, F^{c}(0)=\frac{\delta L_{S} C_{N}(0,0,0)(0)-L_{N}\left[C_{S P}(0,0,0)(0)+C_{S R}(0,0)(0)-C_{S R}(\theta, 0)(0)\right]}{L_{N}+\delta L_{S}}$, if $\delta \geq \underline{\underline{\delta}}$, and any $\theta_{N}^{c}(\delta)$, such as defined above, and $F^{c}(0)=0$, if $\delta<\underline{\underline{\delta}}$.

In this latter case, one can hardly tell something precise about $\theta_{N}^{c}(\delta)$. However, we know that $\theta_{N}^{c}(0)=\theta_{0}, \theta_{N}^{c}(\underline{\underline{\delta}})=0$ and that any solution $\theta_{N}^{c}(\delta)$ for all δ in $(0, \underline{\underline{\delta}}$) is such that $0<$ $\theta_{N}^{c}(\delta)<\theta_{0}$.

In this case, the objective function is continuous in $\delta \geq 0$ and in $\theta_{N}>-1$, except at point $\theta_{N}=\alpha-1$. Moreover, the objective is not maximized for $\theta_{N} \leq \alpha-1$ and as θ_{N} tends to $\alpha-1$ or to $+\infty$, because, then, the objective would tend to $-\infty$. Finally, it is bounded from above because $C_{N}\left(\theta_{N}, 0,0\right)(0)+C_{S P}\left(\theta_{N}, \theta_{S}, 0\right)(0)+I(0)$ is lower than $Y(0)$, finite. Thus, for any $\delta \geq 0$, the existence of a global maximum is ensured. Hence, for any $\delta \in[0, \underline{\delta}]$, there exists at least one $\theta_{N}^{c}(\delta) \in\left[0, \theta_{0}\right]$.

Proof of Proposition 4

The utility of northern households is obviously increased with an additional instrument. The southern rich are indifferent as their participation constraint is binding. We thus only have to show that the southern poor are better-off when the contract is used by the North. We will consider two cases: $\underline{\delta} \leq \underline{\underline{\delta}}$ and $\underline{\delta}>\underline{\underline{\delta}}$.

- Case 1: $\underline{\delta} \leq \underline{\underline{\delta}}$.
- If $\delta \leq \underline{\delta}$, aid is nil whether the contract is used or not. Let us then show $C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+I^{c} \geq C_{S P}\left(\theta_{N}^{e}, 0,0\right)$. Replacing I^{c}, this is equivalent to $C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+$ $C_{S R}\left(\theta_{N}^{c}(\delta), 0\right) \geq C_{S R}\left(\theta_{N}^{e}, 0\right)+C_{S P}\left(\theta_{N}^{e}, 0,0\right), \quad$ which \quad is \quad satisfied because $\quad C_{S P}\left(\theta_{N}, 0,0\right)+$ $C_{S R}\left(\theta_{N}, 0\right)$ is decreasing in θ_{N} and $\theta_{N}^{c}(\delta) \leq \theta_{N}^{e}$.

If $\underline{\delta}<\delta<\underline{\delta}$, aid is nil under the contract and is positive without it. Let us then show $C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+I^{c} \geq C_{S P}(\underline{\theta}, 0,0)+F^{e}$. This is equivalent to $C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)-C_{S R}(\underline{\theta}, 0) \geq C_{S P}(\underline{\theta}, 0,0)+\frac{\delta L_{S} C_{N}(\underline{\theta}, 0,0)-L_{N} C_{S P}(\underline{\theta}, 0,0)}{L_{N}+\delta L_{S}}$ which can be rearranged to give the necessary and sufficient condition $\frac{L_{N}}{\delta L_{S}}\left[C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+\right.$ $\left.C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)-C_{S R}(\underline{\theta}, 0)\right] \geq C_{S R}(\underline{\theta}, 0)+C_{S P}(\underline{\theta}, 0,0)+C_{N}(\underline{\theta}, 0,0)-C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)-$ $C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)$. Here, left-hand side is positive. Then, if right-hand side is negative, the condition is satisfied. Let us assume this term is positive to check the condition is also satisfied in this case. Then, the inequality is equivalent to $\delta \leq \frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)-C_{S R}(\underline{\theta}, 0)\right) / L_{S}}{\left[C_{S R}(\underline{\theta}, 0)+C_{S P}(\underline{\theta}, 0,0)+C_{N}(\underline{\theta}, 0,0)-C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)-C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)\right] / L_{N}}$. We have shown that the case where aid is nil under the contract requires (from Case 3 of Proof of Proposition 3) $\delta \leq$ $\frac{\left(C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)-C_{S R}(\underline{\theta}, 0)\right) / L_{S}}{C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right) / L_{N}}$. It is thus sufficient to have $C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right) \geq C_{S R}(\underline{\theta}, 0)+$
$C_{S P}(\underline{\theta}, 0,0)+C_{N}(\underline{\theta}, 0,0)-C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right)-C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)$. This is satisfied because $C_{N}\left(\theta_{N}^{c}(\delta), 0,0\right)+C_{S R}\left(\theta_{N}^{c}(\delta), 0\right)+C_{S P}\left(\theta_{N}^{c}(\delta), 0,0\right) \geq C_{N}(\underline{\theta}, 0,0)+C_{S R}(\underline{\theta}, 0)+C_{S P}(\underline{\theta}, 0,0)$, where both sides equal total output, decreasing in θ_{N} for all $\theta_{N} \geq 0$, and where $\theta_{N}^{c}(\delta)<\underline{\theta}$.

- If $\delta \geq \underline{\delta}$, aid is positive with or without the contract. Let us show $C_{S P}(0,0,0)+F^{c}+$ $I^{c} \geq C_{S P}(\underline{\theta}, 0,0)+F^{e}$. Developing F^{c}, I^{c} and F^{e}, one gets the equivalent condition $C_{N}(0,0,0)+$ $C_{S P}(0,0,0)+C_{S R}(0,0) \geq C_{N}(\underline{\theta}, 0,0)+C_{S P}(\underline{\theta}, 0,0)+C_{S R}(\underline{\theta}, 0)$, which is satisfied since total output is maximized for $\theta_{N}=0$.
- Case 2: $\underline{\delta}>\underline{\underline{\delta}}$.
- If $\delta \leq \underline{\delta}$, aid is nil with and without the contract. The proof is the same as in Case 1 $(\delta \leq \underline{\delta})$.
- If $\delta \geq \underline{\delta}$, aid is positive with and without the contract. The proof is the same as in Case 1 ($\delta \geq \underline{\underline{\delta}}$).

If $\underline{\delta}>\delta>\underline{\delta}$, aid is nil without the contract and positive under it. Let us then show $C_{S P}(0,0,0)+F^{c}+I^{c} \geq C_{S P}\left(\theta_{N}^{e}, 0,0\right)$. This is equivalent to $C_{S P}(0,0,0)+C_{S R}(0,0)-$ $C_{S R}\left(\theta_{N}^{e}, 0\right)+F^{c} \geq C_{S P}\left(\theta_{N}^{e}, 0,0\right)$. Since $F^{c}>0$, a sufficient condition is $C_{S P}(0,0,0)+$ $C_{S R}(0,0) \geq C_{S P}\left(\theta_{N}^{e}, 0,0\right)+C_{S R}\left(\theta_{N}^{e}, 0\right)$, which is satisfied because $C_{S P}\left(\theta_{N}, 0,0\right)+C_{S R}\left(\theta_{N}, 0\right)$ is decreasing in θ_{N} and $\theta_{N}^{e}>0$.

[^0]: * This paper has benefited from comments by Yann Bramoullé, Christian Gollier, Patrick Gonzalez, Yolande Hiriart, Christian Kiedaish, Bruno Lanz, Pepita Miquel-Florensa, Andrew V. Perry, Gilles Saint-Paul, Sjak Smulders, Stéphane Straub and Cees Withagen, as well as by participants at the SURED 2008 conference, the Frontiers in Environmental Economics and Natural Resources Management TSE-AFSE conference, the $23^{\text {rd }}$ Annual Congress of the EEA, the Economics seminar at the University of Geneva and the Matuszewski seminar at Laval University. Particular thanks go to Jean-Paul Azam, André Grimaud and to two anonymous referees.

