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APPENDIX 



Proof of Lemma 3
The function 2B(x) � c(x) is concave. It attains its maximum at point x�:

It is increasing for x < x�and decreasing for x > x�. We know that x� is higher
than bba, because 2B0(bba) � c0(bba) = B0(bba) > 0. We also know that bba is higher
than ba, because B0(ba) > B0(2ba) = c0(ba). This implies that B0(ba) � c0(ba) > 0.
Consequently, 2B(x�) � c(x�) > 2B(bba) � c(bba) > 2B(ba) � c(ba) > B(2ba) � c(ba):
The �nal inequality is related to the concavity of the function B(:) which implies
that 2B(x) > B(2x) (with B(0) = 0: If not, we would consider the function
(B(x)�B(0)) and obtain an equivalent result).

Proof of Proposition 1
At Type 1 equilibrium, the countries maximize their (identical) utility func-

tion: Maxai [B(ai+a�i)� co� c(ai)]:We obtain ai = a�i = ba as the solution of
these maximization programs. The payo¤s of the countries at the equilibrium
are then equal to B(2ba)� co� c(ba):
At Type 2 equilibrium, the payo¤ of country i which abates is deduced from

the following maximization program: Maxai [B(ai)�co�c(ai)] because a�i = 0:
We obtain ai = bba as the solution of this program. At equilibrium, the payo¤ of
the country which does not abate is equal to B(bba); and the payo¤ of the country
which undertakes an abatement e¤ort is equal to B(bba)� co � c(bba):
At Type 3 equilibrium, the payo¤s of the countries which do not abate are

null.
Let us �rst show that the payo¤s of the countries at Type 1 equilibrium are

deduced from Nash equilibrium given the assumptions co1 > 0 and, co < co1: If
country 1 unilaterally deviates (the same for country 2), i.e., if it does not abate
it getsB(bba) which is lower than [B(2ba)� co � c(ba)] given the above assumptions,
co1 > 0 and co < co1.
Let us show now that the payo¤s of the countries at Type 2 equilibrium

are those of Nash equilibrium given the assumption co1 < co < co2: Country

1 (which abates) has no interest in deviating if
h
B(bba)� co � c(bba)i > 0; i.e., if

co < co2: As concerns country 2; it has no incentive to deviate unilaterally if
B(bba) > [B(2ba)� co � c(ba)] ; i.e., if co > co1:
Finally, if co > co2; country 1 deviates to Type 3 equilibrium.

Proof of Lemma 4
The maximization of the function N(a1; a1; t) for agreement U (a1 = a2 = a

and t = 0) leads to the following �rst-order condition: [2B0(2a)� c0(a)][B(2a)�
co� c(a)�NB�2 ] = �[2B0(2a)� c0(a)][B(2a)� co� c(a)�NB�1 ]. This condition
de�nes a: This holds true for the three Nash equilibria which represent the threat
points of the negotiation on agreement U.
The maximization of the function N(a1; a1; t) for agreement DT

(a1 6= 0; a2 = 0 and t 6= 0) leads to the following �rst-order conditions:
(B0(a1)� c0(a1))[B(a1)� t�NB�2 ] +B0(a1)[B(a1)� co� c(a1) + t�NB�1 ] = 0
and [B(a1)� co� c(a1) + t�NB�1 ] = [B(a1)� t�NB�2 ].
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As concerns Type 1 Nash equilibrium, we have NB�1 = NB
�
2 = B(2ba)� co�

c(ba). Then, the expression of transfers in agreement DT takes the following form,
t = (co+c(a1))

2 : Consequently, we obtain (B0(a1) � c0(a1))[B(a1) � (co+c(a1))
2 �

B(2ba) + c(ba)] + B0(a1)[B(a1) + co
2 �

c(a1)
2 � B(2ba) + c(ba)] = 0. This condition

leads to a1.
As concerns Type 2 Nash equilibrium, we have NB�1 = B(bba) � co � c(bba)

and NB�2 = B(bba). Then, the expression of transfers in agreement DT takes the
following form, t = (c(a1)�c(bba)

2 : Consequently, we obtain (B0(a1)�c0(a1))[B(a1)�

B(bba) � ((c(a1)�c(bba))
2 ] + B0(a1)[B(a1) � B(bba) � [c(a1)�c(bba)]

2 ] = 0. This condition
de�nes a1.
As concerns Type 3 Nash equilibrium, we have NB�1 = NB�2 = 0. Then,

the expression of transfers in agreement DT is the following, t = [co+c(a1)]
2 :

Consequently, we obtain (B0(a1)� c0(a1))[B(a1)� (co+c(a1))
2 ] +B0(a1)[B(a1)�

(co+c(a1))
2 ] = 0. This condition de�nes a1.
As the expressions of transfers in the three cases show, there exists a unique

level of transfers such that the two countries are equally well o¤. This is derived
from the de�nition of the Nash bargaining solution and the assumption that all
the countries have the same negotiation powers.

Proof of Proposition 2
[B(2a)� co � c(a)] <

h
B(a1)� [co+c(a1)]

2

i
if and only if co > co:

The (identical) payo¤ of the countries in agreement U when the threat point
is represented by Type 1 Nash equilibrium is the following: [B(2a)� co � c(a)],
which exceeds their payo¤ at the threat point [B(2ba)� co � c(ba)] because a
maximizes the function B(2x)� co � c(x):

Proof of Proposition 3

[B(2a)� co � c(a)] <
�
B(a1)�

[c(a1)�c(bba)]
2

�
if and only if co > co:

The payo¤s of the countries in agreement DT when the threat point is repre-

sented by Type 2 Nash equilibrium are the following:
�
B(a1)�

[c(a1)+c(bba)]
2 � co

�
for country 1 and

�
B(a1)�

[c(a1)�c(bba)]
2

�
for country 2: These payo¤s exceed

those at the threat point (NB�1 = B(bba)� co� c(bba) and NB�2 = B(bba)), because
a1 maximizes the function 2B(x)� c(x): Consequently, we have B(a1)� c(a1)

2 >

B(bba)� c(bba)
2 .
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Proof of Proposition 4
[B(2a)� co � c(a)] <

h
B(a1)� [co+c(a1)]

2

i
if and only if co > co:

The payo¤ of the countries in agreement U when the threat point is repre-
sented by Type 3 Nash equilibrium is the following: [B(2a)� co � c(a)] ; which
exceeds 0 if co < coU :
The payo¤ of the countries in agreement DT when the threat point is repre-

sented by Type 3 Nash equilibrium is the following:
h
B(a1)� [c(a1)+co]

2

i
; which

exceeds 0 if co < coDT :

Proof of Lemma 5
1) co2 < coU because B(bba) � c(bba) < B(2a) � c(a). This holds true because

B(2x) > B(x) for every x, since B(:) is an increasing function. Consequently,
the maximum of the function B(2x) � c(x) is higher than that of the function
B(x)� c(x):
coU < coDT because B(2a)� c(a) < 2B(a1)� c(a1). This holds true because

B(2x) < 2B(x) by the concavity of the function B(:) and by the assumption
that B(0) = 0. Consequently, the maximum of the function 2B(x) � c(x) is
higher than that of the function B(2x)� c(x):
2) We know that co = 2coU � coDT , then co < coU because coU < coDT (see

above). Since the inequality coDT > 2coU could exist, co could be negative.

3) co < co because B(2a)� c(a)� B(a1)�
[c(bba)�c(a1)]

2 < 2(B(2a)� c(a))�
(2B(a1)� c(a1)) = 2co + c(bba):
Proof of Proposition 6
B0(2ba) = c0(ba) < c0(2ba) and B0(bba) = c0(bba): The property that the function

B0(:) is decreasing and the function c0(:) is increasing implies that 2ba > bba: A
similar argument leads to 2a > a1:

Proof of Proposition 7
We �rst study the condition of internal stability:

NBn(p + m � 1) � NBs(p + m): These utility levels are de�ned in the fol-
lowing way:
NBn((p � 1) + m) = w [(p� 1)as + (N � (m+ p� 1)an] � co � ca2n

2 :

NBs(p+m) = w [pas + (N � (m+ p))an]�
p

m+ p

�
co +

ca2s
2

�
:

We have as(m+ p) =
(m+ p)w

c
and an =

w

c
: Substituting, we obtain:

NBn((p� 1) +m) = w
�
(p� 1)

�
(m+ p� 1)w

c

�
+ (N � (m+ p� 1)w

c

�
�

co � c
2

�w
c

�2
:

NBs(p+m) = w

�
p

�
(m+ p)w

c

�
+ (N � (m+ p))w

c

�
� p

m+ p

"
co +

c

2

�
(m+ p)w

c

�2#
:
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Then, the condition NBn(p+m�1) � NBs(p+m) reduces to the following:
w2

2c [3 + p(p� 4) +m(p� 2)] �
m
m+pco:

We now study the condition of external stability:
NBn(p + m) � NBs(p + m + 1): These utility levels are de�ned in the fol-
lowing way:
NBn(p + m) = w [(pas + (N � (m+ p)an] � co � ca2n

2 :
NBs(p + m + 1) = w [(p+ 1)as + (N � (m+ p+ 1))an]

� p+ 1

m+ p+ 1

�
co +

ca2s
2

�
:

We have as(m+ p) =
(m+ p)w

c
and an =

w

c
: Substituting, we obtain:

NBn(p+m) = w

�
p

�
(m+ p)w

c

�
+ (N � (m+ p))w

c

�
� co � c

2

�w
c

�2
:

NBs(p + m + 1) = w

�
(p+ 1)

�
(m+ p+ 1)w

c

�
+ (N � (m+ p+ 1))w

c

�
� p+ 1

m+ p+ 1

"
co +

c

2

�
(m+ p+ 1)w

c

�2#
:

Then, the condition NBn(p+m) � NBs(p+m+1) reduces to the following:
0 < 2cco

w2 � m+p+1
m (m(p� 1) + p(p� 2)):

Let us turn now to the core of the proof of Proposition 7.

1) The condition of internal stability is written in the following way in
this case (the calculus for agreement U is similar if we put m = 0 and t = 0 in
the calculus above): NBs(p)�NBn(p� 1) = w2

c (�
1
2p
2 + 2p� 3

2 ) � 0.
The condition of external stability is (the calculus for agreement U is

similar if we putm = 0 and t = 0 in the calculus above): NBn(p)�NBs(p+1) =
w2

c (
1
2p
2 � p) � 0:

These conditions are identical to those in Barrett (1994). We will show that
only p = 2 and p = 3 satisfy these two conditions.
NBs(p) � NBn(p � 1) is a polynomial in p with a maximum attained for

p = 2. This maximum implies the following value w2

c (
1
2 ) > 0: This polynomial

is equal to 0 for p = 1 and p = 3; it is negative for p > 3:
NBn(p) � NBs(p + 1) is also a polynomial with a minimum attained for

p = 1: This minimum implies the following value w2

c (�
1
2 ) < 0: It is equal to 0

for p = 2 and is strictly positive for p > 2.

2) The condition of internal stability is written in the following way in
this case (see above): (3 + p(p� 4) +m(p� 2)) � m

m+p
2cc0
w2 :

The condition of external stability is (see above):
(m(p� 1) + p(p� 2)) � m

m+p+1
2cc0
w2 :

For p = 1; we check that the second condition does not hold because
m
m+2

2cc0
w2 > 0: For p = 2; these two conditions are written in the following

way: the �rst condition �1 � m
m+2

2cc0
w2 and the second condition m � m

m+3
2cc0
w2 ;

or w2

2cC0
� 1

m+3 ; which is true for each m strictly positive. We should now prove
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that a stable coalition could not exist for p � 3 and m � 1: Recall the condi-
tion of internal stability (3 + p(p � 4) +m(p � 2)) � m

m+p
2cC0
w2 . We know that

(3 + p(p� 4) +m(p� 2))m+pp exceeds (3 + p(p� 4) +m)m+pp when p � 3 and
m � 1. This latter expression is strictly superior to 1 for p � 3 and m � 1:
However, we have 2cC0

w2 � 1 by assumption. Consequently, the condition of
internal stability does not hold for p � 3 and m � 1:

Proof of Proposition 8
1) The individual payo¤ under agreement U (with a coalition size of p = 3)

is as follows: NBUs (3) =
w2(2N+3)

2c � co:
The individual payo¤ under agreement DT (with a coalition size of 2 +m;

with m � 1) is as follows: NBDTs (2 +m) = w2N
c � 2co

m+2 :

NBDTs (2 +m) > NBUs (3) if co >
3w2(m+2)

2cm ; which is incompatible with our

initial assumption co < w2

2c : Therefore, NB
U
s (3) > NB

DT
s (2 +m):

2) The individual abatement under agreement DT is: aDTS (2+m) = (2+m)w
c :

The individual abatement under agreement U is: aUS (3) =
3w
c . We then have

aUS � aDTS because m � 1:
3) The global abatement under agreement U is as follows:
AU = paUS + (N �m� p)an = 3 3wc + (N � 3)wc =

w
c (6 +N):

The global abatement under agreement DT is as follows:
ADT = paDTS +(N �m� p)an = 2 (2+m)wc +(N �m� 2)wc =

w
c (2+N +m):

ADT > AU if m � 5:

Proof of Proposition 9
We �rst study the condition of internal stability:

NBn(p+m� 1) � NBs(p+m):

We have as(m+ p) =
(m+ p)w

c
and an = 0: We obtain:

NBn(p+m� 1) = w
�
(p� 1)

�
(m+ p� 1)w

c

��
:

NBs(p+m) = w

�
p

�
(m+ p)w

c

��
� p

m+ p

"
co +

c

2

�
(m+ p)w

c

�2#
:

Then, the condition NBn(p+m�1) � NBs(p+m) reduces to the following:
w2

2c [�2 + p(4� p) +m(2� p)] �
p

m+pco:

We now study the condition of external stability:

NBn(p+m) � NBs(p+m+ 1): We have as(m+ p) =
(m+ p)w

c
and an = 0:

We obtain:

NBn(p+m) = w

�
p

�
(m+ p)w

c

��
:

NBs(p+m+1) = w

�
(p+ 1)

�
(m+ p+ 1)w

c

��
� p+ 1

m+ p+ 1

"
co +

c

2

�
(m+ p+ 1)w

c

�2#
:
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Then, the condition NBn(p+m) � NBs(p+m+1) reduces to the following:
w2

2cco
(m(1� p) + p(2� p) + 1) � p+1

p+m+1 :

Let us turn now to the core of the proof of Proposition 9.

1) The condition of internal stability is written in the following way in
this case (the calculus for agreement U is similar if we put m = 0 and t = 0 in
the calculus above): (�p2 + 4p � 2) � 2coc

w2 : This inequality does not hold for
p = 1 because w2 < 2coc: It holds for p = 2 if 2 � 2coc

w2 . Neither it can hold for
p = 3 because w <

p
2coc; nor for p > 3 because 2coc

w2 > 0:
We should now prove that the condition of external stability (the calculus

for agreement U is similar if we put m = 0 and t = 0 in the calculus above)
holds for p = 2: In the general case, this condition is written in the following
way (�p2 + 2p+ 1) � 2coc

w2 , and the case p = 2 satis�es this inequality.

2) The condition of internal stability is written in the following way (see
above): (m(2� p) + p(4� p)� 2) � p

m+p
2cco
w2 .

The condition of external stability is (see above):
(m(1� p) + p(2� p) + 1) � p+1

m+p+1
2cco
w2 :

For p = 1; the �rst condition leads to (m + 1)2 � 2cco
w2 ; and the second

condition implies (m+ 2) � 2cC0
w2 . Since the total number of countries is 2; the

number of signatories which make a transfer is 1 (m = 1). Consequently, the
two conditions imply the following relationship 3 � 2cco

w2 � 4.
For p > 2 and m � 1; we note that the condition of internal stability (m(2�

p) + p(4 � p) � 2) is lower than (2 � p) + p(4 � p) � 2 = �p2 + 3p. This �nal
expression is a polynomial with an integer maximum attained for p = 1 and
p = 2. These maxima imply the following value (2). This polynomial is inferior
or equal to zero for p � 3: Consequently, the condition of internal stability does
not hold for p � 3:
For p = 2; the condition of internal stability is equal to 2 � 2

m+2
2cco
w2 : This

holds for a given value of m higher than a threshold level, if the total number
of countries is su¢ ciently high. The condition of external stability is equal to
(1�m) � 3

m+3
2cco
w2 ; which always holds for m � 1:

Proof of Proposition 10
1) The individual payo¤ under agreement U (with a coalition size of p = 2)

is as follows: NBUs (2) =
2w2

c � co:
The individual payo¤ under agreement DT (with a coalition size of 2) is as

follows: NBDTs (2) = w2

c �
co
2 :

NBDTs (2) > NBUs (2) if w
2 < cco

2 ; which is incompatible with the assump-

tion co � w2

c needed to have a coalition size of 2 in agreement U. Therefore,
NBUs (2) > NB

DT
s (2):

2) The global payo¤ under agreement U (with a coalition size of p = 2) is as
follows:
V U (2) = (m + p)NBUs + (N � m � p)NBUn = 2

h
2w2

c � co
i
= 4w2

c � 2co;
because there is no non-signatory for N = 2:
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The global payo¤ under agreement DT (with a coalition size of m+ p = 2)

is as follows: V DT (2) = (m+ p)NBDTs + (N �m� p)NBDTn = 2
h
w2

c �
co
2

i
=

2w2

c � co:
V U (2) > V DT (2) if w >

p
cco
2 :

3) The individual abatements under agreements U and DT are as follows:
aUS (2) = a

DT
S (2) = 2w

c .
4) The global abatement under agreement U is as follows: AU = 2aUS (2) =

4w
c :
The global abatement under agreement DT is as follows: ADT = aDTS (2) =

2w
c :
We have ADT < AU :

Proof of Proposition 11
1) The individual payo¤ under agreement U (with a coalition size of p = 2)

is as follows: NBUs (2) =
2w2

c � co:
The individual payo¤ under agreement DT (with a coalition size of 2 +m)

is as follows: NBDTs (2 +m) = w2(m+2)
c � 2co

m+2 :

It is easy to check that NBDTs (2 +m) is always higher than NBUs (2):
2) The global payo¤ under agreement U (with a coalition size of p = 2) is

as follows: V U (2) = 2NBUs + (N � 2)NBUn = 2
h
2w2

c � co
i
+ (N � 2)

h
4w2

c

i
=

4w2

c (N � 1)� 2co:
The global payo¤ under agreement DT (with a coalition size of 2 + m)

is as follows: V DT (2 + m) = (2 + m)NBDTs + (N � m � 2)NBDTn = (2 +

m)
h
w2(m+2)

c � 2co
m+2

i
+ (N �m� 2)

h
2w2(m+2)

c

i
= w2

c

�
2N(m+ 2)� (m2 + 4m+ 4)

�
� 2co:

V DT (2 +m) > V U (2) if N � 4:
3) The individual abatement under agreement U is as follows: aUS (2) =

2w
c .

The individual abatement under agreement DT is as follows: aDTS (m+2) =
(m+2)w

c :
We have aDTS (m+ 2) > aUS (2):
4) The global abatement under agreement U is as follows: AU = 2aUS (2) =

4w
c :
The global abatement under agreement DT is as follows: ADT = 2aDTS (m+

2) = 2(m+2)w
c :

We have ADT > AU :
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Table A1: Illustration of Cases 1 and 2 of Proposition 5
Case 1: � = � =  = 1 Case 2: � = 1; � = 0:1;  = 1
co1 = 0:013; co2 = 0:25 co1 = 0:31; co2 = 0:45
coU = 0:4; coDT = 0:66 coU = 1:42; coDT = 1:66
co = 0:13; co = 0:004 co = 1:19; co = 0:38
NB�1T1= NB

�
2T1= 0:38� co NB�1T1= NB

�
2T1= 1:18� co

NB�1T2 = 0:25� co; NB�2T2 = 0:37 NB�1T2 = 0:45� co; NB�2T2 = 0:86
NB�1T3= NB

�
2T3= 0 NB�1T3= NB

�
2T3= 0

NBUT1= NB
U
T2= NB

U
T3= 0:4� co NBUT1= NB

U
T2= NB

U
T3= 1:42� co

NBDTT1 = NB
DT
T3 = 0:33� (co=2) NBDTT1 = NB

DT
T3 = 0:83� (co=2)

NBDT1T2 = 0:27� co; NBDT2T2 = 0:39 NBDT1T2 = 0:62� co; NBDT2T2 = 1:04
tT1 = tT3 = 0:11 + (co=2); tT2 = 0:04 tT1 = tT3 = 0:69 + (co=2); tT2 = 0:48
Note: The subscript Tj with j = 1; 2; 3 stands for Type 1, Type 2 and Type 3

Nash equilibrium.
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Table A2: Illustration of Case 3 of Proposition 5
Case 3: � = 1; � = 0:1;  = 2
co1 = 0:19; co2 = 0:23;
coU = 0:83; coDT = 0:90
co = 0:75; co = 0:26
NB�1T1= NB

�
2T1= 0:66� co

NB�1T2 = 0:23� co; NB�2T2 = 0:46
NB�1T3= NB

�
2T3= 0

NBUT1= NB
U
T2= NB

U
T3= 0:83� co

NBDTT1 = NB
DT
T3 = 0:45� (co=2)

NBDT1T2 = 0:34� co; NBDT2T2 = 0:56
tT1 = tT3 = 0:41 + (co=2); tT2 = 0:29
Note: The subscript Tj with j = 1; 2; 3 stands for Type 1, Type 2 and Type 3

Nash equilibrium.
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