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1 Proof of Proposition 1

To prove the efficiency of the allocation rule consider the following perturbation. Take any
R&D skill 7 € (0,7) and two different production skills Ay, A2 € (0, X) with Ay < 0(n)v <
A2. Draw a circle of area A; and diameter d; around point {7, A1}, small enough so that
all the workers with productivity bundles within the circle are initially assigned to R&D,

producing ny = [\ v (fAeAl g (v, ) dx\) dv. Relocate them to production to obtain

v
b= [iea, A <fV€A1 g, \) dy) d\ instead. In order to maintain R&D inputs unchanged
a sufficient mass of workers initially assigned to production must be relocated from the
circle of area Ay around point {7, A2}, by choosing its diameter d2 just large enough to

satisfy [,ca, v ( Lren, 8 (5 A) d)\) dv = ny. This reallocation implies a reduction of labor

inputs to production by Iy = [y 5, A (f,ea, § (1 A) dv) dA. Overall the reallocation will,
by definition of J2, maintain the R&D inputs constant. However the reallocation will
reduce the labor inputs to production, i.e., lo < l;. In fact relocated individuals have
similar R&D skill (about ©) but those with higher production skill (about A2) specialize
in R&D and those with relatively low production skill (about A1) specialize in production.

2 Proof of Proposition 2

The frontier is decreasing because

The sign is established using results obtained in the paragraph preceding the proposition.

We first obtain the explicit expression of the ELPF in the case of a one-point mass
distributions. Then we do the same for a two-points mass distributions. Finally we
consider the case of a continuous distribution.

One point distribution. Assume a degenerate population density, § (v, A) = ¢ > 0 only
at one skill bundle {7, \} € T', with #, A > 0, and § (v, \) = 0 over the rest of I'. We have
P=g,n=gvandl =g\ Since Vi € [0,P] §; = = \/v according to Proposition 1 a
worker can indifferently be assigned to any sector. The ELPF is linear

[(n)=g\—6n ; nel0,n]

Two-points distribution. Assume g (v1,\1) = g1 > 0 and g (v2,A2) = g2 > 0 only
at {vi, A1}, {ve, o} € T, with v1,A\1,9,X2 > 0, and g(v,\) = 0 over the rest of T
It follows that P = g1 4+ g2, 7 = giv1 + gavs and | = g1\ + goXo. Individuals are
characterized by one of the two possible relative skill indices 8; = A; /vy or 02 = Aa/ve.
According to Proposition 1, first workers characterized by the lowest relative skill index



0, = arg min{f;, 02} should be assigned to R&D and only once all of them are employed
those characterized by 6, = arg max{6,, 62} can be employed in R&D. This allocation rule
defines two possible thresholds, 7 = g1 and [ = goXg if 0, = 01 (ie. 01 < 03), while
N = govs and [ = g1A1 if 6, = 02 (i.e. 62 < 61). This leads to the ELPF

~ . [‘I’ea(ﬁ*n) for TLG[O,fL]
l(”)—{[+9b(ﬁ_n) for n € [n,n]

The ELPF is linear if 61 = 05, otherwise it is piecewise linear and quasi-concave.

The same procedure applies to the case of more than two-points in a discontinuous
distribution with any finite number of points with positive population mass. The efficient
allocation rule implies an ELPF that is piece-wise linear and quasi-concave.

Continuous distribution of the population over I'. In the special case of a distribution
admitting positive mass only on a subset of a ray going through the origin, Vi € [0, P]
0; = 0 so that the ELPF is linear. Otherwise 6; € [0, 0] where 0, = argmin;ep p){0;}.
To increase effective labor inputs in R&D it is necessary to raise the amount of raw
labor assigned to R&D, and according to the rule of efficient labor allocation this requires
a larger cut-off ray 6 (n). Since 0 (n) is a continuous function, the slope of the ELPF
increases continuously with n.

3 Examples of effective labor possibilities frontiers

3.1 The ELPF with uniform population distribution over I

Using the results obtained in the first part of section 2 we get

h) v 2|V
Tl:/ / G (v, \) vd\dv = g\ v = g\i?/2 = P /2
0o Jo 2
B X o )\2 A B _
l:/ / G AN AMY = g7 |~ | = gX25/2 = PA/2
o Jo 2 o

where population size is P = fOD fo;\ gd\dv = g\. For 0 € [O, ﬂ, we have

n1(9):/oyu(/Oeyg(u,)\)d)\>dV:/OVgHVQdV:gGV;
L) = /Oi9V>\</O/\/0§(u,)\)du>d)\+/;01_/)\</oyg(z/,>\)du>d)\

A=0 by
= / gA\2/0d) + ﬁ gAvdA = g\?0 /2 — g0%7° /6
0 _

A=0v



and for 6 € [5, oo] we have

v=X\/0 Ov 17 A
ng () = / 1/(/ g(u,)\)d)\>dl/+/ v / g, A)dX\ | dv
0 0 =X/ 0
v=X/0 v B B B
= / g0V dy + / _ vghdv = g\i? /2 — g)\?/(66%)
0 =M\/0

i p
l2(0):/0)\)\</0/\ g(u,)\)du> d)\://\g/\Q/Hd/\:g)\?’/(B@)

0

The threshold levels are computed for § = 6

i =ny (0) :/ODV</O§V§(V,)\)d)\> dyz/0599u2d1/:2n/3

1=1,(0) :/OAA</(]A/9§(V,A)CZV> dA:/OAg)\z/GdA:2l/3

Substituting for § we obtain the ELPF

iy~ [ 1= 30% (07) for me o)
M =1 o) @-n' for el

The ELPF is strictly concave since I’ (n) = —3n/ (97%) < 0 and " (n) = -3/ (g7*) < 0 for
n<,andl’ (n) = — (%gj\?’)l/2 (n—n)"Y?/2<0and " (n) = — (%95\3)1/2 (n—n)"%? /4 <
0 for n > n.

3.2 The ELPF with heterogeneous distribution due to specialization

Let us set two labor-allocation thresholds 6; € (0,5) and 0y € (5, oo), which define
A = 017 and vy = A/By (see the right panel of Figure 1). We assume that population
density is reduced to g1 < ¢ in the area between the two rays 6, and 6yv, and increased
to go > ¢1 in the rest of the rectangle. The choice of g; and of go are constrained because
of the population size. To compute population size in the heterogeneous case we add to
the uniform population with density g; over the whole rectangle, the increment by g2 — ¢1
over the two regions North-West of the %% ray and South-East of the 61 ray and get

(M7 + o)

| =

P=g\v+ (g2 —g1)



The maximum amount of effective labor in R&D is

v v 5 1/2:5\/52
n = / gl)\-ydy—i—/ (gg—gl)ﬁly-ydy—i—/ (92— q1)bav - (v2 —v)dv
0 0 0

1,217 N 3|7 _ o va=A/02 Y va=X/02
= gA || +(g2—91)01 |5 | +(92—g1) 02|+ — (92 —q1) 02 |+
2 3 1o 2, 3 1o
1< o 1z 3 i3 1y 3
= 915)\1/ + (92 — 91) 3911/ + (92 — 91) 592V2 — (92 —91) 592V2
1- 1 _
= QAP+ (g2 — 1) 2P + (92 — 1) =M%
2 3 6
and the maximum amount of effective labor in production is
B 2 2 )\ )\125117 )\
[ = / gllj-)\d)\-i-/ (gg—gl) ~)\d)\+/ (gz_gl)T(Al_A) dA
0 0 ) 0 01
)\2 A 1 )\3 A )\1 )\2 )\1:9117 1 )\3 >\1:9~1E
= gv|=| +(@—9)=|5| +(2—9)=|= —(92—q1) = |+
2y 6213 1o 6112 |g 6113 lo
1- 123 123 123
N4 (g 1) 2t (go— 1) SOl gy — gy) 2L
GigA Y+ (g2 g1) 35, + (92 — 1) 27, (92 — 91) 3%,
1- 1- 1
= 915)\2’7 + (92 — g1) g)\ZVz + (92 — 91) g)\%ﬂ

To built the ELPF we establish the amount of effective labor in each sector as a
function of the labor-allocation cut-off 6, n (6) and [ (6), using the rule of efficient labor
allocation of Proposition 1. Next we obtain the frontier I = [ (n) by substituting for 6.
The procedure is applied to each of the four different regions as 6 varies from 0 to oco:

e For 6 € [0,6,] )
v Vgl/ 1 I
n(0) = GoOv - vdy = gof | —| = go-0D
0 3 1o 3
A=0p 2 [A=07 3 | A=00
7 A/ - AlA 1A
1) = 1- —(A=A)d\=1—go— | — )
) | w5 (=) wyl5|  rogly|

so that

and n bounded between n (0) = 0 and n (51 = 925153/3 = g% /3 =ny;

SN—



e For 0 € [0),0]

n (9) = / 910V - vdy + / (g2 — gl) élV - vdy
0 0

3|V

v 3y
3

3

+ (92— 91) 01
0

= 919

0

1 1
= 9159’73 + (92 — 91) §>\1172

_ A=00 )\ /\1:§117 )\
L) = l—/ 91<V—>/\d>\—/ (92—91)<V—~))\d)\
0 0 0 91

Substituting in [ (§) we get:

A . 1, 31 1., 1. 5]
[(n)=1- (92— g1) 6)\11/ — 591? [n — 92§)\1V +91§)\1V ]
n is bounded between n; and n(é) = q30/3 + (92 — g1) MP?/3 = g1 M\?/3 +
GMP? /3 — gii? /3 = goMi? /3 + g1 (A — A1) 72 /3 = ny;

e For 6 € [0, 6]

r=\/0 U 3 U
n(f) = / glﬁy-ydy—i—/ gl/\-ydy+/ (g2 — g1) Orv - vdv
0 v 0

—3/0
3 (7=M\/0 2 17 13 7
= g0 |+ toad5| + (92 — g1) bh 3
0 =X/0 0
13 1< 13 1-
= _— 7)\72 — - _ 70 —3
91392+g12 v 91292+(92 g1)311/
1< , 123 1.
= 91§>\V ~ 92 + (92 — 91) §>\11/



A A A
1(6) = /gle-Ad)\—i—/ (g2 — g1) = - AdA
0 0 02

_ EE_’_( _ )EE
= 9139 g2 — g1 352
123

1<
= glgy + (92 — g1) g)\ 1)

Rearranging n (f) we have:
1 6 \21 1_ B 1, 1/2
7= <g1)\3> [912>\V + (92 = g1) ghv” — n]
Substituting in I (0) we get:
1/2

7 Lyo 2 33 12 Ly L5 )
l(n):(g2—91)§)\ Vo + 591)\ 92§>\1I/ —|—g1§()\—)\1)1/ -n

n is bounded between ng and n (52) = g1 A\? /2 — g1 23/ <6§%> + (92 — g1) MP?/3 =
g15\172/2—915\1/§/6+(gz — gl) )\152/3 = gg)\152/3+gl (5\ — )\1) 172/3+ng (172 — 1/%) /6 =
n3;

e For 0 € [, 0]

p=X\/6 B
n(f) = ﬁ—/ g2 (A= 0v) - vdv
0

~ 9 7=M\/0 3 =X/
= N —@p\|— 0|—
n—gs 5 . + g2 3 ,
2 3
p— n — Ai 04
n— g2 2+92 3
R
by 32 ¥3
A 1A 1)
( ) /0 929 929 3 . 923 9

Rearranging n () we have:

1 6 1/2 B
o <92)\3> (=)



Substituting in [ (§) we get:

[(n) = @92)\3) v (A —n)'/?

n is bounded between n3 and 7.

The ELPF is now the envelope of four concave functions

i % (g2,73)—1 n2 Vn € [0, n4]
= L o g me

2NNy + (313°) 7 (n2 — n+ 4A02) vn € [n,n3]

(39:29)"" (n— )" ¥ € [z,

where n1 = %2/\1&2, ny = ny + %1 (5\ — )\1) 7%, ng = ng + %5\ (D2 — 1/22), n=n3+ %25\1/22,
and [ = SN2 4 92290 \2p, 4 291 \2p

When comparing this case with the case of uniform population density g over I', we
impose the following constraint on g; and go to maintain the population size constant:

g—9 :1<)\_1+V_2>
g2—91 2\ VU

3.3 The ELPF with uniform distribution over a segment

Individual sector-specific skills are a function of individual ability a; ~ U [0, 1] as
vi =ay + fya; and A = ay + Oha;

This representation is equivalent to constraining the domain to 'y, = {v, A (V) |V € [a, 7]} C
I where \; = A (v) = a+ Py, with a = ay — a,6)/6, and § = (\/0By, and v = ay, + (B, so

that A = o + Gy, implying \ € [a)\, 5\] Define 0 = a/a, and 0 = (o) + By)/(cw + B,).

Denote by x € [0,1] the fraction of the population P that is employed in R&D. The

units of effective labor input in each sector are computed as the product of the mass of

individuals and the average productivity, as function of x. First we consider the case of

positive correlation between individual skills (from case a to ¢), then the case of negative

correlation (case d). These different cases are illustrated in Figure ?7.

Case (a): If § = 0, then 3 = § and all individuals are characterized by the same rela-
tive skill index independently of their ability. The opportunity cost of providing effective
labor inputs to R&D is therefore independent of the relative size of the R&D sector. This
is exactly the same situation as in the one-point distribution case. The ELPF is linear.

Case (b): § > 0 according to Proposition 1 in the R&D sector individuals with higher
a; are employed first. Hence the average productivity of workers decreases with the size



of the R&D sector
T
n(@) = aP(ay+8,—63)

() = (1—x>P(aA+m1;”“°>

Implying dn/dz = P(a, + B, — B,x) > 0, d?*n/dz? = —3,P < 0, dl/dx = —P[ay + Bx(1 —
r)] < 0 and d?l/dx? = B\P > 0. Hence

dldide  ayx+ /(-2

o0 0
dn  dxdn ay, + 6, (1 —x) <

d2l d (%) dx 041/6)\ - O‘)\ﬁu
S = P 7 <0
dn de dn P [ + By (1 — )]

where the sign is established using 8 = ay/a, > (ax + B\)/ (o + 3,) = 0, implying that
ay/ay, > B\/B, = [. This is the special case considered in O. Galor and D. Tsiddon’s pa-
per ‘Technological progress, mobility and economic growth’ (American Economic Review
87(3), 363-382, 1997).

Case (c): 8 < 0 according to Proposition 1 in the R&D sector individuals with lower
a; are employed first. Hence the average productivity of workers increases with the size of
the R&D sector

n(x) = zP (oz,, + ﬁ”g)

l(z) = (1—$)P(ax+ﬂx—ﬂxlx>

2

Implying dn/dx = P(a, + B,x) > 0, d*n/dz? = 3,P > 0, dl/dz = —Play + Bxz] < 0 and
d?l/dxz* = —3\P < 0. Hence

dl - dldfxi_a)\—i-ﬂ)\x

=22 0
dn dxdn oz,,+ﬁym<

&l d (4L da axBy — ayfy
dn?

dz dn P(ay—i-ﬂyx)S

where the sign is established using § = ay/a, < (ax + B\)/(aw + 3,) = 0, implying that
ax/o, < Br/By = B.

Case (d): If 8 < 0 there is negative correlation of sector-specific skills across individ-
uals. Here a; is not an index of absolute competence over all sectors, i.e., “ability”, but



ay + B

ay

ay + By

Q)

ay ay + By v ay + By ay v

Figure 6: Uniform distributions over a segment.

rather an index of comparative advantage in R&D. Starting from no R&D activity, the
first individuals to be employed are the best researchers, who are also the least effective
workers in the production sector. Let x be the share of population employed in R&D.
Effective labor inputs are given by

n(x) =zP <ay+ﬁ2”:c>
l(a;):(l—:c)P[a)\—i—%‘(l—a:)]

10



The two equations define implicitly a strictly concave frontier, since
di (n) /dn = (dl (z) /dz) (dx/dn) = — (ax + B — Brx) / (cw + By) < 0
since ay + By > 0 and z € [0, 1], while

d*[(n) /dn* = (d®l (z) /da?) (dz/dn) = Br/ (aw + B,) < 0.

3.4 Fully specialized individuals

Assume g (v,\) > 0 only for skill bundles lying on the axes of I, i.e., Vi € [0, P] v; > 0
= XN =0and A\; > 0 = 1; = 0. It is impossible to increase effective labor inputs in
one sector by diverting raw labor from the other sector. The ELPF equals | Vn € [0,7),
can take any value [ € [0,1] for n = 7, and [ = 0 Vn > 7, where 1 = fOD v§ (v,0)dv and
[ = f(])‘ Ag (0,\)d\. The ELPF has the shape of a Leontief production function (see the
working paper version of this article available of LERNA’s web site as w.p. n.06.22.215).

4 Dynamic analysis

This section presents the details of the analysis of the dynamic system obtained in section
3 of the paper from the social planner optimization problem.

In order to characterize the dynamics of the system, we need to obtain the two functions
defining the phase diagram in the (R,n) plane. First we determine and analyze the
schedule R = 0, then we turn to the locus n = 0.

Finally we linearize the dynamic system around the steady state to obtain the eigen-
values that are used in the reversed shooting procedure for the simulation.!

Determining the locus R = 0. By definition of R, taking logs and differentiating
with respect to time, then using (8) and (6), we have:

& _ b’n,t _ Al (’I’Lt)

19
R R, (19)

Hence the schedule R = 0 is given by the function n'? (R), defined implicitly by:

Al (n)

=bn —
G(R,n)=bn R

=0

We check that % =b— Alén) > (0 and % =

Al(n)
R2

> 0. The R = 0 locus is therefore

!The procedure and program were adapted from M. Brunner and H. Strulik’s paper ‘Solution of perfect
foresight saddlepoint problems: a simple method and applications’ (Journal of Economic Dynamics and
Control 26: 737-753, 2002).

11



downward sloping R
dnft JG/OR Al (n)

dR ~  9G/on bR— Al (n)

Furthermore along nf', R = (A/b) (Z (n) /n) (where I (n) /n is the slope of the ray from
the origin to [ (n)), so that if R — 0, [ (n) /n — 0 and n — @ along n*, while if R — oo,
[(n) /n — oo and n — 0 along n't. Since G /AR > 0, if R is reduced from n* (R), holding
n constant (i.e. below the schedule) then R < 0, and vice versa on the North-East of the
schedule R > 0.

Determining the locus n = 0. We begin by substituting (13) in the F.O.C. (9) to
get:

[Ai (nt)} et Al (ne) = pAB; ' (ng) — buS;

e b A% A [ b
c;fe LAl (ny) = ME [l' (ny) — ABtSt]
b R
e fe Pt = Laa ik
! B, Al (ny)
e = B 10X (Rin)]
B,
Taking logs and differentiating with respect to ¢:
ét Bt bXt
P 2
gct P Bt 1-— bXt ( 0)
From the Leontief technology we know that ¢; = Al (nt), and therefore:
. i/ lA, . .
& — A(nt)flt — A(nt)ntﬂ - 0o (nt)@ (21)
¢t l(ng) L(ng) ™ ng

From the definition of X (R, n;) we have:

Xo _ R il ()

Xe Re ne I(ny)
which taking into account (?7?) and the definition of 1 (n;) gives

X, Al (ny) e
2t b, — _ “
x, ™M~ g " () g

12



substituting into (?7), using (??), we get

ht - bXt A[ (nt) ht
eo (nt) ” +p = b+ 10X, [bnt R 1 (ng) -
= T, [bnt DX ey %~ P () nt]

Taking all terms in 74 on the right-hand-side and simplifying

bX : b [ X
t } ng Uz i (nt) t p
I (ng) ny Xt

g0 (m) = 1—bXt77(nt) e 1-bX,

We have therefore determined the law of motion of n as function of n and R as given by

bny 1
P % {1 + 0<nt>} (22)
n g0 (ny) — 15%n ()

The locus n = 0 in the (R,n) plane is given by the function n™ (R) defined implicitly by

n bn 1
t AT (ny) t

To study the slope of this schedule, we need to explore how I’ depends on n and R.
We have that
OF b2n, 1 1

e B .
OR r 12 [ U(nt)] Al (n
[~ b ()

<0

which is negative because ' <0and o > 0. When differentiating F' with respect to n, we
need to go through some tedious algebra to determine the sign.

lmt
: O\ pom—
oF . 14 1 :| Al (ng) I b?’Lt 81/0’ (nt)
on R
on L o (m) on 1-— bAi/(:’Lt) on
i 1— i . A{A//
_ [t b ( bAlf) bR bn  —do/on
- p 2 R 2
O'_ R ]. — bﬁ g
[1 - bﬁ} Al o]
[y, 1]h0-0x) - S S T N L gy
- P 2 _ A 2
o (1—bX) 1-bX (al)

13



and continuing

+1] - 2
o (1-0X)

oF _ b [,
on 1-bX

b"“} bX(l,) 2 1-bXo?

I [ I"n 1
+
I'm  Im I' n

-]
1—bXa +n

|

:1—be$ (1be [1 ]

- el
1-bXo (1—bX)

1

bX bX 1n
By VOO
(1—bX)?2 "[ * ] 1 —0Xon

Xy [ b (1) 11

(1 -bX) [1-bX o on
bXn 1

T TR —bX) (p+a> >0

(1 + %) = p we obtain

oF __ bXnm L
o~ nl-ox)\”

Substituting for 5 bZX

The sign is determined knowing that n > 0, X <0,b> 0,0 >0, n > 0.
We conclude that the n = 0 schedule is upward sloping in the (R,n) plane since
dn®  OF/OR bn (1+ 1)

dR ~ OF[on ~ Aim[bx — 1L 4 Llpx]

We also have that n < 0 North-West of the n™ schedule and vice versa n increases
South-East of the schedule. In fact, starting from a point on the n" schedule, hold R con-

R R 1 b1 <

stant and increase n. This change implies F' > 0 since 0F/On > 0,i.e.,bn(1+1/0) /(1 —bX) >

p which with (??) determines n < 0.
Figure 7?7 illustrates the phase diagram. The steady state is a saddle path stable.

Linearization. Consider the system of non-linear differential equations given by (14)
and (15):
R=f'(R,n) =bnR — Al (n)
__n 1
n=f2(R,n) = Mn

E0—

bX
T—bx "

where time subscripts have been dropped. To linearize the system around the steady state

14



*
>

Figure 7: Phase diagram.

it is necessary to perform a Taylor expansion of the first order, i.e.

R— R*
n—n*

bii
o

40

Lk g
R

fa
fr(R*n*)  fR (R n")

_ | fH(R )
| AR )
Of course f!(R*,n*) = f2 (R*,n*) = 0, by definition of R* and n*. Before computing the
partial derivatives of the differential equations, let us recall a few definitions:

o l(n)n>0 ;m Z’(n)n>0
X =-f_ <o R*:éi(ﬁ) >0
Al'(n) ’ p \b
and n* = p/b > 0. We have that:
fr=0bn
implying:
fR(R*n*)=p>0
and
fr=bRr — Al' (n)
so that

fa (R*,n*) = —Al (%) <1 + 01> >0

Turning to the differential equation describing the optimal evolution of the control variable,

15



we find

bX
€0 — 1—bX’7

bn bn 1
2aR — 14+ = 1
fIQ%: (1— bX) P l—bX( o‘)n_bn <1+>
€0 = 1opx g

where 8X/8R = X/R = [Ai’ (n)} . Using the fact that at steady state bX* = —1/0*
and 2 bx* (1+ ) = p, we get

o2/ A (8) (14 )]
g0t + 112*
2
P 1
= . >0
eo* + 7110* fa (B*,n*)

fl% (R*,n*) = -

Finally the partial derivative with respect to R&D employment is

. 1 _q bn 1+l n bn  n do bn \? 1+l 0X
n T e P X o) T1-bXo2on \1-0bX o) on

T-ox "
r—thx (1+3) (eaa_ bX 9n by aX)
co %77 on 1—-bX0n (1_bX)2 on

oo _ on _ " (n) X 1 . .
where §2 = 2 (14+0+1), 5t = % <1 —n+ T n), and % = —:Xn. Using this and
1

again 1 —bX* = 141/0" and 1~ bX* (1 + —*) = p, the expression simplifies at steady state

(&

to
P2 (R n) = wilicf[p 25”13 <1+1> bof® p/b (;b(u o+ 1)
(128) (3) b -
- &:g_:l%‘*[p 2p+p(l+lz*a*>pli*a*]
=0

Hence the linearized system can be computed as

R= p(R R*)+ —Al' (8) (1 +U—£)(n—n*)
n= n*)(R R*)4+0-(n—n*)
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that is _ . .
R pR— AT (§) (1+ ) n-+ 441 (§)
S p? 1 R— p?/b

T R (T e

The matrix of the corresponding linear autonomous system of differential equations is

—Al(2) (14 &
wol Lo 0+ )
co* i Al(§)(1+5%)

This matrix has a negative determinant

)= 2

det (M _—
eo* + 1170

<0

meaning that the eigenvalues are real and of opposite sign. The steady state is character-
ized by saddle-path dynamics.

5 Consequences of a demographic expansion

Define a = P,/ Py = g2/go > 0 the factor measuring the increase in population size. The
ELPF shifts outward homothetically by o, with fs/fig = l2/lg = . We use the notation
I =1 (n;a) = Iy (n) for the ELPF with larger population, as compared to I = [(n;1) = lo(n)
for the ELPF with normalized population size Py = 1 corresponding to density go in (1).
We have that Vi € [0, 7] we get [ = Z(ﬁ, 1) = lo () if § = go. To obtain ol when § = gy

it is necessary and sufficient to employ an units in R&D, i.e., al = i(aﬁ; «). Hence?

~

Iy (i) = I (aiv; o) = ol (73 1) = aldy (R)

We change the scale of effective labor in R&D to z = an in order to be able to express
aggregate consumption as Cy = Aly (xy) = Aady (nt), requiring efficient extraction of nat-
ural resources equal to Sy = —Aly (x) /By = —Aady (7iy) /By, and per capita consumption
¢ = Ci/a = Al () Jao = Alg (7). We use these transformations to restate the social
planner problem. The objective function is unchanged if the social planner targets per
capita utility. The laws of motion (8) and (6) are scaled by parameter « > 1, since effective
labor inputs in R&D are x = an. The first order condition with respect to 71 is the same as
(9) apart for the scale factor av multiplying the right-hand-side of (9). The phase diagram

is slightly modified since it is characterized by R; = a (bﬁth — Al (ﬁt)> = 0 instead of

2This is an application of the replication principle according to which if population increases by a
factor o without altering the distribution of skills and the shares of labor allocated to each sector are left
unchanged, the effective labor inputs increase by the same factor « in each sector (case illustrated by the
shift from point 0 to point 4 in the North-East panel of Figure 3).
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(14), and by dn./dt = [p—ban, (1+1/0) /(1 —bXy)| 1/ [ec —nbX:/ (1 —bXy)] = 0 in-
stead of (15). The steady state of the system is defined by @* = p/ba, R* = Alg (2*) /bii*,
= Al (n*). Translating these results in effective units of labor in R&D and production,
using 7 = x/a, Iy (z) = aly (A1) and the notation n for z, we obtain that at steady state:

n* = x*:aﬁ*:B
b
A . A A
R* = Zalg(?") ==l (z") ==l (n*
P 0 (%) p2( ) p2( )
~ A * A *
¢ = Al (n*) = lQ(ﬂf)EalQ(n)

R&D effort is constant, since the quantity of effective units of labor in R&D is independent
of population size (density). Constant n* entails an expansion in per capita steady state
consumption. In fact, substitute for a* into ¢* = Al (n*), which gives ¢* = Alg (%) >
Alp () since a > 1 and I} < 0.
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