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1 Proof of Proposition 1

To prove the efficiency of the allocation rule consider the following perturbation. Take any
R&D skill ν̃ ∈ (0, ν̄) and two different production skills λ1, λ2 ∈

(
0, λ̄
)

with λ1 < θ̂ (n) ν̃ <

λ2. Draw a circle of area ∆1 and diameter δ1 around point {ν̃, λ1}, small enough so that
all the workers with productivity bundles within the circle are initially assigned to R&D,
producing n1 =

∫
ν∈∆1

ν
(∫

λ∈∆1
g̃ (ν, λ) dλ

)
dv. Relocate them to production to obtain

l1 =
∫
λ∈∆1

λ
(∫

ν∈∆1
g̃ (ν, λ) dν

)
dλ instead. In order to maintain R&D inputs unchanged

a sufficient mass of workers initially assigned to production must be relocated from the
circle of area ∆2 around point {ν̃, λ2}, by choosing its diameter δ2 just large enough to
satisfy

∫
ν∈∆2

ν
(∫

λ∈∆2
g̃ (ν, λ) dλ

)
dv = n1. This reallocation implies a reduction of labor

inputs to production by l2 =
∫
λ∈∆2

λ
(∫

ν∈∆2
g̃ (ν, λ) dν

)
dλ. Overall the reallocation will,

by definition of δ2, maintain the R&D inputs constant. However the reallocation will
reduce the labor inputs to production, i.e., l2 < l1. In fact relocated individuals have
similar R&D skill (about ν̃) but those with higher production skill (about λ2) specialize
in R&D and those with relatively low production skill (about λ1) specialize in production.

2 Proof of Proposition 2

The frontier is decreasing because

dl̂ (n)
dn

=
∂l̃ (θ) /∂θ

∂ñ (θ) /∂θ
< 0

The sign is established using results obtained in the paragraph preceding the proposition.
We first obtain the explicit expression of the ELPF in the case of a one-point mass

distributions. Then we do the same for a two-points mass distributions. Finally we
consider the case of a continuous distribution.

One point distribution. Assume a degenerate population density, g̃ (ν, λ) = g > 0 only
at one skill bundle {ν̄, λ̄} ∈ Γ, with ν̄, λ̄ > 0, and g̃ (ν, λ) = 0 over the rest of Γ. We have
P = g, n̄ = gν̄ and l̄ = gλ̄. Since ∀i ∈ [0, P ] θi = θ̄ ≡ λ̄/ν̄ according to Proposition 1 a
worker can indifferently be assigned to any sector. The ELPF is linear

l̂ (n) = gλ̄− θ̄n ; n ∈ [0, n̄]

Two-points distribution. Assume g̃ (ν1, λ1) = g1 > 0 and g̃ (ν2, λ2) = g2 > 0 only
at {ν1, λ1}, {ν2, λ2} ∈ Γ, with ν1, λ1, ν2, λ2 > 0, and g̃ (ν, λ) = 0 over the rest of Γ.
It follows that P = g1 + g2, n̄ = g1ν1 + g2ν2 and l̄ = g1λ1 + g2λ2. Individuals are
characterized by one of the two possible relative skill indices θ1 = λ1/ν1 or θ2 = λ2/ν2.
According to Proposition 1, first workers characterized by the lowest relative skill index
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θa = arg min{θ1, θ2} should be assigned to R&D and only once all of them are employed
those characterized by θb = arg max{θ1, θ2} can be employed in R&D. This allocation rule
defines two possible thresholds, ñ = g1ν1 and l̃ = g2λ2 if θa = θ1 (i.e. θ1 < θ2), while
ñ = g2ν2 and l̃ = g1λ1 if θa = θ2 (i.e. θ2 < θ1). This leads to the ELPF

l̂ (n) =

{
l̃ + θa (ñ− n) for n ∈ [0, ñ]
l̃ + θb (ñ− n) for n ∈ [ñ, n̄]

The ELPF is linear if θ1 = θ2, otherwise it is piecewise linear and quasi-concave.
The same procedure applies to the case of more than two-points in a discontinuous

distribution with any finite number of points with positive population mass. The efficient
allocation rule implies an ELPF that is piece-wise linear and quasi-concave.

Continuous distribution of the population over Γ. In the special case of a distribution
admitting positive mass only on a subset of a ray going through the origin, ∀i ∈ [0, P ]
θi = θ̄ so that the ELPF is linear. Otherwise θi ∈ [θa, θb] where θa = arg mini∈[0,P ]{θi}.
To increase effective labor inputs in R&D it is necessary to raise the amount of raw
labor assigned to R&D, and according to the rule of efficient labor allocation this requires
a larger cut-off ray θ̂ (n). Since θ̂ (n) is a continuous function, the slope of the ELPF
increases continuously with n.

3 Examples of effective labor possibilities frontiers

3.1 The ELPF with uniform population distribution over Γ

Using the results obtained in the first part of section 2 we get

n̄ =
∫ λ̄

0

∫ ν̄

0
g̃ (ν, λ) νdλdν = gλ̄

∣∣∣∣ν2

2

∣∣∣∣ν̄
0

= gλ̄ν̄2/2 = P ν̄/2

l̄ =
∫ λ̄

0

∫ ν̄

0
g̃ (ν, λ) λdλdν = gν̄

∣∣∣∣λ2

2

∣∣∣∣λ̄
0

= gλ̄2ν̄/2 = Pλ̄/2

where population size is P =
∫ ν̄
0

∫ λ̄
0 gdλdν = gλ̄ν̄. For θ ∈

[
0, θ̄
]
, we have

n1 (θ) =
∫ ν̄

0
ν

(∫ θν

0
g̃ (ν, λ) dλ

)
dν =

∫ ν̄

0
gθν2dν = gθ

ν̄3

3

l1 (θ) =
∫ λ̃=θν̄

0
λ

(∫ λ/θ

0
g̃ (ν, λ) dν

)
dλ +

∫ λ̄

λ̃=θν̄
λ

(∫ ν̄

0
g̃ (ν, λ) dν

)
dλ

=
∫ λ̃=θν̄

0
gλ2/θdλ +

∫ λ̄

λ̃=θν̄
gλν̄dλ = gλ̄2ν̄/2− gθ2ν̄3/6

3



and for θ ∈
[
θ̄,∞

]
we have

n2 (θ) =
∫ ν̃=λ̄/θ

0
ν

(∫ θν

0
g̃ (ν, λ) dλ

)
dν +

∫ ν̄

ν̃=λ̄/θ
ν

(∫ λ̄

0
g̃ (ν, λ) dλ

)
dν

=
∫ ν̃=λ̄/θ

0
gθν2dν +

∫ ν̄

ν̃=λ̄/θ
νgλ̄dν = gλ̄ν̄2/2− gλ̄3/(6θ2)

l2 (θ) =
∫ λ̄

0
λ

(∫ λ/θ

0
g̃ (ν, λ) dν

)
dλ =

∫ λ̄

0
gλ2/θdλ = gλ̄3/(3θ)

The threshold levels are computed for θ = θ̄

ñ ≡ n1

(
θ̄
)

=
∫ ν̄

0
ν

(∫ θ̄ν

0
g̃ (ν, λ) dλ

)
dν =

∫ ν̄

0
gθ̄ν2dν = 2n̄/3

l̃ ≡ l2
(
θ̄
)

=
∫ λ̄

0
λ

(∫ λ/θ̄

0
g̃ (ν, λ) dν

)
dλ =

∫ λ̄

0
gλ2/θ̄dλ = 2l̄/3

Substituting for θ we obtain the ELPF

l̂ (n) =

{
l̄ − 3

2n2/
(
gν̄3
)

for n ∈ [0, ñ](
2
3gλ̄3

)1/2 (n̄− n)1/2 for n ∈ [ñ, n̄]

The ELPF is strictly concave since l̂′ (n) = −3n/
(
gν̄3
)

< 0 and l̂′′ (n) = −3/
(
gν̄3
)

< 0 for

n ≤ ñ, and l̂′ (n) = −
(

2
3gλ̄3

)1/2 (n̄− n)−1/2 /2 < 0 and l̂′′ (n) = −
(

2
3gλ̄3

)1/2 (n̄− n)−3/2 /4 <

0 for n ≥ ñ.

3.2 The ELPF with heterogeneous distribution due to specialization

Let us set two labor-allocation thresholds θ̃1 ∈
(
0, θ̄
)

and θ̃2 ∈
(
θ̄,∞

)
, which define

λ1 = θ̃1ν̄ and ν2 = λ̄/θ̃2 (see the right panel of Figure 1). We assume that population
density is reduced to g1 < g in the area between the two rays θ̃1ν and θ̃2ν, and increased
to g2 > g1 in the rest of the rectangle. The choice of g1 and of g2 are constrained because
of the population size. To compute population size in the heterogeneous case we add to
the uniform population with density g1 over the whole rectangle, the increment by g2− g1

over the two regions North-West of the θ̃2ν ray and South-East of the θ̃1ν ray and get

P = g1λ̄ν̄ + (g2 − g1)
1
2
(
λ1ν̄ + λ̄ν2

)
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The maximum amount of effective labor in R&D is

n̄ =
∫ ν̄

0
g1λ̄ · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν +

∫ ν2=λ̄/θ̃2

0
(g2 − g1) θ̃2ν · (ν2 − ν) dν

= g1λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃2ν2

∣∣∣∣ν2

2

∣∣∣∣ν2=λ̄/θ̃2

0

− (g2 − g1) θ̃2

∣∣∣∣ν3

3

∣∣∣∣ν2=λ̄/θ̃2

0

= g1
1
2
λ̄ν̄2 + (g2 − g1)

1
3
θ̃1ν̄

3 + (g2 − g1)
1
2
θ̃2ν

3
2 − (g2 − g1)

1
3
θ̃2ν

3
2

= g1
1
2
λ̄ν̄2 + (g2 − g1)

1
3
λ1ν̄

2 + (g2 − g1)
1
6
λ̄ν2

2

and the maximum amount of effective labor in production is

l̄ =
∫ λ̄

0
g1ν̄ · λdλ +

∫ λ̄

0
(g2 − g1)

λ

θ̃2

λdλ +
∫ λ1=θ̃1ν̄

0
(g2 − g1)

λ

θ̃1

(λ1 − λ) dλ

= g1ν̄

∣∣∣∣λ2

2

∣∣∣∣λ̄
0

+ (g2 − g1)
1
θ̃2

∣∣∣∣λ3

3

∣∣∣∣λ̄
0

+ (g2 − g1)
λ1

θ̃1

∣∣∣∣λ2

2

∣∣∣∣λ1=θ̃1ν̄

0

− (g2 − g1)
1
θ̃1

∣∣∣∣λ3

3

∣∣∣∣λ1=θ̃1ν̄

0

= g1
1
2
λ̄2ν̄ + (g2 − g1)

1
3

λ̄3

θ̃2

+ (g2 − g1)
1
2

λ3
1

θ̃1

− (g2 − g1)
1
3

λ3
1

θ̃1

= g1
1
2
λ̄2ν̄ + (g2 − g1)

1
3
λ̄2ν2 + (g2 − g1)

1
6
λ2

1ν̄

To built the ELPF we establish the amount of effective labor in each sector as a
function of the labor-allocation cut-off θ, n (θ) and l (θ), using the rule of efficient labor
allocation of Proposition 1. Next we obtain the frontier l = l̂ (n) by substituting for θ.
The procedure is applied to each of the four different regions as θ varies from 0 to ∞:

• For θ ∈ [0, θ̃1]

n (θ) =
∫ ν̄

0
g2θν · νdν = g2θ

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g2
1
3
θν̄3

l (θ) = l̄ −
∫ λ̃=θν̄

0
g2

λ

θ

(
λ̃− λ

)
dλ = l̄ − g2

λ̃

θ

∣∣∣∣λ2

2

∣∣∣∣λ̃=θν̄

0

+ g2
1
θ

∣∣∣∣λ3

3

∣∣∣∣λ̃=θν̄

0

= l̄ − g2
λ̃3

θ

(
1
2
− 1

3

)
= l̄ − g2

1
6
θ2ν̄3

so that
l̂ (n) = l̄ − 3

2
1

g2ν̄3
n2

and n bounded between n (0) = 0 and n
(
θ̃1

)
= g2θ̃1ν̄

3/3 = g2λ1ν̄
2/3 ≡ n1;
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• For θ ∈ [θ̃1, θ̄]

n (θ) =
∫ ν̄

0
g1θν · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν

= g1θ

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g1
1
3
θν̄3 + (g2 − g1)

1
3
λ1ν̄

2

l (θ) = l̄ −
∫ λ̃=θν̄

0
g1

(
ν̄ − λ

θ

)
λdλ−

∫ λ1=θ̃1ν̄

0
(g2 − g1)

(
ν̄ − λ

θ̃1

)
λdλ

= l̄ − g1

[
1
2
λ̃2ν̄ − 1

3
λ̃3

θ

]
− (g2 − g1)

[
1
2
λ2

1ν̄ −
1
3

λ3
1

θ̃1

]
= l̄ − g1

1
6
θ2ν̄3 − (g2 − g1)

1
6
λ2

1ν̄

Rearranging n (θ) we have:

θ = 3
1

g1ν̄3

[
n− (g2 − g1)

1
3
λ1ν̄

2

]
Substituting in l (θ) we get:

l̂ (n) = l̄ − (g2 − g1)
1
6
λ2

1ν̄ −
3
2

1
g1ν̄3

[
n− g2

1
3
λ1ν̄

2 + g1
1
3
λ1ν̄

2

]2

n is bounded between n1 and n
(
θ̄
)

= g1ν̄
3θ̄/3 + (g2 − g1) λ1ν̄

2/3 = g1λ̄ν̄2/3 +
g2λ1ν̄

2/3− g1λ1ν̄
2/3 = g2λ1ν̄

2/3 + g1

(
λ̄− λ1

)
ν̄2/3 ≡ n2;

• For θ ∈ [θ̄, θ̃2]

n (θ) =
∫ ν̃=λ̄/θ

0
g1θν · νdν +

∫ ν̄

ν̃=λ̄/θ
g1λ̄ · νdν +

∫ ν̄

0
(g2 − g1) θ̃1ν · νdν

= g1θ

∣∣∣∣ν3

3

∣∣∣∣ν̃=λ̄/θ

0

+ g1λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̄
ν̃=λ̄/θ

+ (g2 − g1) θ̃1

∣∣∣∣ν3

3

∣∣∣∣ν̄
0

= g1
1
3

λ̄3

θ2
+ g1

1
2
λ̄ν̄2 − g1

1
2

λ̄3

θ2
+ (g2 − g1)

1
3
θ̃1ν̄

3

= g1
1
2
λ̄ν̄2 − g1

1
6

λ̄3

θ2
+ (g2 − g1)

1
3
λ1ν̄

2
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l (θ) =
∫ λ̄

0
g1

λ

θ
· λdλ +

∫ λ̄

0
(g2 − g1)

λ

θ̃2

· λdλ

= g1
1
3

λ̄3

θ
+ (g2 − g1)

1
3

λ̄3

θ̃2

= g1
1
3

λ̄3

θ
+ (g2 − g1)

1
3
λ̄2ν2

Rearranging n (θ) we have:

1
θ

=
(

6
g1λ̄3

)1/2 [
g1

1
2
λ̄ν̄2 + (g2 − g1)

1
3
λ1ν̄

2 − n

]1/2

Substituting in l (θ) we get:

l̂ (n) = (g2 − g1)
1
3
λ̄2ν2 +

(
2
3
g1λ̄

3

)1/2 [
g2

1
3
λ1ν̄

2 + g1
1
2
(
λ̄− λ1

)
ν̄2 − n

]1/2

n is bounded between n2 and n
(
θ̃2

)
= g1λ̄ν̄2/2− g1λ̄

3/
(
6θ̃2

2

)
+ (g2 − g1) λ1ν̄

2/3 =

g1λ̄ν̄2/2−g1λ̄ν2
2/6+(g2 − g1) λ1ν̄

2/3 = g2λ1ν̄
2/3+g1

(
λ̄− λ1

)
ν̄2/3+g1λ̄

(
ν̄2 − ν2

2

)
/6 ≡

n3;

• For θ ∈ [θ̃2,∞]

n (θ) = n̄−
∫ ν̃=λ̄/θ

0
g2

(
λ̄− θν

)
· νdν

= n̄− g2λ̄

∣∣∣∣ν2

2

∣∣∣∣ν̃=λ̄/θ

0

+ g2θ

∣∣∣∣ν3

3

∣∣∣∣ν̃=λ̄/θ

0

= n̄− g2λ̄
ν̃2

2
+ g2θ

ν̃3

3

= n̄− g2
1
6

λ̄3

θ2

l (θ) =
∫ λ̄

0
g2

λ

θ
· λdλ = g2

1
θ

∣∣∣∣λ3

3

∣∣∣∣λ̄
0

= g2
1
3

λ̄3

θ

Rearranging n (θ) we have:

1
θ

=
(

6
g2λ̄3

)1/2

(n̄− n)1/2
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Substituting in l (θ) we get:

l̂ (n) =
(

2
3
g2λ̄

3

)1/2

(n̄− n)1/2

n is bounded between n3 and n̄.

The ELPF is now the envelope of four concave functions

l̂ (n) =


l̄ − 3

2

(
g2ν̄

3
)−1

n2 ∀n ∈ [0, n1]
l̄ − g2−g1

6 λ2
1ν̄ − 3

2

(
g1ν̄

3
)−1 (

n− n1 + g1

3 λ1ν̄
2
)2 ∀n ∈ [n1, n2]

g2−g1

3 λ̄2ν2 +
(

2
3g1λ̄

3
)1/2 (

n2 − n + g1

6 λ̄ν̄2
)1/2 ∀n ∈ [n2, n3](

2
3g2λ̄

3
)1/2 (n̄− n)1/2 ∀n ∈ [n3, n̄]

where n1 ≡ g2

3 λ1ν̄
2, n2 ≡ n1 + g1

3

(
λ̄− λ1

)
ν̄2, n3 ≡ n2 + g1

6 λ̄
(
ν̄2 − ν2

2

)
, n̄ = n3 + g2

6 λ̄ν2
2 ,

and l̄ = g1

2 λ̄2ν̄ + g2−g1

3 λ̄2ν2 + g2−g1

6 λ2
1ν̄.

When comparing this case with the case of uniform population density g over Γ, we
impose the following constraint on g1 and g2 to maintain the population size constant:

g − g1

g2 − g1
=

1
2

(
λ1

λ̄
+

ν2

ν̄

)
3.3 The ELPF with uniform distribution over a segment

Individual sector-specific skills are a function of individual ability ai ∼ U [0, 1] as

νi = αν + βνai and λi = αλ + βλai

This representation is equivalent to constraining the domain to Γα ≡ {ν, λ̃ (ν) |ν ∈ [αν , ν̄]} ⊂
Γ where λi = λ̃ (ν) ≡ α+βνi, with α ≡ αλ−ανβλ/βν and β ≡ βλ/βv, and ν̄ = αν +βν so
that λ̄ = αλ + βλ, implying λ ∈

[
αλ, λ̄

]
. Define θ ≡ αλ/αν and θ̄ ≡ (αλ + βλ)/(αν + βν).

Denote by x ∈ [0, 1] the fraction of the population P that is employed in R&D. The
units of effective labor input in each sector are computed as the product of the mass of
individuals and the average productivity, as function of x. First we consider the case of
positive correlation between individual skills (from case a to c), then the case of negative
correlation (case d). These different cases are illustrated in Figure ??.

Case (a): If θ = θ̄, then β = θ̄ and all individuals are characterized by the same rela-
tive skill index independently of their ability. The opportunity cost of providing effective
labor inputs to R&D is therefore independent of the relative size of the R&D sector. This
is exactly the same situation as in the one-point distribution case. The ELPF is linear.

Case (b): θ > θ̄ according to Proposition 1 in the R&D sector individuals with higher
ai are employed first. Hence the average productivity of workers decreases with the size
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of the R&D sector

n (x) = xP
(
αν + βν − βν

x

2

)
l (x) = (1− x) P

(
αλ + βλ

1− x

2

)
Implying dn/dx = P (αν + βν − βνx) > 0, d2n/dx2 = −βνP < 0, dl/dx = −P [αλ + βλ(1−
x)] < 0 and d2l/dx2 = βλP > 0. Hence

dl

dn
=

dl

dx

dx

dn
= −αλ + βλ (1− x)

αν + βν (1− x)
< 0

d2l

dn2
=

d
(

dl
dx

)
dx

dx

dn
=

ανβλ − αλβν

P [αν + βν (1− x)]3
< 0

where the sign is established using θ ≡ αλ/αν > (αλ + βλ)/(αν + βν) ≡ θ̄, implying that
αλ/αν > βλ/βν ≡ β. This is the special case considered in O. Galor and D. Tsiddon’s pa-
per ‘Technological progress, mobility and economic growth’ (American Economic Review
87(3), 363-382, 1997).

Case (c): θ < θ̄ according to Proposition 1 in the R&D sector individuals with lower
ai are employed first. Hence the average productivity of workers increases with the size of
the R&D sector

n (x) = xP
(
αν + βν

x

2

)
l (x) = (1− x) P

(
αλ + βλ − βλ

1− x

2

)
Implying dn/dx = P (αν + βνx) > 0, d2n/dx2 = βνP > 0, dl/dx = −P [αλ + βλx] < 0 and
d2l/dx2 = −βλP < 0. Hence

dl

dn
=

dl

dx

dx

dn
= −αλ + βλx

αν + βνx
< 0

d2l

dn2
=

d
(

dl
dx

)
dx

dx

dn
=

αλβν − ανβλ

P (αν + βνx)3
< 0

where the sign is established using θ ≡ αλ/αν < (αλ + βλ)/(αν + βν) ≡ θ̄, implying that
αλ/αν < βλ/βν ≡ β.

Case (d): If β < 0 there is negative correlation of sector-specific skills across individ-
uals. Here ai is not an index of absolute competence over all sectors, i.e., “ability”, but

9
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Figure 6: Uniform distributions over a segment.

rather an index of comparative advantage in R&D. Starting from no R&D activity, the
first individuals to be employed are the best researchers, who are also the least effective
workers in the production sector. Let x be the share of population employed in R&D.
Effective labor inputs are given by

n (x) = xP

(
αν +

βν

2
x

)

l (x) = (1− x) P

[
αλ +

βλ

2
(1− x)

]

10



The two equations define implicitly a strictly concave frontier, since

dl̂ (n) /dn = (dl (x) /dx) (dx/dn) = − (αλ + βλ − βλx) / (αν + βν) < 0

since αλ + βλ > 0 and x ∈ [0, 1], while

d2 l̂ (n) /dn2 =
(
d2l (x) /dx2

)
(dx/dn) = βλ/ (αν + βν) < 0.

3.4 Fully specialized individuals

Assume g̃ (ν, λ) > 0 only for skill bundles lying on the axes of Γ, i.e., ∀i ∈ [0, P ] νi > 0
⇒ λi = 0 and λi > 0 ⇒ νi = 0. It is impossible to increase effective labor inputs in
one sector by diverting raw labor from the other sector. The ELPF equals l̄ ∀n ∈ [0, n̄),
can take any value l ∈ [0, l̄] for n = n̄, and l = 0 ∀n > n̄, where n̄ =

∫ ν̄
0 νg̃ (ν, 0) dν and

l̄ =
∫ λ̄
0 λg̃ (0, λ) dλ. The ELPF has the shape of a Leontief production function (see the

working paper version of this article available of LERNA’s web site as w.p. n.06.22.215).

4 Dynamic analysis

This section presents the details of the analysis of the dynamic system obtained in section
3 of the paper from the social planner optimization problem.

In order to characterize the dynamics of the system, we need to obtain the two functions
defining the phase diagram in the (R,n) plane. First we determine and analyze the
schedule Ṙ = 0, then we turn to the locus ṅ = 0.

Finally we linearize the dynamic system around the steady state to obtain the eigen-
values that are used in the reversed shooting procedure for the simulation.1

Determining the locus Ṙ = 0. By definition of Rt, taking logs and differentiating
with respect to time, then using (8) and (6), we have:

Ṙt

Rt
= bnt −

Al̂ (nt)
Rt

(19)

Hence the schedule Ṙ = 0 is given by the function nR (R), defined implicitly by:

G (R,n) ≡ bn− Al̂ (n)
R

= 0

We check that ∂G
∂n = b − Al̂′(n)

R > 0 and ∂G
∂R = Al̂(n)

R2 > 0. The Ṙ = 0 locus is therefore

1The procedure and program were adapted from M. Brunner and H. Strulik’s paper ‘Solution of perfect
foresight saddlepoint problems: a simple method and applications’ (Journal of Economic Dynamics and
Control 26: 737-753, 2002).
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downward sloping
dnR

dR
= −∂G/∂R

∂G/∂n
= − Al̂ (n)

bR−Al̂′ (n)
< 0

Furthermore along nR, R = (A/b)
(
l̂ (n) /n

)
(where l̂ (n) /n is the slope of the ray from

the origin to l̂ (n)), so that if R → 0, l̂ (n) /n → 0 and n → n̄ along nR, while if R →∞,
l̂ (n) /n →∞ and n → 0 along nR. Since ∂G/∂R > 0, if R is reduced from nR (R), holding
n constant (i.e. below the schedule) then Ṙ < 0, and vice versa on the North-East of the
schedule Ṙ > 0.

Determining the locus ṅ = 0. We begin by substituting (13) in the F.O.C. (9) to
get: [

Al̂ (nt)
]−ε

e−ρtAl̂′ (nt) = µAB−1
t l̂′ (nt)− bµSt

c−ε
t e−ρtAl̂′ (nt) = µ

A

Bt

[
l̂′ (nt)−

b

A
BtSt

]
c−ε
t e−ρt =

µ

Bt

[
1− b

A

Rt

l̂′ (nt)

]
c−ε
t e−ρt =

µ

Bt
[1− bX (Rt, nt)]

Taking logs and differentiating with respect to t:

−ε
ċt

ct
− ρ = −Ḃt

Bt
− bẊt

1− bXt
(20)

From the Leontief technology we know that ct = Al̂ (nt), and therefore:

ċt

ct
=

l̂′ (nt)

l̂ (nt)
ṅt =

l̂′ (nt)

l̂ (nt)
nt

ṅt

nt
= −σ (nt)

ṅt

nt
(21)

From the definition of X (Rt, nt) we have:

Ẋt

Xt
=

Ṙt

Rt
− ṅt

nt

l̂′′ (nt) nt

l̂′ (nt)

which taking into account (??) and the definition of η (nt) gives

Ẋt

Xt
= bnt −

Al̂ (nt)
Rt

− η (nt)
ṅt

nt

12



substituting into (??), using (??), we get

−εσ (nt)
ṅt

nt
+ ρ = bnt +

bXt

1− bXt

[
bnt −

Al̂ (nt)
Rt

− η (nt)
ṅt

nt

]

=
1

1− bXt

[
bnt − bXt

l̂ (nt)

l̂′ (nt)

1
Xt

− bXtη (nt)
ṅt

nt

]

Taking all terms in ṅt on the right-hand-side and simplifying[
εσ (nt)−

bXt

1− bXt
η (nt)

]
ṅt

nt
=

bnt

1− bXt

[
l̂ (nt)

l̂′ (nt) nt

Xt

Xt
− 1

]
+ ρ

We have therefore determined the law of motion of n as function of n and R as given by

ṅt

nt
=

ρ− bnt
1−bXt

[
1 + 1

σ(nt)

]
εσ (nt)− bXt

1−bXt
η (nt)

(22)

The locus ṅ = 0 in the (R,n) plane is given by the function nn (R) defined implicitly by

ṅt

nt
= 0 ⇔ F (R,n) =

bnt

1− b Rt

Al̂′(nt)

[
1 +

1
σ (nt)

]
− ρ = 0 (23)

To study the slope of this schedule, we need to explore how F depends on n and R.
We have that

∂F

∂R
=

b2nt[
1− b Rt

Al̂′(nt)

]2 [1 +
1

σ (nt)

]
1

Al̂′ (nt)
< 0

which is negative because l̂′ < 0 and σ > 0. When differentiating F with respect to n, we
need to go through some tedious algebra to determine the sign.

∂F

∂n
=

[
1 +

1
σ (nt)

] ∂

(
bnt

1−b
Rt

Al̂′(nt)

)
∂n

+
bnt

1− b Rt

Al̂′(nt)

∂1/σ (nt)
∂n

=
[
1 +

1
σ

] b
(
1− b R

Al̂′

)
− bnbR Al̂′′

[Al̂′]2[
1− b R

Al̂′

]2 +
bn

1− b R
Al̂′

−∂σ/∂n

[σ]2

=
[
1 +

1
σ

]
b (1− bX)− b2n R

Al̂′
A
A

l̂′′

l̂′

(1− bX)2
+

bn

1− bX

l̂′ l̂ + l̂′′ l̂ − l̂′nl̂′(
σl̂
)2

13



and continuing

∂F

∂n
=

b

1− bX

[
1 +

1
σ

]
− bX

(1− bX)2
bη

[
1 +

1
σ

]
+

bn

1− bX

l̂2(
l̂′n
)2

l̂l̂′ + l̂l̂′′

l̂2
− b

1− bX

1
σ2

(
l̂′n

l̂

)2

=
b

1− bX

1
σ
− bX

(1− bX)2
bη

[
1 +

1
σ

]
+

b

1− bX

[
l̂

l̂′n
+

l̂

l̂′n

l̂′′n

l̂′
1
n

]

=
b

1− bX

1
σ
− bX

(1− bX)2
bη

[
1 +

1
σ

]
− b

1− bX

1
σ

[
1 +

η

n

]
= − bX

(1− bX)2
bη

[
1 +

1
σ

]
− bX

1− bX

1
σ

η

n

= − bXη

(1− bX)

[
b

1− bX

(
1 +

1
σ

)
+

1
σ

1
n

]
= − bXη

n (1− bX)

(
ρ +

1
σ

)
> 0

Substituting for bn
1−bX

(
1 + 1

σ

)
= ρ we obtain

∂F

∂n
= − bXη

n (1− bX)

(
ρ +

1
σ

)
> 0

The sign is determined knowing that η > 0, X < 0, b > 0, σ > 0, n > 0.
We conclude that the ṅ = 0 schedule is upward sloping in the (R,n) plane since

dnn

dR
= −∂F/∂R

∂F/∂n
=

bn
(
1 + 1

σ

)
Al̂′η

[
bX − 1

σ
1
n + 1

σ
1
nbX

] > 0

We also have that ṅ < 0 North-West of the nn schedule and vice versa n increases
South-East of the schedule. In fact, starting from a point on the nn schedule, hold R con-
stant and increase n. This change implies F > 0 since ∂F/∂n > 0, i.e., bn (1 + 1/σ) / (1− bX) >

ρ which with (??) determines ṅ < 0.
Figure ?? illustrates the phase diagram. The steady state is a saddle path stable.

Linearization. Consider the system of non-linear differential equations given by (14)
and (15):  Ṙ ≡ f1 (R,n) = bnR−Al̂ (n)

ṅ ≡ f2 (R,n) =
ρ− bn

1−bX (1+ 1
σ )

εσ− bX
1−bX

η
n

where time subscripts have been dropped. To linearize the system around the steady state

14
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Figure 7: Phase diagram.

it is necessary to perform a Taylor expansion of the first order, i.e.∣∣∣∣∣ Ṙ

ṅ

∣∣∣∣∣ =
∣∣∣∣∣ f1 (R∗, n∗)

f2 (R∗, n∗)

∣∣∣∣∣+
∣∣∣∣∣f1

R (R∗, n∗) f1
n (R∗, n∗)

f2
R (R∗, n∗) f2

n (R∗, n∗)

∣∣∣∣∣
∣∣∣∣∣ R−R∗

n− n∗

∣∣∣∣∣+ ◦

Of course f1 (R∗, n∗) = f2 (R∗, n∗) = 0, by definition of R∗ and n∗. Before computing the
partial derivatives of the differential equations, let us recall a few definitions:

σ = − l̂′(n)

l̂(n)
n > 0 ; η =

l̂′′ (n)

l̂′ (n)
n > 0

X = R
Al̂′(n)

< 0 ; R∗ =
A

ρ
l̂
(ρ

b

)
> 0

and n∗ = ρ/b > 0. We have that:
f1

R = bn

implying:
f1

R (R∗, n∗) = ρ > 0

and
f1

n = bR−Al̂′ (n)

so that

f1
n (R∗, n∗) = −Al̂′

(ρ

b

)(
1 +

1
σ∗

)
> 0

Turning to the differential equation describing the optimal evolution of the control variable,
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we find

f2
R =

bn
(1−bX)2

∂X
∂R

εσ − bX
1−bX η

[
ρ− bn

1−bX

(
1 + 1

σ

)
εσ − bX

1−bX η
η − bn

(
1 +

1
σ

)]

where ∂X/∂R = X/R =
[
Al̂′ (n)

]−1
. Using the fact that at steady state bX∗ = −1/σ∗

and bn∗

1−bX∗

(
1 + 1

σ∗

)
= ρ, we get

f2
R (R∗, n∗) = −

ρ2/
[
Al̂′
(ρ

b

) (
1 + 1

σ∗

)]
εσ∗ + η∗

1+σ∗

=
ρ2

εσ∗ + η∗

1+σ∗

1
f1

n (R∗, n∗)
> 0

Finally the partial derivative with respect to R&D employment is

f2
n =

1
εσ − bX

1−bX η

[
ρ− 2

bn

1− bX

(
1 +

1
σ

)
+

bn

1− bX

n

σ2

∂σ

∂n
−
(

bn

1− bX

)2(
1 +

1
σ

)
∂X

∂n

−
ρ− bn

1−bX

(
1 + 1

σ

)
εσ − bX

1−bX η
n

(
ε
∂σ

∂n
− bX

1− bX

∂η

∂n
− bη

(1− bX)2
∂X

∂n

)]

where ∂σ
∂n = σ

n (1 + σ + η), ∂η
∂n = η

n

(
1− η + l̂′′′(n)

l̂′′(n)
n
)
, and ∂X

∂n = − 1
nXη. Using this and

again 1−bX∗ = 1+1/σ∗ and bn∗

1−bX∗

(
1 + 1

σ∗

)
= ρ, the expression simplifies at steady state

to

f2
n (R∗, n∗) =

1
εσ∗ + η∗

1+σ∗

[
ρ− 2

bρ/b

1 + 1
σ

(
1 +

1
σ

)
+

bρ/b

1 + 1
σ

ρ/b

σ2

σ

ρ/b
(1 + σ + η)

−

(
bρ/b

1 + 1
σ

)2(
1 +

1
σ

)
b

ρ

1
bσ∗ η∗ − 0 · ...


=

1
εσ∗ + η∗

1+σ∗

[
ρ− 2ρ + ρ

(
1 +

η∗

1 + σ∗

)
− ρ

η∗

1 + σ∗

]
= 0

Hence the linearized system can be computed as Ṙ = ρ (R−R∗) +−Al̂′
(ρ

b

) (
1 + 1

σ∗

)
(n− n∗)

ṅ = ρ2

εσ∗+ η∗
1+σ∗

1
f1

n(R∗,n∗) (R−R∗) + 0 · (n− n∗)
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that is  Ṙ = ρR−Al̂′
(ρ

b

) (
1 + 1

σ∗

)
n + Aρ

b l̂
′ (ρ

b

)
ṅ = ρ2

εσ∗+ η∗
1+σ∗

1
f1

n(R∗,n∗)R− ρ2/b
εσ∗(1+σ∗)+η∗

The matrix of the corresponding linear autonomous system of differential equations is

M ≡

∣∣∣∣∣∣
ρ −Al̂′

(ρ
b

) (
1 + 1

σ∗

)
− ρ2

εσ∗+ η∗
1+σ∗

1
Al̂′( ρ

b )(1+ 1
σ∗ ) 0

∣∣∣∣∣∣
This matrix has a negative determinant

det (M) = − ρ2

εσ∗ + η∗

1+σ∗

< 0

meaning that the eigenvalues are real and of opposite sign. The steady state is character-
ized by saddle-path dynamics.

5 Consequences of a demographic expansion

Define α ≡ P2/P0 = g2/g0 > 0 the factor measuring the increase in population size. The
ELPF shifts outward homothetically by α, with n̄2/n̄0 = l̄2/l̄0 = α. We use the notation
l = l̂ (n;α) ≡ l̂2 (n) for the ELPF with larger population, as compared to l = l̂(n; 1) ≡ l̂0(n)
for the ELPF with normalized population size P0 = 1 corresponding to density g0 in (1).
We have that ∀ñ ∈ [0, n̄0] we get l̃ = l̂ (ñ; 1) ≡ l̂0 (ñ) if g̃ = g0. To obtain αl̃ when g̃ = g2

it is necessary and sufficient to employ αñ units in R&D, i.e., αl̃ = l̂(αñ;α). Hence2

l̂2 (αñ) = l̂ (αñ;α) = αl̂ (ñ; 1) ≡ αl̂0 (ñ)

We change the scale of effective labor in R&D to x ≡ αñ in order to be able to express
aggregate consumption as Ct = Al̂2 (xt) = Aαl̂0 (ñt), requiring efficient extraction of nat-
ural resources equal to Ṡt = −Al̂2 (xt) /Bt = −Aαl̂0 (ñt) /Bt, and per capita consumption
ct = Ct/α = Al̂2 (xt) /α = Al̂0 (ñt). We use these transformations to restate the social
planner problem. The objective function is unchanged if the social planner targets per
capita utility. The laws of motion (8) and (6) are scaled by parameter α > 1, since effective
labor inputs in R&D are x = αñ. The first order condition with respect to ñ is the same as
(9) apart for the scale factor α multiplying the right-hand-side of (9). The phase diagram
is slightly modified since it is characterized by Ṙt = α

(
bñtRt −Al̂0 (ñt)

)
= 0 instead of

2This is an application of the replication principle according to which if population increases by a
factor α without altering the distribution of skills and the shares of labor allocated to each sector are left
unchanged, the effective labor inputs increase by the same factor α in each sector (case illustrated by the
shift from point 0 to point 4 in the North-East panel of Figure 3).
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(14), and by dñt/dt = [ρ− bαñt (1 + 1/σ) / (1− bXt)] ñt/ [εσ − ηbXt/ (1− bXt)] = 0 in-
stead of (15). The steady state of the system is defined by ñ∗ = ρ/bα, R∗ = Al̂0 (ñ∗) /bñ∗,
c∗ = Al̂0 (ñ∗). Translating these results in effective units of labor in R&D and production,
using ñ = x/α, l̂2 (x) = αl̂0 (ñ) and the notation n for x, we obtain that at steady state:

n∗ ≡ x∗ = αñ∗ =
ρ

b

R∗ =
A

ρ
αl̂0 (ñ∗) =

A

ρ
l̂2 (x∗) ≡ A

ρ
l̂2 (n∗)

c∗ = Al̂0 (ñ∗) =
A

α
l̂2 (x∗) ≡ A

α
l̂2 (n∗)

R&D effort is constant, since the quantity of effective units of labor in R&D is independent
of population size (density). Constant n∗ entails an expansion in per capita steady state
consumption. In fact, substitute for ñ∗ into c∗ = Al̂0 (ñ∗), which gives c∗ = Al̂0

( ρ
bα

)
>

Al̂0
(ρ

b

)
since α > 1 and l̂′0 < 0.
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