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SUPPLEMENTAL INFORMATION

Method
Participants
Healthy Controls (HC) could not have a history of an eating disorder or any other Axis I disorder based on a modified version of the Structured Clinical Interview for DSM-IV-TR Module H (First et al., 2002) and the Mini International Neuropsychiatric Interview (Sheehan et al., 1998). Exclusion criteria for both Anorexia Nervosa (AN) and HC included: history of alcohol or drug abuse or dependence 3 months prior to study, medical or neurologic concerns including a history of head injury with loss of consciousness, and intellectual or developmental disability. Psychoactive medication was not exclusionary.
Computational Models and Terminology
On the PALT, reward refers to an increase in points gained after a choice, whereas punishment refers to a loss of points. When a choice is followed by a gain of points on reward trials or by the avoidance of a loss of points on a punishment trial, it is reinforced. Learning occurs when the probability of selecting an optimal choice increases over trials.
It is important to note that positive and negative prediction errors (PE) do not directly mirror outcomes on reward and punishment trials. For example, negative PEs occur whenever participants anticipate a positive outcome but either receive no gain on reward trials or a loss on punishment trials (i.e., a disappointing outcome). Similarly, a positive PE could reflect receipt of an unexpected reward or avoidance of expected punishment. Thus, positive and negative PEs reflect distinct aspects of both reward-based and punishment-based learning. Prior work in AN has rarely examined the behavioral instantiation of PEs and has not systematically differentiated between positive and negative PEs. It is also important to note that while we retain the ‘prediction error’ terminology for consistency with prior research, a better term would be ‘prediction disparity’, because these values reflect the discrepancy between what is expected and experienced and do not actually reflect an ‘error’ in performance. A PE will occur even when a participant makes an optimal choice.
Choice Probability 
[bookmark: _GoBack]The reinforcement learning models all aimed to account for the probability of selecting the optimal of two choices on each trial t, (ct = optimal or non-optimal) for each of the four stimuli, sj, presented during a picture set. By modeling choices classified as optimal or non-optimal, we assume that participants learn expectancy values, V(ci|sj), based on whether or not the choices were reinforced on stimulus trials, rather than simply learning stimulus-response associations. The development of these expectancies over trials is further assumed to be gradual rather than all-or-none. 
The modeled probability of the choice made when stimulus j is presented on trial t is determined by the logistic function (softmax) of the difference between the expectancy values of the two possible choices, V(opt|sj) and V(non|sj). When the optimal choice is made on trial t to stimulus j, the modeled probability of selecting the optimal response on that trial is: 
Eq. 1



When the non-optimal choice is made, the modeled choice probability is one minus the value of equation 1. In standard reinforcement learning models, V(ci = opt|sj) and V(ci = non|sj) are initialized to zero - accounting for random or near random responding on early trials associated with a stimulus (Gershman, 2016; Sutton & Barto, 2018). This initialization implies that learning from prediction errors alters the probability of selecting an optimal choice from the expected value of .50.  
Let  be the difference between V(ci = opt|sj) and V(ci = non|sj). Then the “inverse temperature” parameter, , is a discriminability parameter that controls the mapping of differences in the probability of selecting the optimal choice onto differences in . (For a psychometric view of the logistic equation see Embretson and Reise, 2000 (Embretson et al., 2000). As  approaches zero, the modeled probability of the choice made approaches 0.5, regardless of the size of . As  becomes large, the probability of selecting the optimal choice approaches 1.0 when  is positive and approaches 0.0 when  is negative. Thus,  controls the randomness in the modeling of response selection, making the reinforcement model a type of non-dynamic stochastic exploration model with values of  representing the balance between exploring new choice rules and exploiting the rules learned (Gershman, 2016, 2018). Psychologically, individuals with smaller  values are less certain than individuals with larger  values when committing to definite choices among response alternatives (Gershman 2016, 2018).     
Reinforcement Value Updating
As described in the Introduction of the paper, we assume learning on the PALT is driven by a PE: the difference between the actual outcome on trial t, Ot(ci|sj), associated with the choice (ci) made to the stimulus (sj) and the anticipated outcome based on the expectancy value for the response chosen on trial t, Vt(ci|sj). Thus, PEt(ci|sj) =  Ot(ci|sj) - Vt(ci|sj), where Ot(ci|sj) is  coded 1, -1, or 0 depending on whether the outcome occurring on the trial involves a gain, loss, or no change in points earned (Gershman, 2016; Mattfeld et al., 2011)). Although PEs can be non-negative (PE > 0) or negative (PE < 0), in practice very few PEs are exactly zero, so we will use the common term “positive PEs” to contrast with “negative PEs”. 
The model assumes that for the category chosen when stimulus j is presented on trial t, a larger PE should imply a larger change in the expectancy value for that category on the next trial that stimulus j is presented. Moreover, the proportional change between the expectancy value on the current trial and its value on the next trial is determined by a learning rate parameter, , which takes on values ranging from 0 to 1 (Gershman, 2016). Given the model’s assumptions and the experimental paradigm’s discrete trials, an increment of the expectancy value on the subsequent trial is assumed to be governed by a difference equation based on the delta rule (Mattfeld et al., 2011; Sutton & Barto., 2018): 
Eq. 2

Vt+1(ci|sj) = Vt(ci|sj) + PEt

where ci is choice i made on trial t, sj is that stimulus presented on trial t, and Vt+1(ci|sj) is the expectancy value for the same choice on the next trial sj is presented. Given the study aim to investigate the impact of positive versus negative events on learning among individuals with AN, separate learning parameters for positive (PE > 0) and negative (PE < 0) PEs, p and n respectively, are included in the models fit to the optimal choice data.  For the response not chosen on trial t to stimulus j, the updated expectancy value on trial t+1 is the same as for trial t:  = .
Reinforcement Learning Models
Before investigating group differences on model parameters, we investigated three models of reinforcement learning to select a model that best accounted for participant performance among the models considered. As described in the Introduction to the paper, the No Bias model involved estimation of the explore-exploit parameter, , and separate learning parameters, p and n to account for different learning rates for positive and negative PEs. The First Choice Bias model was formulated to account for global choice biases and choice history biases that might influence the expectancy values, V1(ci|sj), starting on the initial presentation of stimulus sj (Sutton & Barto, 2018)(section 2.6). Note, the bias operates at the first presentation of each stimulus, not just on the first trial of the set, but given the expectancy updating rule (equation 2), bias effects propagate to subsequent trials. Four bias values were estimated for each set of data, one for each of the four stimuli. Although other types of choice biases could be modeled, we selected a bias model that reflected the assumption that biases would be most influential when participants are most uncertain about their choices, namely on the first trial a stimulus is presented when participants are uncertain whether the stimulus signaled a reward or punishment trial and uncertain about which choice would lead to the optimal outcome. The third model was a special case of the First Choice Bias model where all four bias parameters were set to the same value, which was estimated: bias1 = bias2 = bias3 = bias4 = estimated value, where the subscripts refer to one of the four stimuli.  We called this model First Choice Bias (Singlet).
During Bayesian parameter estimation, bias values were sampled from a normal distribution with a mean = 0 and variance = .1, with positive values favoring the response associated with the optimal choice and negative values favoring the response associated with the non-optimal response. When the bias favored the optimal response, V1(copt|sj) = bias(sj) and V1(cnon-opt|sj) = 0. When the bias favored the non-optimal response V1(cnon-opt|sj) = abs(bias(sj)) and V1(copt|sj) = 0. Because the No Bias model can also fit non-optimal performance (See Figure S2 below), the First Choice Bias model might not improve fit to the trial data compared with the No Bias model once a correction is made for the difference in the number of model parameters. Moreover, a model including only a single bias parameter might outperform a model that include unnecessary additional bias parameters, giving a fit advantage to First Choice Bias (Singlet) over the full First Choice Bias model. All three models were fit to each participant’s trial data separately for the two picture sets with the rjags package in R using a non-hierarchical design (See Methods section of paper). 
Bayesian estimation of model parameters offers one approach to managing multiple tests of model parameters by estimating a single posterior density, which depends on all model parameters.  For the No Bias model, the joint posterior density, p(, +, -|data), is proportional to p(data|, p, n )p(, p, n ), where p(data|, p, n ) is the likelihood function, i.e, a function of the parameters given fixed data, and p(, p, n) is the joint prior probability of the model parameters (Gelman et al., 2004).  As Kruschke states:
“In a Bayesian analysis, however, there is just one posterior distribution over the parameters that describe the conditions. That posterior distribution is unaffected by the intentions of the experimenter, and the posterior distribution can be examined from multiple perspectives however is suggested by insight and curiosity.” (Kruschke, 2015, p. 325).
We used Gibbs sampling to obtain marginal posterior distributions of credible values for each parameter from the joint posterior density.  The final parameter estimates were based on robust estimation of modes of these marginal distributions. 
Model Comparison
For each subject, we calculated the deviance information criterion (DIC), a measure of the discrepancy of a model’s fit to the trial-by-trial choice data penalized by an estimate of the number of effective model parameters, pD, within each picture set (Gelman et al., 2004; Lunn et al., 2013; Plummer, 2017). The deviance is a measure of how well a model fits the data and is equal to -2 times the natural logarithm of the likelihood function (Gelman et al., 2004).  The deviance is proportional to mean squared error for normal probability models with constant variance (Gelman et al., 2004). Complex models tend to have lower deviances because more parameters are fit to data. In Bayesian estimation, which we used in this paper, pD adjusts for the advantage of complex models by estimating the implicit number of parameters used in parameter estimation. This implicit number, pD, is determined  by constraints the prior distributions placed on the parameters and by how successfully the model accounts for the data, i.e., the likelihood of the model (Gelman et al., 2004; Lunn et al., 2013). Lunn and colleagues (2013, p. 160) comment that pD could be considered to be the number of model parameters, p, times the ratio of the information in the likelihood about the parameters to the total information in the posterior distribution of the parameters (likelihood + prior). Thus when the posterior distribution is largely a reflection of the likelihood, pD approaches the number of parameters, p, because parameter values are largely determined by their fit to the data. When the posterior distribution is largely a reflection of the parameters’ prior distributions, pD shrinks towards zero because values of the parameters are largely determined by their prior distributions, which are formulated before data fitting.
To compare the three models, we calculated DIC weights for each participant, to select the model that makes the best short-term, out-of-sample predictions (Gelman et al., 2004; Lunn et al., 2013; Wagenmakers et al., 2004). DIC weights are transformations of each model’s DIC for all models in a set and sum to 1.0 (Wagenmakers et al., 2004). The intent of the transformation is to simplify comparisons of fits of models within a set, especially when absolute values of fit are difficult to interpret. Larger DIC weights imply better out-of-sample predictions.  We visually compared plots of the DIC weights across participants within each picture set for each model. We also calculated the bootstrap mean DIC weight and its confidence interval for each model within each picture set. Whereas the plots assumed a normal distribution of the DIC weights, the bootstrap method did not. Both the plots and the bootstrap values selected full First Choice Bias model – composed of the explore-exploit parameter, two learning parameters and four choice bias parameters – as the best fitting model among the models we considered. The DIC weight plots are presented in Figure S1 and the means and confidence intervals are presented in Table S1.  
Figures S2 and S3 show posterior predictions of the No Bias and First Choice Bias models for two participants. Posterior predictions are generated at each parameter estimation step of a Gibbs sampler using the probability of choosing the optimal response based on the parameter estimates obtained on that step. The rjags function dbern then converts the probability of choosing the optimal response into a binary variable, for which 1 signifies the optimal choice was selected and 0 signifies the non-optimal choice for each trial (Plummer, 2017). The results shown are the modes over the binary values obtained at each step. We chose to present data from these two participants to show how the First Choice Bias model might fit trial data better than the No Bias model for poorly and well performing participants and for reward and punishment trials. 
Figure S2 shows the posterior predictions of the No Bias and First Choice Bias models and for a healthy participant who only infrequently chose the optimal response on the 80 reward trials of Set 1. As seen in Figure S2, although both No Bias and First Choice Bias models predicted infrequent optimal choices, predictions from the First Choice model more closely modeled the observed choices by more accurately predicting early trial choices. 
Figure S3 shows the posterior predictions of models No Bias and First Choice Bias models and for a healthy participant who frequently chose the optimal response on the 80 punishment trials of Set 1. In this case, the No Bias model over predicted non-optimal choices for middle and late trials, whereas the First Choice Bias model more accurately predicted optimal responses on these trials at cost of over predicting optimal responses on a few early trials. 
Results
Behavioral Performance 
Reaction time and total points obtained were analyzed with a 2 Group x 4 Block x 2 Set repeated measures analysis of variance (rmANOVA) separately for reward trials and punishment trials. 
Response time 
A Group x Block x Set rmANOVA for response time (RT) to choices made on reward trials revealed a main effect of Block, F(3, 225)=82.830, p<.001, ƞ2p=.525, indicating faster responses over time, and a main effect of Set, F(1,75)=31.138, p<.001, ƞ2p=.293, indicating faster responses on Set 2. The interaction of Block x Set was also significant, F(3,225)=17.377, p<.001, ƞ2p=.188, reflecting greater reduction in RT over time on Set 1. Unlike for the optimal response data, the Group x Block interaction was not significant, suggesting no group differences in the rate of RT reduction over time, ƞ2p= .002. No other main effects or interactions were significant, ps>.2, including Group X Set: ƞ2p=.004 and Group X Set X Block: ƞ2p=.013. Similarly, for the punishment trials, the Group x Block x Set rmANOVA revealed a main effect of Block, F(3, 225)=20.928, p<.001, ƞ2p=.218, indicating faster responses over time, and a main effect of Set, F(1,75)=59.106, p<.001, ƞ2p=.441, indicating faster responses on Set 2. The interaction of Block x Set was also significant, F(3,225)=6.109, p=.001, ƞ2p=.075, reflecting greater reduction in RT over time on Set 1. No other main effects or interactions, including effects involving group, were significant, ps>.1, Group X Set: ƞ2p= .007, Group X Block: ƞ2p= .003, Group X Set X Block = .002 (Figure S4).
Total points
A Group x Set rmANOVA for total points obtained revealed a main effect of Group, F(1,75)=5.164, p=.026, ƞ2p=.064, indicating HC obtained more points than AN, and a Group x Set interaction, F(1,75)=6.435, p=.013, ƞ2p=.079, indicating that HC improved their performance from Set 1 to Set 2 whereas AN performed worse on Set 2. The main effect of Set was not significant, p>.6 (Figure S5).
Sensitivity of Computational Estimates to Prior Probabilities
Gershman (Gershman, 2016) has shown that when estimating parameters of computational models of reinforcement learning, informative priors based on the gamma distribution for the explore-exploit parameter, , and the beta distribution for learning rate parameters, p|n, lead to more identifiable parameter estimates with better predictive validity than models using uniform priors. We incorporated this finding into our models. To explore the sensitivity of prior distributions on estimates of the explore-exploit and learning rate parameter estimates, we investigated estimates of parameter values for the reinforcement learning model composed of an explore-exploit parameter and a single learning parameter.  
Explore-Exploit Parameter () 
We used the gamma distribution to define the priors for the  parameter and determined its mode based on previously published central tendency values. Mattfeld et al. (Mattfeld et al., 2011) estimated the mean  to be 3.73 for a single learning parameter reinforcement model.  For the two-learning parameter model, Gershman (Gershman, 2016) estimated a mode of 3.39.  Given that our task was identical to Mattfeld et al. (Mattfeld et al., 2011), whereas our hypotheses assumed a two-learning parameter reinforcement model, we choose a prior mode for the gamma distribution to be 3.5, approximately midway between Gershman’s two parameter estimate and Mattfeld’s estimate, to represent our prior belief about the value of the  parameter for our Base Model. We set values of the gamma shape and rate parameters to yield a variance = .10 (standard deviation  0.3162). Specifically, gamma(shape = 124.4920, rate = 35.2834), produced a nearly symmetrical gamma density distribution that varied between 2.5 and 4.5 around a mode of 3.5 (See middle plot of Figure S6).
To explore the sensitivity of the  estimates to our choice of a prior, we compared subject-level estimates of the   parameter for our Base Model (mode = 3.5), with estimates from gamma distributions with modes at 2.5, gamma(shape = 64.4845, rate = 25.3938), the Low Mode Alternative, or 4.5, gamma(shape = 204.4951, rate = 45.2211), the High Mode Alternative, while keeping the standard deviation  0.3162. As can be seen in Figures S6 and S7, which present plots across all participants, the different priors shifted the modal estimates of  to values lower or higher than the base values while maintaining an orderly spread of individual differences, which produced strong linear correlations between alternative  estimates and estimates produced by the Base Model(Low Mode Alternative: r(78) = .85, p < .001; High Mode Alternative: r(78) = .83, p < .001). Given these results and the preference in the literature for    3.5, we used the gamma(shape = 124.4920, rate = 35.2834) to describe our prior beliefs about the explore-exploit parameter in our Base Model.   
Learning rate parameter () 
We used the beta distribution to define priors for  and, determined its mode based on Mattfeld et al.’s (Mattfeld et al., 2011) estimate of 0.41 and Gershman’s (Gershman, 2016) values of .50 for both the one and two learning parameter models. Because of the consistency of Gershman’s values across models, we chose  = 0.50 to represent our prior belief about the rate participants would alter their expectancy values based on trial-specific prediction errors (Eq. 2). However, because we anticipated that patients with anorexia nervosa and healthy controls would evidence a moderately wide range of individual differences in learning rate, we defined the prior distribution for  to have a moderately large standard deviation = 0.25 yielding a Base Model prior distribution of beta(1.5,1.5) (See middle plot of Figure S8).    
To explore the sensitivity of the  estimates to our choice of its prior, we compared subject level estimates of  for our Base Model (mode = -.50) with estimates from beta distributions with modes at 0.25, beta(1.2268, 1.6770) or at 0.75, beta(1.6770,1.2268) while keeping the standard deviations  0.25. Figure S8 shows the skew of these two beta distributions. Despite the skewness of these alternative prior distributions, estimates of  based on fits of each alternative model to participants’ data were almost perfectly correlated (r = 1.0 to one decimal place) with estimates of  obtained with the Base Model’s symmetrical prior (Figure S9). Consequently, we used the distribution beta(1.5,1.5), mode = 0.50 and standard deviation = 0.25, as the prior distribution to estimate  in our final analyses.     
First Choice Bias Model Convergence  
For each participant and within each picture set, we used the potential scale reduction factor (PSRF, Gelman et al., (Gelman et al., 2004)), as implemented in rjags (Plummer, 2017), to assess the convergence of the seven parameter estimates (explore-exploit, p ,n, four bias parameters) across the five chains. The PSRF threshold was set to 1.1 (Gelman et al., 2004). Four healthy control participants and five anorexia nervosa patients failed to reach the univariate convergence threshold for one or two of the 14 convergence assessments (7 parameters X 2 stimulus sets). Broadening the prior distribution for the explore-exploit parameter, gamma(shape = 5.00897, rate = 1.2064) led to PSRF values < 1.1 for all participants but two AN patients on set 1 pictures and for all participants on set 2 pictures.  When we dropped these two AN patients from the analysis, the main group effect for explore-exploit parameter remained significant (HC>AN, [F(1,73)= 5.070, p = .027, partial 2 = .065]) as did the group effect for the learning rate, (HC > AN, [F(1,73) = 4.866, p = .031, partial 2 = .062]) and the main effect of learning parameter (p greater than n, [F(1,73) = 77.645, p < .001, partial 2 = .515]). Because convergence was acceptable for 13 of 14 PSRF values for both participants, they were included in the analyses reported in the paper using parameter values associated with their best PSRF. In general convergence of the chains was excellent and supported the robustness of the parameter estimates.
Precision of Parameter Estimates
To compare the credibility of parameter estimates derived from the First Choice Bias model between the two groups and across conditions, we calculated the 68% highest density interval (HDI) for each parameter for each participant for each set (Kruschke, 2015). The HDI included the mode of the parameter estimates in all cases. We calculated the 68% HDI because it is analogous to one standard error of the parameter estimate in frequentist statistics (Bates et al., 1988, p. 7). We performed a Group X Set rmANOVA on the width of the 68% HDI for the explore-exploit parameter and the positive and negative PE learning rates. Narrower HDI implied more credible parameter estimates. Group, Set and the Group X Set differences were not significant for any parameters with all effect sizes falling into the small or small to medium range.  
We averaged the widths of the 68% HDIs for bias parameter values associated with the two reward stimuli and values associated with the two punishment stimuli within each stimulus set. To investigate potential differences in the credibility of the bias parameter estimates, we performed a Group X Set X Trial Type rmANOVA on these averaged values. AN participants had narrower 68% HDI than HC on punishment trials, but not on reward trials (Table S2), producing a significant Group X Trial Type interaction, F(1,75) = 7.533 , p = .008,  = .091 (medium effect). The result implies greater precision in estimating bias parameter values for AN participants on punishment trials. Interestingly, 68% HDI widths of bias estimates (M + SE = .389 + .009) for set 2 were significantly narrower than set 1 widths (.429 + .011), F(1,75) = 9.74, p = .003,  = .115 (medium to large effect).
	To summarize, in no case could group differences in mean parameter values for the explore-exploit parameter and the positive and negative PE learning rates, discussed in the body of the manuscript, be attributed to significantly less precise estimates of a parameter for one of the two groups. Although bias parameters were more precisely estimated on punishment trials for AN participants than for HC participants, no group differences were observed for mean choice bias parameters on punishment trials (See Figure S10). Finally, choice bias parameters became more precisely estimated as participants became better practiced with the task.  
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[image: ][image: ]Figure S1. Deviance Information Criterion (DIC) Weights

Deviance information criterion weights plotted across all study participants for each model derived for each set (larger values favor a model).  The First Choice Bias (Singlet) model is the same as the First Choice Bias model except bias weights associated with each of the four stimuli are set to the same value, which is estimated from the data.  




Figure S2. Median Posterior Predictions: Reward Trials from Set 1 of Subject 8
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The middle panel B presents the observed optimal vs. non-optimal choices for a healthy control participant who only infrequently chose the optimal response on set 1 reward trials.  Panels A and C present posterior predictions for the No Bias and First Choice Bias models, respectively. The posterior predictions for each reward trial were derived from the rjag library’s Bernoulli function using the estimated probability of choosing an optimal response for each trial within a stimulus set (Plummer, 2017). We replicated posterior predictions across the 25,000 steps through parameter space that led to each model’s parameter estimates. Medians derived from these 25,000 estimates were used as markers of the typical response on each trial and were always 0 or 1 for participant 0008. The No Bias and First Choice Bias models both predicted a large number of non-optimal responses on the 80 reward trials. However, the First Choice Bias model predicted fewer optimal responses than did No Bias model on early trials leading to a better match to the observed data.   


Figure S3. Median Posterior Predictions: Punishment Trials from Set 1 for Subject 25
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The middle panel B presents the observed optimal vs. non-optimal choices for a healthy control participant who frequently chose the optimal response on set 1 punishment trials.  Panels A and C present posterior predictions for the No Bias and First Choice Bias models, respectively. See caption of Figure S2 for further details. The No Bias model over predicted non-optimal choices on middle and late trials.  

Figure S4. Reaction time for optimal choices on reward and punishment trials for picture sets 1 and 2.Picture Set 1
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Error bars represent standard error of the mean. HC – Healthy controls, AN – Anorexia Nervosa	


Figure S5. Plot of total points obtained for each group (HC, AN) and picture set).




















Error bars represent standard error of the mean. HC – Healthy controls, AN – Anorexia Nervosa




Figure S6. Gamma Density by Explore-Exploit Values for Priors with Different Modes
[image: ]
Low mode alternative (mode = 2.5): gamma(shape = 64.4845, rate = 25.3938); Base model (mode = 3.5): gamma(shape= 124.4920, rate = 35.2834); High mode alternative (mode = 4.5): gamma(shape = 204.4951, rate = 45.2211).


Figure S7. Explore-Exploit Parameters as a Function of Mode of Prior Gamma Distribution
[image: ]
Regression of the subject-specific explore-exploit parameter estimates produced by alternative prior models with different gamma modes across all participants performing Set 1 onto explore-exploit parameter estimates derived from the base gamma prior (See Supplement text).  Correlations of estimates when prior mode = 2.5 with mode = 3.5 estimates was .85, p < .001, whereas the correlations when prior mode = 4.5 was 0.83, p < .001.


S8. Beta Density by Learning Rate Values for Priors with Different Modes
[image: ]
Mode = 0.25: beta(a=1.2268, b=1.6770); Mode = 0.50: beta(a=1.5, b=1.5); Mode = 0.75: beta(a =1.6770, b=1.2268).










S9. Regression of Estimated Learning Rate Parameters for Alternate Prior Modes onto Estimates for Base Model
[image: ]

Mode = 0.25






Mode = 0.50




[image: ]
Mode = 0.75







Mode = 0.50




Regression of the subject-specific learning rate parameter estimates produced by alternative prior models with different beta distribution modes across all participants performing Set 1 onto learning rate parameter estimates derived from the base beta prior (See Supplement text).  Correlations of learning rate estimates of each alternative model onto estimates from the base model were 1.0 to one decimal place. 


[image: ]Figure S10. Response bias parameter plots for each trial type by group and picture set. 
On reward trials, HC had a greater bias against making the optimal choice on Set 1, whereas AN had a greater bias against making the optimal choice on Set 2. Error bars represent 95% confidence intervals; *p<.05, **p<.01.



Table S1. Mean + 99.2% Confidence Interval Deviance Information Criterion Weights
	
Model
	
Lower 99.2% CI
	
Upper 99.2% CI
	
Mean

	
Picture Set 1

	
No Bias
	
.1286
	
.2601
	
.1920

	
First Choice Bias (Singlet)
	
.1209
	
.22414
	
.1758

	
First Choice Bias
	
.5275
	
.7308
	
.6321

	
Picture Set 2

	
No Bias
	
.1462
	
.2770
	
.2090

	
First Choice Bias (Singlet)
	
.1536
	
.2974
	
.2209

	
First Choice Bias
	
.4644
	
.6776
	
.5701


Note.  Deviance information criterion weights for each of three models calculated from model fits to picture set data of each participant (larger values favor a model): See text for a description of the models. Confidence intervals were set to 99.2% to account for intervals being calculated over six values. The confidence intervals of the No Bias and First Choice Bias (Singlet) models do not overlap with the confidence interval of First Choice Bias model.                                  





 

Table S2. Width of 68% Highest Density Interval Averaged over Bias Parameter Values for the First Choice Bias Model: Mean and Standard Error by Group and Trial Type 
	
Group
	
Reward Trials
	
Punishment Trials

	
Healthy Controls
	
.425 (.010)
	
.421 (.016)

	
Anorexia Nervosa
	
.427 (.009)
	
.362 (.015)


 Note.  Smaller mean values imply greater measurement precision.
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