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Appendix 1. Additional case study figures -
Appendix 1.1 Observations of intrinsic template spectral res-
olution at low redshi�
Here, in Figures 16-20, we present the young bulge and old
bulge observations from case study 1, where we have used the
intrinsic spectral resolution of the underlying templates at a
negligible redshift of z = 0.0144. The hexagonal maps are
those models that have been built with the BC03 templates,
while the circular maps have been built with the E-MILES
templates. We can see a proportion of the pixels fit in the
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bulge E-MILES maps return an extremely low value of the
observed dispersion (with equally extreme h4 values), which
may be reduced by increasing the signal-to-noise of the image
as shown in the following Figures 16 and 17, either at the
SimSpin construction stage, or through binning techniques
not explored here.

Appendix 1.2 Observations of intrinsic template spectral res-
olution at high redshi�
Here, in Figures 21-24, we present the young disc and old
bulge observations from case study 2, where we have used
the intrinsic spectral resolution of the underlying templates
shifted up to a redshift of z = 0.3. The hexagonal maps are
those models that have been built with the BC03 templates,
while the circular maps have been built with the E-MILES
templates.

Appendix 1.3 Observations of with telescope() spectral
resolution at low & high redshi�
Here, in Figures 25-26, we present the young disc low-z obser-
vations from case study 3, where we have used telescope()
spectral resolutions of 3.61Å and 4.56Å for the E-MILES and
BC03 models respectively. The hexagonal maps are those
models that have been built with the BC03 templates, while
the circular maps have been built with the E-MILES templates.

Appendix 1.4 Observations of with telescope() spectral
resolution with atmospheric seeing conditions included.
Here, in Figures 27-28, we present the young disc high-z
observations for the E-MILES model and low-z observations
for the BC03 model from case study 4, where we have used
telescope() spectral resolutions of 3.61Å and 4.56Å for the
E-MILES and BC03 models respectively, and added different
levels of seeing conditions by convolving each spatial plane
with a convolution kernel. The hexagonal maps are those
models that have been built with the BC03 templates, while
the circular maps have been built with the E-MILES templates.

Figure 16. Case Study 1: The bulge model built with E-MILES templates ob-
served with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a low red-
shi� distance of z = 0.0144 with median signal-to-noise of 30. Here we com-
pare the output kinematic cubes to the kinematics fit with pPXF, where the
average spaxel fit χ2/DOF = 1.03.

Figure 17. Case Study 1: The bulge model built with E-MILES templates ob-
served with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a low red-
shi� distance of z = 0.0144 with minimum signal-to-noise of 30. Here we
compare the output kinematic cubes to the kinematics fit with pPXF and
find a smoother recovery of the underlying dispersion, where the average
spaxel fit χ2/DOF = 1.13.
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Figure 18. Case Study 1: The bulge model built with BC03 templates ob-
served with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a low red-
shi� distance of z = 0.0144. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average spaxel fitχ2/DOF = 4.08.

Figure 19. Case Study 1: The old bulge model built with E-MILES templates
observed with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a low
redshi� distance of z = 0.0144 and minimum signal-to-noise of 30. Here we
compare the output kinematic cubes to the kinematics fit with pPXF, where
the average spaxel fit χ2/DOF = 0.99.

Figure 20. Case Study 1: The old bulge model built with BC03 templates
observed with an intrinsic telescope resolution ofλtelescope

LSF = 0 Å at a low red-
shi� distance of z = 0.0144. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average spaxel fitχ2/DOF = 3.64.

Figure 21. Case Study 2: The disk model built with E-MILES templates ob-
served with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a high red-
shi� distance of z = 0.3. Here we compare the output kinematic cubes to
the kinematics fit with pPXF, where the average pixel fit χ2/DOF = 0.97.
The final column shows histogram of the relative residuals between the “ve-
locity” and “spectral” kinematic maps, with the vLOS and σLOS given with
respect to the velocity resolution of the telescope.
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Figure 22. Case Study 2: The disk model built with BC03 templates observed
with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a high redshi�
distance of z = 0.3. Here we compare the output kinematic cubes to the
kinematics fit with pPXF, where the average pixel fitχ2/DOF = 71.66. The fi-
nal column shows histogram of the relative residuals between the “velocity”
and “spectral” kinematic maps, with the vLOS and σLOS given with respect
to the velocity resolution of the telescope.

Figure 23. Case Study 2: The old bulge model built with E-MILES templates
observed with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a high
redshi� distance of z = 0.3. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average pixel fit χ2/DOF = 1.05.
The final column shows histogram of the relative residuals between the “ve-
locity” and “spectral” kinematic maps, with the vLOS and σLOS given with
respect to the velocity resolution of the telescope.

Figure 24. Case Study 2: The old bulge model built with BC03 templates
observed with an intrinsic telescope resolution of λtelescope

LSF = 0 Å at a high
redshi� distance of z = 0.3. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average pixel fit χ2/DOF = 37.66.
The final column shows histogram of the relative residuals between the “ve-
locity” and “spectral” kinematic maps, with the vLOS and σLOS given with
respect to the velocity resolution of the telescope.

Figure 25. Case Study 3: The disk model built with E-MILES templates ob-
served with an intrinsic telescope resolution ofλtelescope

LSF = 3.61 Å at a low red-
shi� distance of z = 0.0144. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average pixel fit χ2/DOF = 2.02.
The final column shows histogram of the relative residuals between the “ve-
locity” and “spectral” kinematic maps, with the vLOS and σLOS given with
respect to the velocity resolution of the telescope.
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Figure 26. Case Study 3: The disk model built with BC03 templates observed
with an intrinsic telescope resolution of λtelescope

LSF = 4.56 Å at a low redshi�
distance of z = 0.0144. Here we compare the output kinematic cubes to the
kinematics fit with pPXF, where the average pixel fit χ2/DOF = 5.05. The fi-
nal column shows histogram of the relative residuals between the “velocity”
and “spectral” kinematic maps, with the vLOS and σLOS given with respect
to the velocity resolution of the telescope.

Figure 27. Case Study 4: The disk model built with E-MILES templates ob-
served with an intrinsic telescope resolution of λtelescope

LSF = 3.61 Å at a high
redshi� distance of z = 0.3. We convolve each plane in this cube with a
Mo�at kernel with FWHM of 2.8 arcsec. Here we compare the output kine-
matic cubes to the kinematics fit with pPXF, where the average pixel fit
χ2/DOF = 2.44. The final column shows histogram of the relative resid-
uals between the “velocity” and “spectral” kinematic maps, with the vLOS
and σLOS given with respect to the velocity resolution of the telescope.

Figure 28. Case Study 4: The disk model built with BC03 templates observed
with an intrinsic telescope resolution of λtelescope

LSF = 4.56 Å at a low redshi�
distance of z = 0.0144. We convolve each plane in this cube with a Gaussian
kernel with FWHM of 1 arcsec. Here we compare the output kinematic cubes
to the kinematics fit with pPXF, where the average pixel fitχ2/DOF = 209.06.
The final column shows histogram of the relative residuals between the “ve-
locity” and “spectral” kinematic maps, with the vLOS and σLOS given with
respect to the velocity resolution of the telescope.




