- Bryant, J. J., Bland-Hawthorn, J., Lawrence, J., et al. 2020, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11447, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1144715
- Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, The Astrophysical Journal, 798, doi:10.1088/0004-637X/798/1/7
- Camps, P., & Baes, M. 2020, Astronomy and Computing, 31, 100381
- Cappellari, M. 2002, Monthly Notices of the Royal Astronomical Society, 333, 400
- Cappellari, M. 2017, Monthly Notices of the Royal Astronomical Society, 466, 798
- Cappellari, M., & Emsellem, E. 2004, Publications of the Astronomical Society of the Pacific, 116, 138
- Cappellari, M., Emsellem, E., Bacon, R., et al. 2007, Monthly Notices of the Royal Astronomical Society, 379, 418
- Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, Monthly Notices of the Royal Astronomical Society, 413, 813
- Chabrier, G. 2003, The Publications of the Astronomical Society of the Pacific, 115, 763
- Crain, R. A., Schaye, J., Bower, R. G., et al. 2015, Monthly Notices of the Royal Astronomical Society, 450, 1937
- Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, Monthly Notices of the Royal Astronomical Society, 421, 872
- Croom, S. M., Taranu, D. S., van de Sande, J., et al. 2021, Monthly Notices of the Royal Astronomical Society, 505, 2247
- de Zeeuw, P. T., Bureau, M., Emsellem, E., et al. 2002, Monthly Notices of the Royal Astronomical Society, 329, 513
- Doi, M., Tanaka, M., Fukugita, M., et al. 2010, AJ, 139, 1628
- Dolag, K., Hansen, F. K., Roncarelli, M., & Moscardini, L. 2005, Monthly Notices of the Royal Astronomical Society, 363, 29
- Dubois, Y., Pichon, C., Welker, C., et al. 2014, Monthly Notices of the Royal Astronomical Society, 444, 1453
- Emsellem, E., Cappellari, M., Peletier, R. F., et al. 2004, Monthly Notices of the Royal Astronomical Society, 352, 721
- Fletcher, R. 1970, The Computer Journal, 13, 317
- Forsythe, Malcolm, M. A., & Moler, M. A. and. 1977, Computer Methods for Mathematical Computations (Wiley)
- Foster, C., Mendel, J. T., Lagos, C. D. P., et al. 2021, PASA, 38, e031
- Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748
- Goldfarb, D. 1970, Mathematics of Computation, 24, 23
- Harborne, K. E., Power, C., & Robotham, A. S. G. 2020a, Publications of the Astronomical Society of Australia, 37, doi:10.1017/pasa.2020.8
- Harborne, K. E., Power, C., Robotham, A. S. G., Cortese, L., & Taranu, D. S. 2019, Monthly Notices of the Royal Astronomical Society, 483, 249
- Harborne, K. E., van de Sande, J., Cortese, L., et al. 2020b, Monthly Notices of the Royal Astronomical Society, 497, 2018
- Hogg, D. W. 1999, arXiv e-prints, astro
- Jesseit, R., Cappellari, M., Naab, T., Emsellem, E., & Burkert, A. 2009, Monthly Notices of the Royal Astronomical Society, 397, 1202
- Jesseit, R., Naab, T., Peletier, R. F., & Burkert, A. 2007, Monthly Notices of the Royal Astronomical Society, 376, 997
- Jiménez, E., Lagos, C. d. P., Ludlow, A. D., & Wisnioski, E. 2023, Monthly Notices of the Royal Astronomical Society, 524, 4346
- Katz, N., Weinberg, D. H., & Hernquist, L. 1996, The Astrophysical Journal Supplement Series, 105, 19
- Lagos, C. d. P., Emsellem, E., van de Sande, J., et al. 2022, Monthly Notices of the Royal Astronomical Society, 509, 4372
- Li, H., Mao, S., Emsellem, E., et al. 2018, Monthly Notices of the Royal Astronomical Society, 473, 1489
- Ludlow, A. D., Fall, S. M., Wilkinson, M. J., Schaye, J., & Obreschkow, D. 2023, arXiv e-prints, arXiv:2306.05753
- Ludlow, A. D., Schaye, J., Bower, R., et al. 2019, Monthly Notices of the Royal Astronomical Society, 488, 3663
- Metzler, C. A., & Evrard, A. E. 1994, The Astrophysical Journal, 437, 564 Moffat, A. F. J. 1969, Astronomy and Astrophysics, 3, 455

- Naab, T., Oser, L., Emsellem, E., et al. 2014, Monthly Notices of the Royal Astronomical Society, 444, 3357
- Nanni, L., Thomas, D., Trayford, J., et al. 2022, Monthly Notices of the Royal Astronomical Society, 515, 320
- Nanni, L., Thomas, D., Trayford, J., et al. 2023, Monthly Notices of the Royal Astronomical Society, 522, 5479
- Nelson, D., Pillepich, A., Springel, V., et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 3234
- Nelson, D., Pillepich, A., Springel, V., et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 3234
- Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, The Astrophysical Journal, 725, 2312
- Pillepich, A., Springel, V., Nelson, D., et al. 2018, Monthly Notices of the Royal Astronomical Society, 473, 4077
- Pillepich, A., Nelson, D., Springel, V., et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 3196
- Poci, A., McDermid, R. M., Lyubenova, M., et al. 2021, Astronomy & Astrophysics, 647, A145
- Price, D. J. 2007, PASA, 24, 159
- Robotham, A. S. G., Bellstedt, S., Lagos, C. d. P., et al. 2020, ProSpect: Generating Rapid Spectral Energy Distributions with Complex Star Formation and Metallicity Histories
- Robotham, A. S. G., Taranu, D. S., Tobar, R., Moffett, A., & Driver, S. P. 2017, Monthly Notices of the Royal Astronomical Society, 466, 1513
- Sarmiento, R., Huertas-Company, M., Knapen, J. H., et al. 2023, Astronomy & Astrophysics, 673, A23
- Schaller, M., Dalla Vecchia, C., Schaye, J., et al. 2015, Monthly Notices of the Royal Astronomical Society, 454, 2277
- Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, Monthly Notices of the Royal Astronomical Society, 446, 521
- Schulze, F., Remus, R. S., Dolag, K., et al. 2018, Monthly Notices of the Royal Astronomical Society, 480, 4636
- Shanno, D. F. 1970, Math. Comp., 24, 647
- Springel, V. 2005, Monthly Notices of the Royal Astronomical Society, 364, 1105
- Springel, V., Pakmor, R., Pillepich, A., et al. 2018, Monthly Notices of the Royal Astronomical Society, Volume 475, Issue 1, p.676-698, 475, 676
- Teklu, A. F., Remus, R. S., Dolag, K., et al. 2015, The Astrophysical Journal, 812, 29
- van de Sande, J., Lagos, C. D., Welker, C., et al. 2019, Monthly Notices of the Royal Astronomical Society, 484, 869
- van der Marel, R. P., & Franx, M. 1993, The Astrophysical Journal, 407, 525
- Vazdekis, A., Koleva, M., Ricciardelli, E., Röck, B., & Falcón-Barroso, J. 2016, Monthly Notices of the Royal Astronomical Society, 463, 3409
- Wendland, H. 1995, Advances in Computational Mathematics, 4, 389
- Wilkinson, M. J., Ludlow, A. D., Lagos, C. d. P., et al. 2023, Monthly Notices of the Royal Astronomical Society, 519, 5942
- Yurin, D., & Springel, V. 2014, Monthly Notices of the Royal Astronomical Society, 444, 62
- Zhu, L., Pillepich, A., van de Ven, G., et al. 2022, Astronomy & Astrophysics, 660, A20

Appendix 1. Additional case study figures -

Appendix 1.1 Observations of intrinsic template spectral resolution at low redshift

Here, in Figures 16-20, we present the young bulge and old bulge observations from case study 1, where we have used the intrinsic spectral resolution of the underlying templates at a negligible redshift of z = 0.0144. The hexagonal maps are those models that have been built with the BC03 templates, while the circular maps have been built with the E-MILES templates. We can see a proportion of the pixels fit in the bulge E-MILES maps return an extremely low value of the observed dispersion (with equally extreme h_4 values), which may be reduced by increasing the signal-to-noise of the image as shown in the following Figures 16 and 17, either at the SimSpin construction stage, or through binning techniques not explored here.

Appendix 1.2 Observations of intrinsic template spectral resolution at high redshift

Here, in Figures 21-24, we present the young disc and old bulge observations from case study 2, where we have used the intrinsic spectral resolution of the underlying templates shifted up to a redshift of z = 0.3. The hexagonal maps are those models that have been built with the BC03 templates, while the circular maps have been built with the E-MILES templates.

Appendix 1.3 Observations of with telescope() spectral resolution at low & high redshift

Here, in Figures 25-26, we present the young disc low-z observations from case study 3, where we have used telescope() spectral resolutions of 3.61Å and 4.56Å for the E-MILES and BC03 models respectively. The hexagonal maps are those models that have been built with the BC03 templates, while the circular maps have been built with the E-MILES templates.

Appendix 1.4 Observations of with telescope() spectral resolution with atmospheric seeing conditions included.

Here, in Figures 27-28, we present the young disc high-z observations for the E-MILES model and low-z observations for the BC03 model from case study 4, where we have used telescope() spectral resolutions of 3.61Å and 4.56Å for the E-MILES and BC03 models respectively, and added different levels of seeing conditions by convolving each spatial plane with a convolution kernel. The hexagonal maps are those models that have been built with the BC03 templates, while the circular maps have been built with the E-MILES templates.

Figure 16. Case Study 1: The bulge model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a low redshift distance of z = 0.0144 with median signal-to-noise of 30. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average spaxel fit $\chi^2/DOF = 1.03$.

Figure 17. Case Study 1: The bulge model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a low redshift distance of z = 0.0144 with *minimum* signal-to-noise of 30. Here we compare the output kinematic cubes to the kinematics fit with pPXF and find a smoother recovery of the underlying dispersion, where the average spaxel fit $\chi^2/DOF = 1.13$.

Figure 18. Case Study 1: The bulge model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a low redshift distance of z = 0.0144. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average spaxel fit $\chi^2/DOF = 4.08$.

Figure 20. Case Study 1: The old bulge model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{LSF}^{telescope} = 0$ Å at a low redshift distance of z = 0.0144. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average spaxel fit $\chi^2/DOF = 3.64$.

Figure 19. Case Study 1: The old bulge model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a low redshift distance of z = 0.0144 and minimum signal-to-noise of 30. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average spaxel fit $\chi^2/DOF = 0.99$.

Figure 21. Case Study 2: The disk model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a high redshift distance of z = 0.3. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 0.97$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 22. Case Study 2: The disk model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a high redshift distance of z = 0.3. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 71.66$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 24. Case Study 2: The old bulge model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{LSF}^{telescope} = 0$ Å at a high redshift distance of z = 0.3. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 37.66$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 23. Case Study 2: The old bulge model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 0$ Å at a high redshift distance of z = 0.3. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 1.05$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 25. Case Study 3: The disk model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{\text{telescope}} = 3.61$ Å at a low redshift distance of z = 0.0144. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 2.02$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the ν_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Velocity Cubes

200 400 600

km s⁻¹

VLOS,

km s⁻¹

σLos,

ĉ

Spectral Cubes

400 600

200

Kinematic - Spectra

Residual

1-0.5 0 0.5 1

1-050 05 1

0.5 0

100

/Δν

0.5

Figure 26. Case Study 3: The disk model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 4.56$ Å at a low redshift distance of z = 0.0144. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 5.05$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 27. Case Study 4: The disk model built with E-MILES templates observed with an intrinsic telescope resolution of $\lambda_{\text{LSF}}^{telescope} = 3.61$ Å at a high redshift distance of z = 0.3. We convolve each plane in this cube with a Moffat kernel with FWHM of 2.8 arcsec. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 2.44$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the v_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.

Figure 28. Case Study 4: The disk model built with BC03 templates observed with an intrinsic telescope resolution of $\lambda_{LSF}^{telescope} = 4.56$ Å at a low redshift distance of z = 0.0144. We convolve each plane in this cube with a Gaussian kernel with FWHM of 1 arcsec. Here we compare the output kinematic cubes to the kinematics fit with pPXF, where the average pixel fit $\chi^2/DOF = 209.06$. The final column shows histogram of the relative residuals between the "velocity" and "spectral" kinematic maps, with the ν_{LOS} and σ_{LOS} given with respect to the velocity resolution of the telescope.