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FIFTY YEARS OF THE SPECTRUM PROBLEM:

SURVEY AND NEW RESULTS

APPENDIX

A. DURAND, N. D. JONES, J. A. MAKOWSKY, AND M. MORE

A review of some not easily accessible references

This appendix contains a detailed presentation of thematerial of Section 4.
Note that the proofs sketched here do not necessarily correspond to the
original proofs.

Asser’s paper. In chronological ordering, the first paper related to spectra
is [1], in German, due to Asser in 1955. Though it does not use the name
“spectrum”, nor refer to Scholz in its title or in the text, the long introduction
clarifies the context in which the concept of spectrum was born. The author
addresses the general question of classes of cardinal numbers (not only
natural numbers) so-called “representable” by a sentence of first-order logic
with equality, both in the framework of satisfiability theory and validity
theory. Here a first-order sentence ϕ represents a given (finite or infinite)
cardinalitym regarding satisfiability if there is a structure whose domain has
cardinality m that is a model of ϕ (i.e., for finite m, it means m ∈ spec(ϕ)),
and regarding validity, ifϕ holds in every structure with cardinalitym. Asser
first notices that ϕ representsm regarding satisfiability if and only if¬ϕ does
not representm regarding validity, so that validity reduces to satisfiability via
complement. Then, he remarks that, fromLöwenheim–SkolemTheorem [3],
the representation question in satisfiability theory for infinite cardinalities is
trivial: the first-order sentenceϕ either has no infinitemodel (and in this case
it has finite models in finitely many finite cardinalities only) or has models
in every infinite cardinality. Hence, the problem actually is about exactly
which sets of natural numbers are the set of cardinalities of finite models
of first-order sentences, i.e., what we would call spectra. In a footnote, one
reads “this question was also asked by Scholz as a problem in [9]”.
With this background, Asser’s aim is to give a purely arithmetical char-
acterization of spectra. This is done via an arithmetical encoding of finite
structures, first-order sentences and satisfiability. Let usmake precise Asser’s
construction.
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Note that in the sequel “characteristic functions” (of sets or relations) are
not taken in the usual way: a unary functionf is said to be the characteristic
function of the set of integers n such that f(n) = 0. It is only a technical
matter to come back to the usual definitionwith littlemachinery, for instance
use÷(n) = 1−̇f(n) (so-calledmodified subtraction i.e., x−̇y = x−y ifx ≥ y
and 0 otherwise). Using this alternative definition, characteristic functions
are not required to be 0–1-valued.
Without loss of generality, let ϕ be a sentence in relational Skolem normal
form, i.e., ϕ ≡ ∀x1 . . . ∀xr ∃xr+1 . . . ∃xs ø(x1, . . . xs), where ø(x1, . . . xs)

is a Boolean combination of atomic formulas R(ai )i (xj1 , . . . xjai ) with i =
1, . . . , t and of atoms xl1 = xl2 . Assume that ø contains u different atoms

of type R(ai )i (xj1 , . . . xjai ) and v different atoms of type xl1 = xl2 . Let

Ψ: {0, 1}u+v −→ {0, 1} be the Boolean function associated to the proposi-
tional version of ø (using the convention that 0 encodes true and 1 encodes
false).

Denote by Bitk(y, z1, . . . , zk , n) the binary digit of y of rank
∑k
l=1 zl ·

nl−1, assuming y < 2n
k
, z1 < n, . . . , zk < n. Encode the k-ary rela-

tion R on the domain {0, . . . , n − 1} by the number y < 2n
k
such that

Bitk(y, z1, . . . , zk , n) = 0 if and only ifR(z1, . . . , zk) holds. Let ä(z1, z2) = 0
if z1 = z2 and 1 otherwise. Obtain Ψ

∗(y1, . . . , yt , x1, . . . , xs , n) from Ψ by

replacing each atomR(ai )i (xj1 , . . . xjai ) byBitai (yi , xj1 , . . . , xjai , n) and every

atom xl1 = xl2 by ä(xl1 , xl2).
The first-order quantifiers ∀x1 . . . ∀xr ∃xr+1 . . . ∃xs are dealt with by defin-
ing

Ψ∗∗(y1, . . . , yt , n) =
n−1
∑

x1=0

· · ·
n−1
∑

xr=0

n−1
∏

xr+1=0

· · ·
n−1
∏

xs=0

Ψ∗(y, x, n).

Note the non-standard use of
∑

for ∀ and
∏

for ∃, due to the fact that
0 encodes true and 1 encodes false. Finally the characteristic function of
the spectrum of the sentence ϕ ≡ ∀x1 . . . ∀xr ∃xr+1 . . . ∃xs ø(x1, . . . xs) is

÷(n) =
∏2n

a1−1
y1=0

· · ·
∏2n

at
−1

yt=0
Ψ∗∗(y1, . . . , yt , n). This construction is clearly

elementary. Conversely, it is also easy to verify that any function defined as

÷(n) =
∏2n

a1−1
y1=0

· · ·
∏2n

at
−1

yt=0
Ψ∗∗(y1, . . . , yt , n), where Ψ

∗∗ is obtained from
some Boolean function Ψ by the same type of construction, is the charac-
teristic function of the spectrum of the corresponding first-order sentence.
Hence we have the following result.

Theorem 1. A set S is a spectrum iff its characteristic function ÷ has the

form ÷(n) =
∏2n

a1−1
y1=0

· · ·
∏2n

at
−1

yt=0
Ψ∗∗(y1, . . . , yt , n), where Ψ

∗∗ is obtained
from some Boolean function Ψ by the above construction.

Note that Asser judges his result “non satisfactory”, in particular because
this paraphrastic characterization is of no help in proving that a given set is
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or not a spectrum, or in providing any concrete spectrum. However, Asser’s
characterization is enough to prove the following theorem (rephrasing The-
orem 4.10 of the paper), that we restate here for sake of self-containment.

Theorem 2. Spec ( E3⋆

The inclusion follows from the fact that Theorem 1 provides elementary
characteristic functions for spectra. The properness is obtained by diago-
nalization.
As a conclusion, Asser asks some questions, that have essentially remained
open up to now. First, he asked for a recursive characterization of spectra.
He notes that there are actually two different problems. The first one asks
for a recursively defined class of functions, i.e., a class of functions defined
via some basis functions and closure under some functional operations, such
that the unary functions in this class are exactly the characteristic functions of
spectra. Second, he asks for a recursively defined class of functions, but now
such that the unary functions in it enumerate exactly the spectra, i.e., a set S
is a spectrum if and only if S = f(N) for some f in the class. Note that this
is not the most commonly admitted meaning for enumeration, because the
enumeration functions are usually required to be strictly increasing, which
is not the case here.
Next, Asser refers to “work in progress” that proves that a large class of
unary functions are characteristic functions of spectra, among which the
following arithmetically defined sets: prime numbers, multiples of a given
integer k, powers of a given k, k-th powers, composite numbers.
Finally, the third and most famous open question proposed in this paper
is usually known as Asser’s Problem (Open Question 2) and asks whether
spectra are closed under complement.

Mostowski’s paper. A paper almost simultaneous with Asser’s is [6], due
to A. Mostowski in 1956. It also adresses recursive characterization of
spectra, and explicitly uses the name “spectrum”. It is noticed that “The
results of Asser overlap in part with results which I have found in 1953
while attempting (unsuccessfully) to solve Scholz’s problem (cf. Roczniki
Polskiego Towarzystwa Matematycznego, series I, vol. 1 (1955), p. 427). I
shall give here proofs of my results which do not overlap with Asser’s.”1

A. Mostowski defines a class of functions denoted by K as follows.

Definition 3. The class K is the least class

– containing the functions Zk , U
i
k , S, C respectively defined by:

– Zk(x1, . . . , xk , n) = 0,
– U ik(x1, . . . , xk , n) = min(xi , n), for i = 1, . . . , k,

1Thanks to J. Tomasik, we have seen a translation of the Polish reference. It is the abstract
of a seminar given by Andrzej Mostowski on October 16, 1953. In addition to the following
material, it is also stated that spectra form a strict subclass of primitive recursive sets, a result
which indeed overlaps with Asser’s.
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– S(x, n) = min(x + 1, n),
– C (x) = n,

– closed under composition:
f(x1, . . . , xj−1, g(y1, . . . , yp, n), xj+1, . . . , xk , n),
– closed under recursion:
{

f(0, ~x, n) = g(~x, n),

f(x + 1, ~x, n) = min(h(x,f(x, ~x, n), ~x, n), n).

The basis functions Zk , U
i
k and S are intended as the classical zero,

projections and successor functions, but the special variable n always bounds
their values. The function C is intended as a maximum function. The
functional operations composition and recursion are also bounded by n.
The main result of Mostowski’s paper is the following theorem.

Theorem 4. For any unary function f ∈ K , the set {n + 1 | f(n) = 0} is
a spectrum.

Let us give an idea of the proof via an example. Consider the functions f,
g and h defined as follows:

– f(x, n) = 1 if x = 0 and f(x, n) = 0 otherwise.

I.e.,

{

f(0, n) = S(Z(C (n), n), n),

f(x + 1, n) = min(Z(f(x, n), n), n).

– g(x, n) = 0 if x is even and g(x, n) = 1 otherwise.

I.e.,

{

g(0, n) = Z(C (n), n),

g(x + 1, n) = min(f(g(x, n), n), n).

– h(n) = g(C (n), n).

Clearly we have h ∈ K and h(n) = 0 if and only if n is even. Let us derive
from the definition of h a sentence ø in the vocabulary

ó = {≤,min,max,Succ(2), R(3)f , R
(3)
g , R

(2)
h }

such that ø has a model with n + 1 elements if and only if h(n) = 0 (i.e.,
spec(ø) is the set of odd numbers). The key point of the construction is
that the functions in the class K can be interpreted as functions on finite
structures (e.g., from {0, . . . , n}k to {0, . . . , n}) without loss of generality,
because of the special variable n that bounds all their values.
The sentence ø first expresses the fact that≤ is a linear ordering, min and
max are its first and last elements and Succ its successor relation. Then, ø
describes the behavior of the predicatesRf ,Rg andRh corresponding to the
graphs of the functions f, g and h. For instance, Rg obeys the conjunction
of the following sentences:

– g is functional in its first variable:
∀x, y

(

y = max −→ ∃!z Rg(x, y, z)),
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– the second variable in g is always n:
∀x, y, z

(

Rg(x, y, z) −→ y = max),
– description of the base case of the definition of g:
∀x, y, z

[(

Rg(x, y, z) ∧ x = min) −→ z = min
]

,
– description of the recursive recursive case of the definition of g:

∀x, y, z [(Rg(x, y, z) ∧ ¬x = min)

−→ ∃t, u(Succ(t, x) ∧Rg(t, y, u) ∧Rf(u, y, z))].

Our goal is then achieved by adding to ø the following condition:

∀x, y
(

Rh(x, y) −→ (x = max∧y = min)) .

Finally, it is clear that spec(ø) is the set of odd numbers as required.
Mostowski asks if the converse is true, i.e.,

Open Question 1. Is every spectrum representable as {n + 1 | f(n) = 0}
for some function f ∈ K?

No answer is known up to now.
As a conclusion, new examples of spectra are presented: the set of in-
tegers having the form n! for some n, and the set {n | n2 + 1 is prime}.
Also, Mostowski asks whether Fermat’s prime numbers, i.e., primes of the
form 22

n
+ 1, form a spectrum. This question can be understood in two

different ways, as noticed by Bennett: which one of the sets A = {p |
p is prime andp = 22

n
+1 for some integer n} andB = {n | 22

n
+1 is prime}

is intended? Using rudimentary relations, the set A is easily proved to be a
spectrum, whereas it is still not known for the set B .
Finally, we remark that it is ordinarily considered that what Mostowski
proved is that the unary relations in E2⋆ are spectra. This is not exactly
the case, but the reason is most probably the fact that Bennett attributes
this result to Mostowski. However, Bennett also notes that, even if it is
easy to prove that K ⊆ E2, it is not clear that the bounded version of
any function in E2 (i.e., fb(x1, . . . , xk , n) = min(f(x1, . . . , xk), n)) is in K .
Mostowski’s construction crucially relies on the fact that the functions in
K are bounded by their last variable, and does not generalize to functions
in E2. In contrast, it is not difficult to verify that the bounded versions of
addition andmultiplication are inK , and consequently that the rudimentary
relations have their characteristic functions in K . Whatever, it is true that
the unary relations in E2⋆ are indeed spectra, see Corollary 6.

Bennett’s thesis. This is a huge work titled “On spectra” [2], but which
also deals with a lot of other subjects. Bennett’s thesis is unpublished,
and only available via library services. It is one of the remarkable early texts
anticipating later developments in finitemodel theory, definability theory and
complexity theory. It contains a characterization (and various definitions)
of rudimentary sets and already relates spectra to space bounded Turing
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machines, thus catching a glimpse of many of the results concerning spectra
that were formulated and proved in more modern language after 1970.
Not only first-order spectra are considered by Bennett, but also spectra of
higher order logics, and not only sets, but also many-sorted sets, all in all
spectra of the whole theory of types. This full generality makes the notations
quite clumsy. The use of many-sorted structures corresponds to relations
with arity greater than one, and the use of higher order logics provides more
complicated relations.
We shall limit ourselves to the cases of one-sorted (i.e., ordinary) spectra
of orders one and two. Note that the first item of Theorem 5 is also partially
stated as Theorem 4.13.

Theorem 5 (Bennett, 1962 [2]). (i) A setS ⊆ N is a first-order spectrum

iff it can be defined by a formula of the form ∃y≤2x
j
R(x, y) for some

j ≥ 1, where R is strictly rudimentary.
(ii) A setS ⊆ N is a second-order spectrum iff it can be defined by a formula

of the form ∃y≤2x
j
R(x, y) for some j ≥ 1, where R is rudimentary.

Spectra of higher order are characterized by similar features: spectra of
order 2n correspond to rudimentary relations prefixedby an existential quan-

tifier bounded by an iterated exponential 2
..
2x
j

of height n, and spectra of
order 2n−1 correspond to strictly rudimentary relations prefixed by an exis-
tential quantifier bounded by an iterated exponential of height n. Spectra of
sentences over a d -sorted universe have the same types of characterizations,

using ∃y ≤ 2max(x1,...,xd )
j
R(x1, . . . , xd , y). Finally, the spectra of the entire

type theory are characterized as the elementary relations.
Bennett also introduces several other subrudimentary classes, respectively
called “strongly”, “positive” and “extended” rudimentary relations, which
yield a bunch of slightly different characterizations of spectra, which may
witness various unsuccessful attempts to design a truly satisfactory charac-
terization. In this survey, we shall limit ourselves to Rud and Srud.
Some consequences of the characterization theorem (not all of them are
immediate):

Corollary 6. (i) For each n ≥ 1, the class of spectra of order n is closed
under∧,∨, bounded quantifications, substitution of rudimentary func-
tions, explicit transformations and finite modifications.

(ii) For each n ≥ 1, the class of spectra of order 2n is closed under ¬.
(iii) The class of first-order spectra contains the rudimentary relations

and E2⋆ .
(iv) The class of second-order spectra strictly contains the rudimentary
relations.

(v) For each n ≥ 1, spectra of order n form a subset of spectra of order
n + 1 and a strict subset of spectra of order n + 2.
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We sletch below a proof of Bennett’s theorem.

Proof of Theorem 5. (ii) We first present the second-order case, because
it has fewer technical difficulties.

– First inclusion: {spec(ϕ) | ϕ ∈ SO} ⊆ {∃y ≤ 2x
j
R(x, y) | j ≥ 1

and R ∈ Rud} i.e., ϕ has a model with x elements iff ∃y ≤ 2x
j
R(x, y) is

true.
W.l.o.g. we may assume that ϕ has no first-order or second-order free
variables (just quantify existentially in case there are any). Assume the
second-order variables appearing in ϕ have arities strictly less than j. Then

we take y = 2x
j
. We encode a second-order variable Z with arity a <

j by the number z < 2x
a
< y in the usual way. Hence, every second-

order quantification QZ(a) in ϕ is translated into the first-order bounded
quantification Qz < 2x

a
< y. Recall that Bit(a, b) is true iff the bit of

rank b of a is 1. Now, every atomic formula Z(z1, . . . , za) is translated into
Bit(z, z1 + z2 · x + · · ·+ za · x

a−1). Every first-order quantification qz in ϕ
is translated into the bounded quantification qz < x. The atomic formulas
z = z ′ in ϕ remain unchanged. Let ϕ′ denote the obtained formula. Finally,

let R ≡ (y = 2x
j
) ∧ ϕ′.

– Second inclusion: {spec(ϕ) | ϕ ∈ SO} ⊇ {∃y ≤ 2x
j
R(x, y) | j ≥ 1

and R ∈ Rud} i.e., ∃y ≤ 2x
j
R(x, y) is true iff ϕ has a model with x

elements.
First, we use three existentially quantified relations, namely ≤(2j) which
is bound to be a linear ordering over the j-tuples of vertices, +(3j) which
is bound to be the associated addition and ×(3j) which is bound to be the
associated multiplication. Let us denote by Arithm(≤,+,×) the first-order
sentence expressing this requirement. Note that we may now use for free
any usual arithmetic predicate on numbers bounded by xj (written in x-
ary notation, i.e., seen as j-tuples of integers in {0, . . . , x − 1}). Next,
all variables in R, including x and y, are encoded by j-ary second-order
variables in ϕ in the usual way. For instance if x =

∑p
l=0 2

il , we let X =
{(i0, 0, . . . , 0), . . . , (ip, 0, . . . , 0)}.
W.l.o.g. we may assume that all the atomic formulas in R are of type
u · v = w (concatenation), which we translate into

Concat(U,V,W ) ≡

∃tV (t) ∧ ∀z (V (z) −→ z ≤ t) ∧ ∀z (U (z) −→ z ≤ (max− t)) ∧

∀z
(

W (z)←→
((

z ≤ t ∧ V (z)) ∨
(

z > t ∧U (z − t))
))

.

Note that this sentence would be cleaner in dyadic than it is in binary,
but the whole encoding would also be more complicated because two unary
relations are needed to encode an integer in dyadic (the set of 1s and the set
of 2s) because its length is fixed.
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In order to translate the bounded quantifications in R, we also need the
following first-order sentence, which expresses the fact that the integers u
and v respectively encoded by U and V are such that u < v.

Smaller(U,V ) ≡ ∃z
(

V (z) ∧ ¬U (z) ∧ ∀z ′ > z ¬U (z ′)
)

∨

∃z
(

V (z) ∧U (z) ∧ ∀z ′ > z
(

¬V (z ′) ∧ ¬U (z ′)
)

∧

∃z ′ < z
(

V (z ′) ∧ ¬U (z ′)
) )

.

Now, let R′ be obtained from R by applying the following rules: every
bounded first-order quantification ∀z < z ′ . . . is translated into the second
order quantification ∀Z(j) Smaller(Z,Z ′) −→ . . . , and accordingly for ∃z <
z ′ . . . ; and every atomic formula u ·v = w is translated intoConcat(U,V,W ).
It remains to express that X encodes the size x of the domain, which
is done using the binary notation of (max, 0, . . . , 0), which represents the
largest element of the domain. More precisely, we have max+1 = x, which
translates in binary as follows:

Dom(X ) ≡ ∀z (((X (z) ∧ ∀z ′ < z ¬X (z ′)) −→ ¬Bit((max, 0, . . . , 0), z)) ∧

((∃z ′ < zX (z ′)) −→ (X (z)←→ Bit((max, 0, . . . , 0), z))) ∧

((∃z ′ > z(X (z ′) ∧ ∀z ′′ < z ′ ¬X (z ′′)))

−→ Bit((max, 0, . . . , 0), z))).

Finally, ϕ is

∃ ≤(2j) ∃+(3j) ∃ ×(3j) ∃Y (j)∃X (j)(Arithm(≤,+,×) ∧Dom(X ) ∧R′).

(i) Next we turn to the first-order case. We consider the proof of the
second-order case and show how it has to be modified in order to fit to the
first-order case. Note that the proof is now more tricky, and we use dyadic
notation because we have to be more precise.

– First inclusion: {spec(ϕ) | ϕ ∈ FO} ⊆ {∃y ≤ 2x
j
R(x, y) | j ≥ 1

and R ∈ Srud}
Themain difference concerningϕ is that it contains no second-order quan-
tifications. Concerning R, we have to deal with two differences: bounded
quantifications are now replaced by part-of quantifications (∀z1 ↾ z2 and
∃z1 ↾ z2) on the one hand and we have to use concatenation instead of
arithmetic on the other hand.
However, ϕ does contain free second-order variables, sayZ(a1)1 , . . . , Z

(ak)
k ,

which we do not encode in the usual way because Srud does not allow to
use arithmetical predicates, hence the Bit predicate is not available. Instead,
we assume for now that the alphabet is {1, 2, ∗, ⋆, •} and we first define a
provisional predicate R′(x, y). We shall explain later how to get rid of the
extra symbols ∗, ⋆ and • to obtain the expected R(x, y).



FIFTY YEARS OF THE SPECTRUM PROBLEM—APPENDIX 9

We use the following encoding: if Z = {(x11 , . . . , x
1
a), . . . , (x

p
1 , . . . , x

p
a )},

with p ≤ xa , then let z = ⋆ ∗ x11 ∗ · · · ∗ x
1
a ∗ ⋆ · · · ⋆ ∗x

p
1 ∗ · · · ∗ x

p
a ∗ ⋆. Note

that we have |z| ≤ xa · a · (|x|+ 2).
Let us define x0 = ∗ x ∗ (x − 1) ∗ · · · ∗ 1 ∗ , i.e., the dyadic representation
of x0 is the concatenation of the dyadic representations of all integers in
{1, . . . , x}, separated by ∗s. Note that |x0| ≤ x · (|x + 2|) < x

2. Finally, let

y = • z1 • · · · • zk • x0 • . Clearly we have y ≤ 2
xj for some j ≥ 1.

Now, R′(x, y) will begin with ∃z1 ↾y . . . ∃zk ↾y ∃x0 ↾y ((y = • z1 • · · · •
zk • x0 • ) ∧ ¬(•↾z1) ∧ · · · ∧ ¬(•↾zk) ∧ ¬(•↾x0) ∧ . . . ), in order to retrieve
the significant parts of y.
We use x0 to replace every first-order quantification ∀u . . . appearing in ϕ
by a part-of quantification ∀u ↾ x0

(

Int(u, x0) −→ . . . ) in R
′, and similarly

for ∃u . . . , where Int(u, x0) means that u is a maximal non-empty string of
1s and 2s in x0. The most technical part of the proof is to write a strictly
rudimentary formula Dom(x0, x) which is true iff x0 has the expected form,
but for sake of brevity, we do not show this formula explicitly. In particular,
note that we now consider the domain as {1, . . . , x} instead of {0, . . . , x−1}
as we did previously. Finally it is not difficult to write a formula Verif(x0, z)
expressing the fact that z has the expected form ⋆∗x11 ∗ · · · ∗x

1
a ∗⋆ · · ·⋆∗x

p
1 ∗

· · · ∗ xpa ∗ ⋆. Namely, take

Verif(x0, z) ≡ ∃u ↾z

(⋆u⋆↾z) ∧ ∀u ↾z (((⋆u⋆↾z) ∧ ¬(⋆↾u) ∧ u 6= ǫ) −→ ∃v1 ↾u . . . ∃va ↾u

(Int(v1, x0)∧ · · · ∧ Int(va , x0)∧ u = ∗ v1 ∗ · · · ∗ va ∗ ))

∧ ∀u1, u2, α, â, ã ↾z (((z = α ⋆ u1 ⋆ â ⋆ u2 ⋆ ã ∨ z = α ⋆ u1 ⋆ u2 ⋆ ã)

∧ ¬(⋆↾u1) ∧ ¬(⋆↾u2)) −→ u1 6= u2).

There are two types of atomic formulas in ϕ: equalities z1 = z2 and atoms
Z(z1, . . . , za). Equalities remain unchanged and Z(z1, . . . , za) is changed
into ⋆ ∗ z1 ∗ · · · ∗ za ∗ ⋆↾z. These operations lead to the strictly rudimentary
formula ϕ′.
Finally, R′(x, y) is ∃z1 ↾y . . . ∃zk ↾y∃x0 ↾y((y = • z1 • · · · • zk • x0 • ) ∧
¬(• ↾ z1) ∧ · · · ∧ ¬(• ↾ zk) ∧ ¬(• ↾ x0) ∧ Dom(x0, x) ∧ Verif(x0, z1) ∧ · · · ∧
Verif(x0, zk) ∧ ϕ

′).
To obtain R, it remains to get rid of the alphabet {1, 2, ∗, ⋆, •}. Let ∗ be a
string of 1s which is not a subword of x, x − 1, . . . , 2 and 1. For instance, ∗
could be of length |x| + 1. Let ⋆ = 2 ∗ 2 and • = 22 ∗ 22. The final length
of y is polynomially longer than it used to be, which remains acceptable.
Finally, take R(x, y) ≡ ∃∗ ↾ y ∃⋆ ↾ y ∃• ↾ y ((∀u ↾ ∗ (u = 1)) ∧ ∗ 6= ǫ ∧
⋆ = 2 ∗ 2 ∧ • = 22 ∗ 22 ∧ R′). Note that strictly rudimentary relations do
not define predicates referring to the length of integers, so that ∗ cannot be
bound to be some specific word like 1|x|+1.
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– Second inclusion: {spec(ϕ) | ϕ ∈ FO} ⊇ {∃y ≤ 2x
j
R(x, y) | j ≥ 1

and R ∈ Srud}
Themain difference with the second-order case concerningϕ is that it only
contains first-order quantifications. However, we are still free to choose as
many free second-order variables as we may need. In particular, we still use
usual arithmetic predicates on the (j-tuples of) elements of the domain, and
the previous first-order sentence Arithm(≤,+,×) is still required to hold for
this purpose. In addition, we introduce the second-order variables X1, X2
and Y1, Y2, both of arity j, respectively representing the set of positions
where x and y have 1s and 2s and no other second-order variables are
introduced. Let Word(X1, X2) be the sentence expressing the fact that X1
and X2 (and similarly Y1, Y2) do represent a dyadic word, namely

Word(X1, X2) ≡ ∀z ¬(X1(z) ∧ X2(z)) ∧

∃z ∀t ((t > z −→ (¬X1(t) ∧ ¬X2(t))) ∧

(t ≤ z −→ (X1(t) ∨ X2(t)))).

ConcerningR, we may assume w.l.o.g. that it only contains part-of quantifi-
cations qz ↾x and qz ↾y and no qz ↾z ′ for z ′ /∈ {x, y}.
The main trick is that a part-of quantification ∃z ↾y . . . (for instance) will
be replaced by 2j first-order quantifications ∃z1∃z2 (z1 ≤ z2 ∧ . . . ), where
z1 and z2 encode the positions where z begins and ends, as a subword of y.
We have to translate the atomic formulas u · v = w. W.l.o.g. we may
rewrite R in an equivalent formula by replacing everywhere u · v = w with
(u ·v = w∧u ↾y∧v ↾y∧w ↾y)∨(u ·v = w∧u ↾y∧v ↾y∧w ↾x)∨· · ·∨(u ·v =
w ∧ u ↾ x ∧ v ↾ x ∧ w ↾ x). Hence, there are 8 slightly different cases to be
taken care of. We limit ourselves with the case u · v ·w ∧ u ↾y ∧ v ↾y ∧w ↾y.
The corresponding formula Concatyyy(u1, u2, v1, v2, w1, w2) is as follows:

w2 = w1 + u2 − u1 + v2 − v1 ∧

∀z (w1 ≤ z < w1 + u2 − u1 −→

((Y1(z)←→ Y1(z − w1)) ∧ (Y2(z)←→ Y2(z − w1)))) ∧

∀z (w1 + u2 − u1 ≤ z < w2 −→ ((Y1(z)←→ Y1(z − w1 − u2 + u1)) ∧

(Y2(z)←→ Y2(z − w1 − u2 + u1)))).

Let us denote by R′ the obtained sentence.
The last remaining part is to write out a sentenceDom′(X1, X2) expressing
the fact that X1, X2 encodes (in dyadic) the cardinality of the domain, i.e.,
the successor of the j-tuple (max, 0, . . . , 0). This is a bit more technical
than the sentence Dom(X ) we used for the binary notation and we do not
spell it out here. Finally, take ϕ ≡ Arithm∧Word(X1, X2)∧Word(Y1, Y2)∧
Dom(X1, X2) ∧R

′. ⊣
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Connections with complexity classes. At the beginning of complexity the-
ory, the usual complexity classes such as the polynomial hierarchyhadnot yet
emerged. So the classes used by Bennett are not standard ones. He consid-
ers two hierarchies based on space-bounded deterministic Turing machines
defined in a recursive fashion: the base class is of type FDSpace(f(n)), and
the next class has a space bound which is a function in the previous class.
Let us denote by (Ri)i≥1 the first hierarchy, introduced in Ritchie’s 1963
paper [8], which comes from his Ph.D. thesis [7].

Definition 7 (Ritchie’s classes). – Let R1 be the class of functions
computable by some (deterministic) Turing machine in space bounded
by b ·max(−→x ) on input −→x , where b ≥ 1 is some integer fixed for each
machine, i.e.,R1 = FDSpace(O(2n)) in modern notation.
– For each i ≥ 1, let us denote byRi+1 the class of functions computable
by a Turing machine in space bounded by B(−→x ), where B is some
function inRi , fixed for each machine.
– For each i ≥ 1, let us denote byRi⋆ the class of relations whose charac-
teristic functions are inRi .

It is proved in [8] that this hierarchy (Ri⋆)i≥1 is strict and that its union
corresponds to elementary relations.
Using the same pattern, Bennett introduces a second hierarchy, that we
denote by (Bi)i≥1.

Definition 8 (Bennett’s classes). – Let B1 be the class of functions
computable by some (deterministic) Turing machine in space bounded
by P(−→x ) on input −→x , where P is some arithmetical polynomial fixed
for each machine, i.e., B1 = FDSpace((2O(n))) in modern notation.
– For each i ≥ 1, let us denote by Bi+1 the class of functions computable
by a Turing machine in space bounded by B(−→x ), where B is some
function in Bi , fixed for each machine.
– For each i ≥ 1, let us denote by Bi⋆ the class of relations whose charac-
teristic functions are in Bi .

Bennett shows that Ritchie’s classesRi⋆ come in between spectra of various
orders, but not in a very nice way. In contrast, he proves nice closure proper-
ties and an exact intercalation between the classes of spectra of consecutive
orders for the classes Bi⋆. However, all these classes are too big to be infor-
mative concerning relationship between first-order spectra and complexity
classes.
In order to state the next theorem, let us denote by S i the class of (many-
sorted) spectra of formulas of order i . For instance Spec is the class of unary
relations in S1.

Theorem 9. (i) R1⋆ ⊆ S
3 and for each i ≥ 2, S2i−2 ⊆ Ri⋆ ⊆ S

2i+1.
Moreover, for no i, j ≥ 1 doesRi⋆ = S

j .
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(ii) For each i ≥ 1, S2i ⊆ Bi⋆ ⊆ S
2i+1 (equality or strictness is unknown)

andRi⋆ ( B
i
⋆ ( R

i+1
⋆ . Moreover, B

i
⋆ is closed with respect to union, in-

tersection, bounded quantifications, substitution of rudimentary func-
tions, explicit transformations and finite modifications.

The proof of item (i) is based on recursive characterizations of the classes
Ri⋆, whereas item (ii) is stated without proof.

Mo’s paper. There is a late paper on the recursive aspect of spectra, namely
[5], due to theChinese logicianMoShaokui in 1991, only available inChinese
(see the author’s English abstract in Mathematics Abstracts of Zentralblatt
[4]). With the help of Zhu Ping [10], we have been able to state Mo’s result,
and we propose a proof sketch.

Definition 10. Let x, x1, x2, . . . and y, y1, y2, . . . be two disjoint sets of
variables. LetMo be the smallest class of predicates over integers containing
the relationsx1+x2 = x3, x1×x2 = x3 (both for variables of typex only) and
Bit(y, x) (where the first variable is of typey, the secondof typex) and closed
under Boolean operations and (polynomially) bounded quantifications for
variables of type x only.

Note that a predicate inMo has two types of variables, which do not play
similar roles, and that Mo extends the rudimentary relations by the use of
Bit(y, x) atoms, which are not definable because y variables are not allowed
in the atomic formulas for addition and multiplication.

Theorem 11.

{spec(ϕ) | ϕ ∈ FO} = {∃y1 ≤ 2
xj1 . . . ∃yk ≤ 2

xjk

R(x, y1, . . . , yk) | k, j1, . . . , jk ≥ 1 and R ∈Mo}

Proof. It is a slightly modified version of the proof of Bennett’s theorem
for second-order spectra.

– First inclusion: ϕ has a model with x elements iff ∃y1 ≤ 2
xj1 . . . ∃yk ≤

2x
jk R(x, y1, . . . , yk) is true.

We encode a predicate symbol Y with arity j by the number y < 2x
j
in

the usual way. Hence, every atomic formula Y (x1, . . . , xj) is translated into
∃x′ < xj(Bit(y, x′) ∧ x′ = x1 + x2 · x + · · ·+ xj · x

j−1). Every first-order
quantification qxi inϕ is translated into the bounded quantification qxi < x.
The atomic formulas x1 = x2 in ϕ remain unchanged. Let R denote the
obtained formula with free variables x, y1, . . . , yk .

– Second inclusion: ∃y1 ≤ 2
xj1 . . . ∃yk ≤ 2

xjkR(x, y1, . . . , yk) is true iff
ϕ has a model with x elements.
First, we use three predicate symbols, namely ≤(2) which is bound to be
a linear ordering on the vertices, +(3) which is bound to be the associated
addition and×(3) which is bound to be the associated multiplication. Let us
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denote by Arithm1(≤,+,×) the first-order sentence expressing this require-
ment. Note that we may now use for free any usual arithmetic predicate on
numbers bounded by x.

Next, every free variable of type y in R and bounded by 2x
j
is translated

into a predicate symbol Y of arity j.
W.l.o.g. we may assume that all the bounded quantifications in R are of
type qx′ < xi for some i ≥ 1. The bounded quantification qx′ < xi in
R is simply translated into qx′1 . . . qx

′
i and x

′ is represented by the i-tuple
(x′1, . . . , x

′
i).

There are three types of atomic formulas in R. Let us first consider
formulas x1 + x2 = x3 and x1 × x2 = x3. Assume we have x1 < x

i1 ≤
xj , x2 < x

i2 ≤ xj , x3 < x
i3 ≤ xj , with j = max(i1, i2, i3). The variables

x1, x2, x3 correspond to the tuples (x
1
1 , . . . , x

j
1 ), (x

1
2 , . . . , x

j
2 ), (x

1
3 , . . . , x

j
3 )

(padding with as many 0s as necessary). This includes the case x < x2

so that x corresponds to (0, 1, 0, . . . , 0). Then x1 + x2 = x3 is changed

into Addj(x
1
1 , . . . , x

j
1 , x

1
2 , . . . , x

j
2 , x

1
3 , . . . , x

j
3 ) and x1 × x2 = x3 is changed

intoMultj(x
1
1 , . . . , x

j
1 , x

1
2 , . . . , x

j
2 , x

1
3 , . . . , x

j
3 ), where the formulasAddj and

Multj express addition andmultiplication on j-tuples inx-ary notation. The
case of atomic formulasBit(y, x′) is dealt with similarly. Assumewe havey <

2x
j
, and x′ < xi then there are three possibilities. If i < j, then Bit(y, x′)

is changed into Y (x′1, . . . , x
′
i , 0, . . . , 0). If i = j, then Bit(y, x

′) is changed
into Y (x′1, . . . , x

′
j). If i > j, then Bit(y, x

′) is changed into Y (x′1, . . . , x
′
j) ∧

xj+1 = 0 ∧ · · · ∧ xi = 0. Similarly, Bit(y, x) (which may also occur in R
because x is a free variable of type x) translates into Y (0, 1, 0, . . . , 0) if Y
has arity 2 at least and into 0 6= 0 (false) if Y is unary. Let us denote by R′

the first-order sentence thus obtained.
Finally, ϕ is Arithm1(≤,+,×) ∧R

′. ⊣

Note that, in order to make the proofs more similar to those of Bennett’s
theorem and help comparison, we have slightly modified the original state-
ment in two points. First, Mo uses functional vocabularies, which yields

bounds of type xx
j
for y type variables and the use of atomsDigitx(y, x

′) =
x′′ (meaning “the digit of rank x′ of y in x-ary notation is x′′”) instead of
Bit(y, x). Second, the relationR is originally described using Grzegorczyk’s
classes E0⋆ , E

1
⋆ or E

2
⋆ instead of Rud.

Finally, concerning Asser’s problem (so-called second Scholz problem
here), the author’s abstract [4] asserts that:

It is also shown that if all the functions in E0 can be enumerated by
a function in E2, then the complement of a certain finite spectrum
cannot be any finite spectrum. Hence, under such a condition, the
answer to the second Scholz problem is negative.

Hence, the conditional negative solution proposed here seems to be linked
to some separation of E0 and E2 via diagonalization, which seems unlikely
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(since the classical proof of separation of E i and E i+1 uses the bound on the
growth of the functions in E i).
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