
A Proofs of Propositions and Lemmas892

Lemma 1 The optimal maximum age must be greater than or equal to the maximum893

sustainable yield age, i.e n∗ ≥ nMSY .894

Proof of Lemma 1.895

From our assumptions on the age-yield function in section 2.1.2, for all yields less896

than the maximum yield, there are two ages that generate that yield. That is, for all897

ȳ ∈ (0, y(nMSY ) ), there exist n−
ȳ < nMSY < n+

ȳ , such that y(n−
ȳ ) = y(n+

ȳ ) = ȳ.898

On the graph of the isoquant, these two n values generate the same area, L̄, since899

L = Q̄
y(n)

so Q̄

y(n−
ȳ )

= Q̄

y(n+
ȳ )

= L̄.900

Now compare the costs of these two n values.

C(n−
ȳ , L̄)− C(n+

ȳ , L̄) =

(
Cf +

Cn

n−
ȳ

)
L̄+ CD y(n−

ȳ )L̄
1.5 −

(
Cf +

Cn

n+
ȳ

)
L̄− CD y(n+

ȳ )L̄
1.5

=

(
Cf +

Cn

n−
ȳ

)
L̄+ CD ȳL̄1.5 −

(
Cf +

Cn

n+
ȳ

)
L̄− CD ȳL̄1.5

= CnL̄

(
1

n−
ȳ

− 1

n+
ȳ

)
(> 0)

Hence for any level of yield, the cost minimizing maximum age is greater than or equal901

to the maximum sustainable yield age, i.e. n∗ ≥ nMSY .902

Lemma 2 The minimum of the isoquant is located at nMSY .903

Proof of Lemma 2.

The isoquant is defined by y(n)L = Q̄. This can be rewritten so that L is a function

of n, i.e. for a particular level of feedstock production L = Q̄
y(n)

. The minimum of

this function (i.e. the least quantity of land necessary to produce the desired quantity)
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occurs when the derivative of this function is set to zero.

dL

dn

∣∣∣∣
isoquant

=
−Q̄y′(n)

[y(n)]2
= 0 ⇔ y′(n) = 0

From the conditions imposed on the age-yield function in section 2.1.2 there is a unique904

maximum of the yield function located at nMSY . Hence the unique minimum of the905

isoquant function occurs at nMSY .906

Lemma 3 The minimum of the isocost curve is located at n < nMSY .907

Proof of Lemma 3.908

The isocost curve is defined by a level set of the cost function: C(n, L) = C̄. We909

wish to locate the set of local extrema of the isocost curve, where L is expressed as a910

function of n. This set is a subset of the critical points of dL
dn
.911

Totally differentiate the cost function:

[(
Cf +

Cn

n

)
+ 1.5CD y(n)L0.5

]
dL+

[
−Cn L

n2
+ CD y′(n)L1.5

]
dn = 0

Thus

dL

dn

∣∣∣∣
isocost

=
Cn L/n

2 − CD y′(n)L1.5(
Cf +

Cn

n

)
+ 1.5CD y(n)L0.5

= 0 ⇔ Cn L/n
2 = CD y′(n)L1.5

since all the terms in the denominator are non-negative. The only term in this last912

equality that can change sign is y′(n). All other terms are constrained to be non-913

negative. Hence the equality cannot be satisfied if y′(n) < 0, which occurs when914

n > nMSY . Also, if n = nMSY it must be that L = 0 for the equality to be satisfied.915

If L = 0 we have C(nMSY , 0) = 0, so for any positive level of cost (nMSY , 0) is not916

an element of the graph of the isocost function, and nMSY cannot be a critical point.917
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Hence for any positive level of cost, any extrema of the isocost function must occur918

when n < nMSY .919

Lemma 4 The isocost curve has a positive slope for all n ≥ nMSY .920

Proof of Lemma 4.921

This follows immediately from the proof of lemma 3 since the expression for the slope922

of the isoquant curve is strictly positive for all n > nMSY .923

924

Proof of proposition 1.925

The optimal n must be strictly greater than nMSY , i.e. n∗ > nMSY .926

The isocost curve has a positive slope for all n ≥ nMSY (lemma 4). The isoquant curve927

has a zero slope at nMSY (lemma 2). Hence the isocost and isoquant curves cannot be928

tangential at nMSY , so n∗ ̸= nMSY . Combining this with lemma 1 gives us the result.929

930

Lemma 5 Assumptions (1)-(4) imply that 0 < limn→∞
∫ n

0
f(a) da < ∞931

Proof of Lemma 5.

We can split limn→∞
∫ n

0
f(a) da in two by partitioning its domain:

lim
n→∞

∫ n

0

f(a) da = lim
n→∞

∫ k

0

f(a) da+ lim
n→∞

∫ n

k

f(a) da

=

∫ k

0

f(a) da+ lim
n→∞

∫ n

k

f(a) da

Now consider
∫ k

0
f(a) da. The age-yield function is bounded below by 0 by construction932

(f(a) represents a physical quantity). Assumptions (1)-(3) imply that f(a) is bounded933

above. Hence f(a) is bounded on the domain [0, k] for all k ∈ R>0. Thus 0 ≤934 ∫ k

0
f(a) da < ∞ since this is the integral of a bounded positive function on a finite935

domain.936
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We must consider two possibilities when analyzing limn→∞
∫ n

k
f(a) da: either

f(a) > 0 for all a ∈ R≥0, or there exists some k̂ ∈ R≥0 such that for all a > k̂

f(a) = 0. In the first case, we must establish that limn→∞ f(a) approaches zero fast

enough that limn→∞
∫ n

k
f(a) da is not infinite. Assumption (4) implies that there exist

k ∈ R≥0 and p > 1 such that for all a > k f(a) < 1
ap

(if such k and p did not exist,

limn→∞ a f(a) would either be strictly positive, or infinite). Thus

lim
n→∞

∫ n

k

f(a) da < lim
n→∞

∫ n

k

1

ap
da < ∞

since integrals of the form
∫∞
k

1
xp dx are convergent if and only if p > 1. In the937

second case, limn→∞
∫ n

k̂
f(a) da = 0, and limn→∞

∫ n

0
f(a) da =

∫ k

0
f(a) da. Thus938

0 ≤ limn→∞
∫ n

k
f(a) da < ∞939

Assumption 3 implies that f(a) is strictly positive on some subset of R≥0 with940

non-empty interior. Hence limn→∞
∫ n

0
f(a) da > 0941

Therefore 0 < limn→∞
∫ n

0
f(a) da < ∞942

943

Proof of proposition 2.944

Given assumptions (1)-(4), a solution, n∗, to the cost minimization problem exists such945

that n∗ ∈ (nMSY ,∞).946

Sketch of the proof: We have already demonstrated that n∗ must be greater than947

nMSY . At nMSY the slope of the isocost curve is strictly positive and the slope of the948

isoquant curve is zero. We show that as n approaches infinity, the slope of the isocost949

curve approaches zero, while the slope of the isoquant curve approaches a positive950

value. By continuity the slope functions must cross at least once, and hence there951

must exist at least one point where the isocost and isoquant curves are tangent to each952

other.953
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We begin by showing that the slope of the isocost curve approaches zero as n

approaches infinity. The slope of the isocost function when L is written as a function

of n (as derived in lemma 2)

dL

dn

∣∣∣∣
isocost

=
Cn L(n)/n

2 − CD y′(n)L(n)1.5(
Cf +

Cn

n

)
+ 1.5CD y(n)L(n)0.5

To take the limit of this expression as n approaches infinity, we need to know how

L(n) on the isocost function behaves as n approaches infinity. The isocost function is

defined as

C(n, L) = (Cf +
Cn

n
)L+ CD y(n)L1.5 = C̄

This implicitly defines L as a function of n.

C(n) = (Cf +
Cn

n
)L(n) + CD y(n)L(n)1.5 = C̄

Now we take the limit of this expression as n → ∞ and solve for the unknown value

L∞.

lim
n→∞

(Cf +
Cn

n
)L(n) + CD y(n)L(n)1.5 = C̄

⇒Cf L∞ = C̄

⇒L∞ =
C̄

Cf

A constant
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Returning to the derivative of the isocost function

lim
n→∞

dL

dn

∣∣∣∣
isocost

= lim
n→∞

Cn L(n)/n
2 − CD y′(n)L1.5(

Cf +
Cn

n

)
+ 1.5CD y(n)L(n)0.5

=
0− 0

Cf + 0 + 0

Since y(n) and y′(n) both approach 0,

and L(n) approaches a constant as n → ∞

=0

Now we show that under a certain condition the slope of the isoquant function ap-

proaches a positive constant as n → ∞. The isoquant function is given by y(n)L = Q̄

and can be rewritten as

L =
Q̄

1
n

∫ n

0
f(a) da

=
Q̄ n∫ n

0
f(a) da

The slope of the isoquant function is given by

dL

dn

∣∣∣∣
isoquant

=
Q̄

(∫ n

0
f(a) da− n f(n)

)[∫ n

0
f(a) da

]2
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The limit of the slope as n approaches infinity is

lim
n→∞

dL

dn

∣∣∣∣
isoquant

= lim
n→∞

Q̄
(∫ n

0
f(a) da− n f(n)

)[∫ n

0
f(a) da

]2

= Q̄
limn→∞

(∫ n

0
f(a) da− n f(n)

)
limn→∞

[∫ n

0
f(a) da

]2 since limn→∞
∫ n

0
f(a) da > 0

(Lemma 5)

= Q̄

+︷ ︸︸ ︷
lim
n→∞

∫ n

0

f(a) da− lim
n→∞

n f(n)

lim
n→∞

[∫ n

0

f(a) da

]2
︸ ︷︷ ︸

+

since

limn→∞
∫ n

0
f(a) da

> n f(n) = 0

and

0 < limn→∞
∫ n

0
f(a) da < ∞

(Lemma 5)

=⇒ 0 < lim
n→∞

dL

dn

∣∣∣∣
isoquant

< ∞

Now define a function that returns the difference in the slopes of the isocost and954

isoquant functions, h(n) = dL
dn

∣∣
isocost

− dL
dn

∣∣
isoquant

. Since both constituent functions are955

continuous on the the interval (nMSY ,∞), h(n) is also continuous on this interval. At956

the maximum yield age h(nMSY ) > 0 (from lemmas 2 and 4) and, as we have just957

shown, when n approaches infinity the limit of h(n) is strictly less than zero. Hence958

by the intermediate value theorem, there must exist some n∗ ∈ (nMSY ,∞) such that959

h(n) = 0, and the isocost and isoquant curves are tangent to one another.960

961

A.1 Proofs of comparative static results962

Proof of dn∗

dQ̄
< 0.

As processing facility size increases, the optimal age decreases, i.e. dn∗

dQ̄
< 0.
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Totally differentiating g(n, Q̄) (The derivative of the cost function when the constraint

is used to eliminate L — derived in the proof of proposition 2) gives us an expression

for the desired comparative static

dn∗

dQ̄
=

−gQ̄
gn

At an optimum the second order condition for a minimum must hold, so gn must be

positive. Hence

sign

(
dn∗

dQ̄

)
= − sign(gQ̄)

Differentiating g(n, Q̄) with respect to Q̄, and evaluating at the optimum yields

gQ̄ = −0.25 [y(n∗)]−1.5︸ ︷︷ ︸
+

y′(n∗)︸ ︷︷ ︸
−

Q̄−0.5︸ ︷︷ ︸
+

(> 0)

Hence

dn∗

dQ̄
< 0

963

964

965

Proof of y′′(n∗) < 0 ⇒ dL∗

dQ̄
> 0.966

The change in optimal growing region size with respect to a change in processing facility967

capacity is generally ambiguous, but if y′′(n∗) < 0, then increased processing facility968

capacity leads to increase growing region size, i.e. dL∗

dQ̄
> 0.969

970
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To analyze this comparative static of the constrained cost minimization problem971

using the substitution method we need to define the inverse yield function, g(y) =972

n (g−1(n) = y(n)). Since the yield function is not surjective, we can only define973

and analyze the inverse yield on a subset of the domain. Fortunately, as shown by974

proposition 1, the optimal n is found in the subset n > nMSY . On this subset the yield975

function is bijective, and we are guaranteed the existence of g(y).976

Using the constraint on processing facility capacity (y(n)L = Q̄ ⇒ y(n) = Q̄
L
and

n = g
(
Q̄
L

)
) we can rewrite the cost function as a function of growing region only.

C(n(L), L) =

Cf +
Cn

g

(
Q̄
L

)
L+ CD Q̄L0.5

The first order condition with respect to a minimum is

dC

dL
= Cf +

Cn

g

(
Q̄
L

) +

Q̄ Cn g
′
(

Q̄
L

)
L

[
g

(
Q̄
L

)]2 + (0.5)CD Q̄ L−0.5 = 0

Cross multiply by L

[
g

(
Q̄
L

)]2

h(L) = Cf L

[
g

(
Q̄

L

)]2
+Cn Lg

(
Q̄

L

)
+Cn Q̄ g′

(
Q̄

L

)
+(0.5)CD Q̄

[
g

(
Q̄

L

)]2
L0.5 = 0

Totally differentiating h(n, Q̄) gives us an expression for the desired comparative static

dL∗

dQ̄
=

−hQ̄

hL

At an optimum the second order condition for a minimum must hold, so gn must be
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positive. Hence

sign

(
dL∗

dQ̄

)
= − sign(hQ̄)

hQ̄ =(0.5)CD

[
g

(
Q̄

L

)]2
L0.5 (>) (16)

+ 2(0.5)CD Q̄ g

(
Q̄

L

)
g′
(
Q̄

L

)
L−0.5 (<) (17)

+ 2Cf g

(
Q̄

L

)
g′
(
Q̄

L

)
(<) (18)

+ 2Cng
′
(
Q̄

L

)
(<) (19)

+

Cn Q̄g′′
(

Q̄
L

)
L

(Ambiguous) (20)

If g′′
(

Q̄
L

)
< 0 at L∗, the term 20 in hQ̄ is negative.977

Aside: Rewriting this condition in terms of y(n∗)

This condition on the second derivative of the inverse yield function is not particularly

intuitive. We can rewrite this condition in terms of y(n∗) which makes it much easier

to understand. To do this we must rewrite this condition on the second derivative of an

inverse function in terms of the original function. The relationship between the second

derivative of a function and its inverse is

(f−1)′′(f(x)) =
−f ′′(x)

[f ′(x)]3

For the inverse yield function this becomes

g′′
(
Q̄

L

)
= g′′(y(n∗)) =

−y′′(n∗)

[y′(n∗)]3
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So

g′′
(
Q̄

L

)
< 0 ⇔ −y′′(n∗)

[y′(n∗)]3
< 0

Since y′(n∗) < 0 and the cubing operation preserves sign, this inequality is satisfied if978

and only if y′′(n∗) < 0.979

Returning to the proof

Given that y′′(n∗) < 0, we now show that term (16) plus term (17) is negative.

(16) + (17) = (0.5)CD

[
g

(
Q̄

L

)]2
L0.5 + 2(0.5)CD Q̄ g

(
Q̄

L

)
g′
(
Q̄

L

)
L−0.5

Extract common factors

(16) + (17) = (0.5)CD g

(
Q̄

L

)
L0.5︸ ︷︷ ︸

>0

[
g

(
Q̄

L

)
+ 2Q̄ g′

(
Q̄

L

)
L−1

]

Therefore

sign ((16) + (17)) = sign

(
g

(
Q̄

L

)
+ 2Q̄ g′

(
Q̄

L

)
L−1

)

Substitute the definition of Q̄ = y(n)L

g

(
y(n)L

L

)
+ 2y(n)Lg′

(
y(n)L

L

)
L−1

=g(y(n)) + 2y(n) g′(y(n))

=n+
2y(n)

y′(n)
since g(.) is inverse of y(.)
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Recall y′(n) = f(n)−y(n)
n

, so

n+
2y(n)

y′(n)
=n+

2n y(n)

f(n)− y(n)

=n

(
1 +

2y(n)

f(n)− y(n)

)
=n

(
1− 2y(n)

y(n)− f(n)

)

For n > nMSY , y(n) > f(n) ≥ 0, hence 2y(n)
y(n)−f(n)

> 1, so (16)− (17) < 0, hQ̄ < 0, and

dL∗

dQ̄
> 0.

Proof of remaining comparative statics.

See table on page 20

As explained in the proofs the previous two comparative statics, the sign of the com-

parative static of n∗ and L∗ with respect to any exogenous variable x can be found by

analyzing the sign of the relevant derivative of the first order condition, i.e.

sign

(
dn∗

dx

)
= − sign(gx) and sign

(
dL∗

dx

)
= − sign(hx)

We now present and sign the expressions of gx for the parameters of interest.

gCf
= −Q̄

−︷ ︸︸ ︷
y′(n∗)

y(n∗)2
(> 0)

gC∗
n
=

−Q̄

n∗ y(n∗)︸ ︷︷ ︸
−

[
1

n∗ +
y′(n∗)

y(n∗)

]
︸ ︷︷ ︸

+

(< 0) Since εy(n∗)>−1 ⇒ 1
n∗ +

y′(n∗)
y(n∗)

> 0 (Prop 2)
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gCD
= (−0.5)︸ ︷︷ ︸

−

Q̄1.5 y(n∗)−1.5 y′(n∗)︸ ︷︷ ︸
−

(> 0)

We now present and sign the expressions of hx for the parameters of interest.

hCf
= L(n∗)2 (> 0)

hCn = Ln∗ +
Q̄

y′ (n∗)
(< 0) Since εy(n∗)>−1 ⇒ Ln∗ + Q̄

y′(n∗)
< 0 (Prop 2)

hCD
= (0.5) (n∗)2 Q̄ L0.5 (> 0)

980

B Calibration of the Cost-Minimization Problem981

A piecewise linear spline function is used to estimate the age-yield function. With this982

functional form, the cost minimization problem has 9 parameters for which values must983

be found.984

B.1 Brazilian Sugarcane985

B.1.1 Piece-wise Linear Age-Yield Function: t1, tmax, tT , fmax986

The piece-wise linear age-yield function has four parameters. Parameter t1 designates987

the age at which the yield first becomes positive, tmax is the age at which maximum988

yield is achieved, and tT is the age at which yield returns to zero. During the increasing989

phase, between t1 and tmax the function is a positive affine and during the decreasing990
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phase, between tmax and tT , the function is negative affine.991

To estimate the parameters, we fit the linear-piecewise function to age-yield data992

obtained from Margarido and Santos (2012). Figure 6 shows the original data and the993

fitted age-yield function.994
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n-Region Yield

Figure 6: Fitting the piecewise-linear age-yield function to the Brazilian age-yield data
from Margarido and Santos (2012).

The parameter values obtained are t1 = 1, tmax = 2, tT = 13, and fmax = 120.995

B.1.2 Farm-gate Cost parameters: Cf , Cn996

We derived the feedstock cost parameters, Cf and Cn, from Teixeira (2013), and the997

delivery cost parameter, CD, from Crago et al. (2010).998

Teixeira (2013) presents an example operating budget for a 5-cut (6-age-class) sug-

arcane operation in São Paulo state, where they assume that 80 percent of the cane is

harvested burned, and 20 percent is harvested raw. Costs are divided into five cate-

gories, delivery costs, and four that account for farm gate feedstock costs: preparing the
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soil, planting, harvest, and maintenance of the ratoon. The total farm gate feedstock

costs for a 6 hectare operation is given by

Total Farm Gate
Feedstock Costs =Soil Preparation + Planting

+ 5× Harvest + 4× Ratoon maintenance

Since the total cost is given for 6 hectares, the total cost per hectare is

Total Farm Gate
Feedstock Costs
(Per Hectare)

=
1

6
× Soil Preparation +

1

6
× Planting

+
5

6
× Harvest +

4

6
× Ratoon Maintenance

Assuming that these cost parameters are constant with respect to the number of

age-classes we can write the total farm gate feedstock per hectare as a function of the

age structure

Farm gate
feedstock costs(n) =

1

n
× Soil Preparation +

1

n
× Planting

+
n− 1

n
× Harvest +

n− 2

n
× Ratoon maintenance

Substituting Teixeria’s numbers (in Reals) from the example budget, the cost func-

tion becomes

Farm gate
feedstock costs(n) =

656.07

n
+

4159.83

n
+

n− 1

n
× 1273.13 +

n− 2

n
× 986.54

Which on rearranging becomes

Farm gate
feedstock costs(n) = 2259.67 +

1569.69

n
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Hence for the simulations we use a baseline of Cf = 2259.67 and Cn = 1569.69.999

B.1.3 Delivery Cost parameter: CD1000

While Teixeira (2013) does include estimates of delivery costs, he does not include the1001

processing facility size that this example farm is feeding. We therefore turn to Crago1002

et al. (2010) to derive the delivery cost parameter.1003

The total delivery cost from a growing region is given by

Total
Delivery Costs =Average Cost Per Ton Kilometer

×Quantity Transported

× Average Delivery Distance

Let δ represent the average delivery cost per ton kilometer (i.e. the average cost to1004

transport one ton of feedstock one kilometer). Crago et al. (2010) report an average1005

transport cost of R$6.7 to transport a ton of feedstock from the farm gate to the mill.1006

The average delivery distance in this study was 22 kilometers so in this case δ = 0.3045.1007

The average mill size in Crago et al. (2010) is 4.8 million tons. Given our assumption1008

that the growing region produces the exact quantity required to feed the mill, this1009

implied that the average quantity of feedstock transported was 4.8 million tons.1010

When calculating the average delivery distance, we must make a distinction between1011

the area of land planted with sugarcane, L, and the area of the growing region, A.1012

Although we are assuming that the growing region is circular, it is not necessarily the1013

case that all the land is planted with sugarcane. In fact, relaxing the link between1014

planted area and growing region area is necessary to correctly calibrate the model to1015

the data in Crago et al. (2010).1016

Let d be the average density of sugarcane fields in the growing region, and A be
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the area of the growing region. Hence

L = d× A

The average delivery distance is given by the expression

rav =
2

3
rmax =

2

3

√
A

π

Since the average delivery distance, rav, from Crago et al. (2010) is 22km, the size of1017

the growing region is A = 342 119 ha.1018

We calculate the density parameter from

Total Quantity = Yield×Density×Growing Region Area

Crago et al. (2010) reports an average yield of 75 tons per hectare. So we calculate the

density as

4800000 = 75× d× 342119 ⇒ d = 0.187
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Hence the expression for the total delivery cost becomes

Total
Delivery Costs = δ ×Q× rav

= δ ×Q× 2

3

√
A

π

= δ ×Q× 2

3

√
L

d× π

=
2δ

3

√
1

d× π
×Q×

√
L

=
2δ

3

√
1

d× π
× y(n)L

√
L

=
2δ

3

√
1

d× π
× y(n)L1.5

= CD × y(n)L1.5

For the d and δ derived from Crago et al. (2010), CD = 0.2649.1019

B.2 Calibrated parameters and ranges used in simulations1020

Parameter Min Value Calibration Max Value
Yield t1 0 1 2

tmax t1 + 1 2 t1 + 5
tT tmax + 7 13 tmax + 13

fmax 60 120 180

Cost Cf 1129.84 2259.67 3389.51
Cn 784.85 1569.69 2354.54
CD 0.13 0.26 0.40

Capacity Q̄ 1 000 000 19 000 000 36 000 000

Table 3: Support for random parameters used in cost minimization. The parameters
are drawn from a uniform distribution centered on the Brazilian calibration
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