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I. Appendix A: Supplementary Proofs

A. Cobb-Douglas Case with Two Periods & Two Technologies

In this section, we consider a simpler case of our general model to better understand its impli-
cations. Firstly, we restrict the utility function to its Cobb-Douglas form which is simply the
case where the elasticity of substitution σ = 1. Secondly, we limit the number of periods and
technologies to 2. And, thirdly, we normalize the prices such that our representative consumer’s
income I is 1.

Equilibrium Results

Firstly, our demand equations simplify to:

Zt = αt/pt(1a)

Zs = αs/ps(2a)

where t and s are our two periods. Next, solving for the FOC condition for profit maximization,
we have:

p = ξ−1c =

−
c1 ξ2s − c2 ξ1s
ξ1s ξ2t − ξ1t ξ2s
c1 ξ2t − c2 ξ1t
ξ1s ξ2t − ξ1t ξ2s

(3a)
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And, substituting back into our demand equations, we find the equilibrium quantities for Z and
X.

Z =


αt (ξ1s ξ2t − ξ1t ξ2s)

c2 ξ1s − c1 ξ2s
αs (ξ1s ξ2t − ξ1t ξ2s)

c1 ξ2t − c2 ξ1t

(4a)

=⇒ X =


αt ξ2s

c1 ξ2s − c2 ξ1s
+

αs ξ2t
c1 ξ2t − c2 ξ1t

− αt ξ1s
c1 ξ2s − c2 ξ1s

− αs ξ1t
c1 ξ2t − c2 ξ1t

(5a)

We now derive the restrictions on the parameters ξ and c that ensure Z,X > 0. These restric-
tions are given by Lemma 1 from the Model Equilibrium section:

Lemma 1A: Assume that, for all technologies i and periods t, we have ξi,t > 0 , αt > 0 ,
and ci > 0. Then, for technology j to be economical, there need to exist a period s where the
following three conditions are met:

• ξj,s/cj > ξi,s/ci for all i

• ξj,s/ξj,t > ξi,s/ξi,t where i 6= j and t 6= s

• Period s demand needs to be sufficiently large, i.e., αs is large enough

In order to have X1, X2 > 0, we need to have the conditions of this lemma hold for both
technologies. This is equivalent to requiring one of two possible sets of symmetrical restrictions
on ξ and c which are detailed in Table 1. The first set, Case 1, assumes that technology 2 is
more cost efficient in period t, while the second set, Case 2, assumes that technology 1 is more
cost efficient in period t. If a given set of parameters do not fall into either case, we are left with
an edge case where one of the technologies is not used. Additionally, these inequalities compare
two types of efficiency – output efficiency and cost efficiency; we define output efficiency as
electricity output per unit of input and cost efficiency in terms of electricity output per dollar
of input. We refer to the last set of restrictions as mixed, because they relate both cost and
output efficiency.

[INSERT Table A.1: Parameter Restrictions for Z,X > 0]

Proof: We aim to derive conditions on ξ and c required to have positive Z and X, so we begin
by assuming Z,X > 0. Second, since the equations so far are symmetrical, note that there
be two symmetrical sets of potential restrictions we must impose on the parameters. Thus,
we first assume the inequality c1ξ2t − c2ξ1t > 0 to restrict ourselves to one of the two cases.
This assumption results in the denominator of Zs being positive. Hence, we must also have
ξ1sξ2t − ξ2sξ1t > 0 for Zs > 0. This same term appears in the numerator for Zt, hence its
denominator must be positive: c2ξ1s − c1ξ2s > 0. Now, rewriting these inequalities, we have:

c1ξ2t − c2ξ1t > 0 =⇒ ξ2t/c2 > ξ1t/c1

c2ξ1s − c1ξ2s > 0 =⇒ ξ1s/c1 > ξ2s/c2

ξ1sξ2t − ξ2sξ1t > 0 =⇒ ξ1s/ξ1t > ξ2s/ξ2t

=⇒ ξ1t/ξ1s < ξ2t/ξ2s

Note that the latter two restrictions can be derived from the former two. Additionally, we
implicitly assume that we have ξ > 0. However, this is not necessary assumption, since ξ
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invertible only requires ξ1tξ2s > 0 or ξ1sξ2t > 0. Instead, we may leave the latter two inequalities
in the form ξ1sξ2t > ξ2sξ1t which remains valid when values of ξ are equal to 0. Lastly, the
mixed efficiency restrictions come from X > 0. To start, for X1, we have:

X1 > 0 =⇒ (αtξ2s)(c1ξ2t− c2ξ1t) + (αsξ2t)(c1ξ2s − c2ξ1s) < 0

=⇒ (αtξ2s)(c1ξ2t− c2ξ1t) < (αsξ2t)(c2ξ1s − c1ξ2s)
=⇒ (ξ2s/ξ2t) < (αs(c2ξ1s − c1ξ2s))/(αt(c1ξ2t − c2ξ1t))
=⇒ (ξ2s/ξ2t) < (αs(ξ1s/c1 − ξ2s/c2))/(αt(ξ2t/c2 − ξ1t/c1))

Similarly, for X2, note that only the numerators differ; ξ2s is replaced with −ξ1s and ξ2t is
replaced with −ξ1t. Hence, we have

X2 > 0 =⇒ (αtξ1s)(c1ξ2t− c2ξ1t) + (αsξ1t)(c1ξ2s − c2ξ1s) > 0

=⇒ (ξ1s/ξ1t) > (αs(ξ1s/c1 − ξ2s/c2))/(αt(ξ2t/c2 − ξ1t/c1))

To double check, note that combining the inequalities from X1 > 0 and X2 > 0 leads to
ξ2s/ξ2t < ξ1s/ξ1t. This is precisely the earlier result obtained from Z > 0. Again, it is important
to note that we assume ξ > 0 for to simplify the inequalities of X1 > 0 and X2 > 0 . Otherwise,
we may leave the inequalities in their original forms and they are still valid when ξ1tξ2s > 0 or
ξ1sξ2t > 0.

Let us consider the set of restrictions belonging to Case 1. The first inequality, our initial
assumption, states that technology 2 is relatively more cost efficient in period t. The second
inequality claims technology 1 is relatively more cost efficient in period s. The implications are
fairly straightforward; if a technology is to be used, it must have an absolute advantage in cost
efficiency in at least one period. The third condition states that the relative output efficiency of
technology 2 is greater than that of the first technology in period t. And, the fourth condition
makes a symmetrical claim but for the technology 1 and period s. These latter two restrictions
regarding output efficiency enter Z and X through p; they’re simply a restatement of the
invertibility of ξ and can also be derived through the cost efficiency restrictions.

The mixed efficiency restrictions are less intuitive. Firstly, note that (ξ1s/c1 − ξ2s/c2) is
the difference in cost efficiency for the two technologies in period s; this is equivalent to the
increase in Zs caused by shifting a marginal dollar towards technology 1. Similarly, the bottom
term (ξ2t/c2 − ξ1t/c1) represents the change in Zt caused by shifting a marginal dollar towards
technology 1. Both these terms are then multiplied by the share parameter of the utility function
for their respective time periods. Furthermore, note that αt (αs) is the elasticity of utility with
respect to Zt (Zs). Hence, in total, the mixed efficiency restrictions relate the relative cost
efficiencies of each technology with their output efficiency and the demand for energy. So, for
example, suppose that consumers prefer, ceteris paribus, that nearly all their electricity arrives
in period t. This would imply αt is arbitrarily large which results in the left-hand side of the
fraction becoming arbitrarily small. This violates the first mixed efficiency restriction but not
the second; consequently, use of the first technology, which is less cost efficient in period t,
approaches 0.

In more practical terms, suppose that our first technology is coal power and the latter is
solar power. Although coal power is dispatchable, it does not easily ramp up or down within
a day; hence, it is reasonable to apply our model where capacities are fixed over time so long
as our time frame is sufficiently short. Hence, we now assume periods t and s represent the
peak and off-peak for a day. And, we expect that there is more available solar radiation during
peak hours than off-peak hours, since peak hours are usually during the middle of the day. This
implies that the output efficiency of solar power is higher in period t due to more available
solar radiation. Additionally, since the energy output of a unit of coal is independent of time,
we know that the output efficiency of coal is constant. In total, this implies that we have met
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the output efficiency restrictions, since we have ξ2t/ξ2s > ξ1t/ξ1s. Next, we can reasonably
assume that coal is more cost efficient than solar in the off-peak period when there is less sun;
hence, the second cost efficiency restriction is satisfied. Then, for there to be an incentive to
use solar power, we must satisfy the first cost-efficiency condition; that is, solar needs be cost
efficient during peak hours otherwise we hit an edge case where no solar is employed. And,
finally, solar must also satisfy the mixed efficiency condition, which essentially implies that
there must be sufficient demand for electricity during period t, when solar is more effective, for
it to be a feasible technology. So, overall, for a technology to be economical, it must meet three
conditions: it must the most cost efficient technology for a particular period, it must have a
comparative advantage in output efficiency in the same period, and there must be a sufficient
amount of demand in that period.

Comparative Statics

The comparative statics are similarly intuitive. The equilibrium quantity of a technology is
increasing with its output efficiency and decreasing with its cost per unit. Additionally, the
equilibrium quantities for a particular technology move in the opposite direction with respect
to the output efficiency and cost of the other technologies. For a practical example, consider
again coal and solar power from before. An increase in the output efficiency of solar or a
decrease in solar power’s cost will reduce the optimal quantity of coal power. Likewise, as coal
power’s efficiency improves, it’s adoption rises. To find the effects of α on X, we must assume
one of the cases of restrictions shown in Table 1. So, again, let us assume Case 1 is true; this
implies that X2 is the most cost efficient technology in period t and likewise for X1 in period
s. Firstly, note that α determines the demand for electricity in a period. Hence, when αt rises,
we see the optimal level of X2 rise as well; likewise, X1 rises with αs. In short, the optimal
quantity of a technology rises linearly with the demand for electricity in the period it specializes
in. Moreover, these relationships are reversed with respect to demand in each technology’s
suboptimal period. So, for example, we would expect the use of solar energy to rise when the
demand for electricity during peak hours rises, and it would fall when demand for energy in the
off-peak rises. On the other hand, use coal power would rise with off-peak demand and fall with
peak demand. This concept carries through for the comparative statics of Z. When the output
efficiency of technology 1 rises or its cost falls, we see output Zs rise and output Zt fall. This
is because technology 1 is optimal in period s given the Case 1 restrictions. Likewise, we see
symmetrical results for the output with respect to the cost and output efficiency of technology
2; improvements in the efficiency of X2 result in greater output in Zt and smaller output in Zs.
In total, we have Proposition 1:

Proposition 1A: Suppose that the conditions of Lemma 1 hold for each technology, so we are
not in an edge case. Then,

• The equilibrium quantity of a technology is increasing with its output and decreasing with
its cost; at the same time, it is decreasing with the output of other technologies and in-
creasing with the cost of other technologies.

• Also, suppose that some technology i is the most cost efficient in period t. Then, its
equilibrium quantity is increasing with respect to the demand parameter αt and decreasing
with respect to the demand parameters in other periods.

• Furthermore, again assuming technology i is the most cost efficient in period t, the com-
parative statics of Zt and Xi are equivalent.
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Proof: We begin by deriving the comparative statics of the cost and efficiency parameters with
respect to X. Firstly, we take derivatives with respect to the cost vectors:

∂X1

∂c
=


−αt ξ2s2

(c1 ξ2s − c2 ξ1s)2
− αs ξ2t

2

(c1 ξ2t − c2 ξ1t)2
< 0

αt ξ1s ξ2s

(c1 ξ2s − c2 ξ1s)2
+

αs ξ1t ξ2t

(c1 ξ2t − c2 ξ1t)2
> 0


∂X2

∂c
=


αt ξ1s ξ2s

(c1 ξ2s − c2 ξ1s)2
+

αs ξ1t ξ2t

(c1 ξ2t − c2 ξ1t)2
> 0

−αt ξ1s2

(c1 ξ2s − c2 ξ1s)2
− αs ξ1t

2

(c1 ξ2t − c2 ξ1t)2
< 0


The first and second terms of ∂X1/∂c1 are clearly both negative independent of the restrictions
on the parameters. Similarly, all terms of ∂X1/∂c2 are positive independent of any restrictions.
Since the structure of this problem is symmetrical with respect to X1 and X2, the same compar-
ative statics apply but in reverse for X1. Next, we derive comparative statics for each element
of ξ.

∂X1

∂ξ
=


αs c2 ξ2t

(c1 ξ2t − c2 ξ1t)2
> 0

αt c2 ξ2s

(c1 ξ2s − c2 ξ1s)2
> 0

−αs c2 ξ1t
(c1 ξ2t − c2 ξ1t)2

< 0
−αt c2 ξ1s

(c1 ξ2s − c2 ξ1s)2
< 0


∂X2

∂ξ
=


−αs c1 ξ2t

(c1 ξ2t − c2 ξ1t)2
< 0

−αt c1 ξ2s
(c1 ξ2s − c2 ξ1s)2

< 0

αs c1 ξ1t

(c1 ξ2t − c2 ξ1t)2
> 0

αt c1 ξ1s

(c1 ξ2s − c2 ξ1s)2
> 0


Again, the signs are fairly straightforward. The optimal quantity of X1 increases with its output
efficiency in both periods; however, it decreases with the output efficiency of X2 in both periods.
Similarly, symmetrical results are shown for X2. Next, we study the effects of α on X; this
requires us to place some restrictions on the parameters, so we use those belonging to Case 1
in Table 1. Then, we have

∂X1

∂α
=


ξ2s

c1 ξ2s − c2 ξ1s
< 0

ξ2t
c1 ξ2t − c2 ξ1t

> 0


∂X2

∂α
=


−ξ1s

c1 ξ2s − c2 ξ1s
> 0

−ξ1t
c1 ξ2t − c2 ξ1t

< 0


Note that our restrictions imply that c1ξ2t − c2ξ1t > 0 and c2ξ1s − c1ξ2s > 0. From here, the
intuition is clear; we assume that X2 is more cost efficient in period t, so increases in demand
during period t (caused by increases in αt) will increase the optimal quantity of X2. And, the
same applies to X1 with respect to period s and αs. Again, due to symmetry, the statics are
reversed when the technologies are flipped. Similarly, the signs would also be flipped if we used
the restrictions given by Case 2 instead.

Next, we derive the comparative statics for Z. From our restrictions, we have ξ1sξ2t > ξ2sξ1t.
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All the results above follow from this inequality and the cost efficiency restrictions.

∂Zt
∂c

=


αt ξ2s (ξ1s ξ2t − ξ1t ξ2s)

(c1 ξ2s − c2 ξ1s)2
> 0

−αt ξ1s (ξ1s ξ2t − ξ1t ξ2s)
(c1 ξ2s − c2 ξ1s)2

< 0


∂Zs
∂c

=


−αs ξ2t (ξ1s ξ2t − ξ1t ξ2s)

(c1 ξ2t − c2 ξ1t)2
< 0

αs ξ1t (ξ1s ξ2t − ξ1t ξ2s)
(c1 ξ2t − c2 ξ1t)2

> 0


∂Zt
∂ξ

=


αt ξ2s

c1 ξ2s − c2 ξ1s
< 0

−αt ξ2s (c1 ξ2t − c2 ξ1t)
(c1 ξ2s − c2 ξ1s)2

< 0

−αt ξ1s
c1 ξ2s − c2 ξ1s

> 0
αt ξ1s (c1 ξ2t − c2 ξ1t)

(c1 ξ2s − c2 ξ1s)2
> 0


∂Zs
∂ξ

=


−αs ξ2t (c1 ξ2s − c2 ξ1s)

(c1 ξ2t − c2 ξ1t)2
> 0

αs ξ2t
c1 ξ2t − c2 ξ1t

> 0

αs ξ1t (c1 ξ2s − c2 ξ1s)
(c1 ξ2t − c2 ξ1t)2

< 0
−αs ξ1t

c1 ξ2t − c2 ξ1t
< 0


Again, recall that we have c1ξ2t − c2ξ1t > 0 and c2ξ1s − c1ξ2s > 0; the rest follows. And finally,
we have:

∂Zt
∂α

=

−ξ1s ξ2t − ξ1t ξ2sc1 ξ2s − c2 ξ1s
> 0

0


∂Zs
∂α

=

 0
ξ1s ξ2t − ξ1t ξ2s
c1 ξ2t − c2 ξ1t

> 0


These are fairly trivial, since Zt = αt/pt (and Zs = αs/ps) and prices are positive.

Elasticity of Substitution

We derive the elasticity of substitution between technologies in this two-period, two-technology
setting. By definition, the elasticity of substitution is

(6a) e12 ≡
∂ log(X1/X2)

∂ log(c2/c1)
=
∂X1/X2

∂(c2/c1)
· c2/c1
X1/X2

=
∂X1/X2

∂c2
· ∂c2
∂(c2/c1)

· c2/c1
X1/X2

Note that

X1/X2 = −αs c1 ξ2s ξ2t − αs c2 ξ1s ξ2t + αt c1 ξ2s ξ2t − αt c2 ξ1t ξ2s
αs c1 ξ1t ξ2s − αs c2 ξ1s ξ1t + αt c1 ξ1s ξ2t − αt c2 ξ1s ξ1t

(7a)

∂X1/X2

∂c2
=

αs αt c1 (ξ1s ξ2t − ξ1t ξ2s)2

(αs c1 ξ1t ξ2s − αs c2 ξ1s ξ1t + αt c1 ξ1s ξ2t − αt c2 ξ1s ξ1t)2
(8a)

∂c2
∂(c2/c1)

=

(
∂(c2/c1)

∂c2

)−1
= c1(9a)

Thus, the elasticity of substitution is
(10a)

e12 =
−αs αt c1 c2 (ξ1s ξ2t − ξ1t ξ2s)2 (αs c1 ξ1t ξ2s − αs c2 ξ1s ξ1t + αt c1 ξ1s ξ2t − αt c2 ξ1s ξ1t)−1

(αs c1 ξ2s ξ2t − αs c2 ξ1s ξ2t + αt c1 ξ2s ξ2t − αt c2 ξ1t ξ2s)
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The mixed efficiency restrictions (either case) from Table 1 imply that (αs c1 ξ2s ξ2t−αs c2 ξ1s ξ2t+
αt c1 ξ2s ξ2t −αt c2 ξ1t ξ2s) and (αs c1 ξ1t ξ2s −αs c2 ξ1s ξ1t +αt c1 ξ1s ξ2t −αt c2 ξ1s ξ1t) have oppo-
site signs. Then, including the negative sign on the first term, the elasticity of substitution is
positive as expected.

At this point, we cannot further simplify the elasticity of substitution. Furthermore, this
expression and how it changes with the given parameters is not intuitive. Hence, we primarily
rely on numerical simulations in the main text. However, in the following two subsections, we
look at two special cases for a better theoretical intuition of this elasticity.

B. Equilibrium in the Case of σ →∞

Here, we consider what the competitive equilibrium looks like when σ →∞. This corresponds
to the case where electricity consumption in each period is a perfect substitute for electricity
consumption in the other periods.

Recall that utility is given by

(11a) U =

(∑
t

αtZ
φ
t

)1/φ

Since σ = 1/(1− φ), we have φ→ 1 which implies that the utility function becomes

(12a) U =
∑
t

αtZt = αT ξTX

Utility here is simply a weighted sum of total electricity consumption. In other words, ZT is a
prefect substitute for Zs for all periods t, s.

In order to find the equilibrium solution, we can maximize utility directly with respect to
X. To see why, first note that we have assumed that markets are perfectly competitive with no
frictions; also, the utility function satisfies local nonsatiation. With these assumptions, we can
apply the First Welfare Theorem which states that the market equilibrium will be equivalent
to the social planner’s solution. Consequently, we can abstract from the firm problem and set
X directly in a way that maximizes consumer utility.

Firstly, we can see that the marginal utility of each technology is given by
∑

t αtξi,t. This
is simply the sum of electricity output of each input across periods, weighted by the share
parameter. Next, the cost of each input i is ci by definition. Therefore, the total utility from
spending all of income I into a particular input is given by (I/ci)

∑
t αtξi,t. Now, consider the

set

(13a) S = arg max
i

∑
t

αtξi,t/ci

This set contains the indices of the inputs that have the maximal cost-adjusted marginal utility.
The optimal solution for X is defined by the set

(14a) W = {X : cTX = I , X ≥ 0 , and (xi > 0 =⇒ i ∈ S) ∀i}

This set contains vectors that define bundles of inputs that maximize utility. The intuition
behind this result is based on the linearity of utility. This causes the total utility offered by
a particular input to be equal to its quantity multiplied by its marginal utility. Consequently,
since each input’s marginal utility is a constant, exogenous value, the optimal bundle of inputs
consists of a convex combination of those inputs in S. Specifically, the indices in S denote the
technologies that have maximial cost-adjusted marginal utility, so these inputs will individually
and in combination maximize consumer utility against the budget constraint. This gives us the
last proposition:

Proposition 2A: Suppose that we have σ →∞. Then,
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• Electricity consumption in each period t is a perfect substitute for electricity consumption
in period s for all periods t, s;

• The utility function takes on the linear form U =
∑

t αtZt; and

• The set of optimal bundles of inputs X is given by

W = {X : cTX = I , X non-negative , and (xi > 0 =⇒ i ∈ S) ∀i}

where S = arg max
i

∑
t

αtξi,t/ci

S represents the set of indices for technologies that have maximal cost-adjusted marginal utility.
In other words, any vector of inputs X consisting of a feasible (non-negative X) and affordable
(cTX = I) combination of technologies in S represent a valid equilibrium solution. Furthermore,
the set Y = {Z : Z = ξTX ∀X ∈ W} contains all possible equilibrium values of electricity
output.

Proof: Consider an arbitrary input bundle Y 6∈ W where Y ≥ 0 (feasible) and cTY ≤ I
(affordable). Note that Y 6∈W implies we have either cTY < I or there exists some i such that
yi > 0 but i 6∈ S.

In the first case, Y does not satisfy the budget constraint with equality. Consequently, it is
possible to raise some element of Y by ε while maintaining the budget constraint and achieving
higher utility. Thus, Y cannot be optimal. That is, utility is strictly monotonic with respect to
each input, so the budget constraint must be satisfied with equality at an optimal solution.

So, alternatively, that Y satisfies the budget constraint with equality but does not satisfy
the second condition. Specifically, let j be such an index where yj > 0 but j 6∈ S. Now, pick
arbitrary k ∈ S, and define

Y∗ = Y − ejyj + ekyj(cj/ck)

where ej is a unit vector which contains 0 in all entries except the j’th where entry which is equal
to 1. Note that subtracting ejyj reduces the cost by cjyj , while adding ekyj(cj/ck) increases
the cost by yjcj . Consequently, we have cTY∗ = I. Furthermore, note that subtracting ejyj
still means that the j’th input is feasible since it will then be 0. And, the k’th input will still be
feasible because adding ekyj(cj/ck) means it will remain non-negative. Next, in terms of utility,
we have

U(Y∗) =
∑
t

αt

(∑
i

ξi,t(Y − ejyj + ekyj(cj/ck))i

)

=
∑
t

αt

(∑
i

ξi,tyi

)
−
∑
t

αtξj,tyj +
∑
t

αtξk,tyj(cj/ck)

Note that ∑
t

αtξk,tyj(cj/ck) >
∑
t

αtξj,tyj

⇐⇒
∑
t

αtξk,t/ck >
∑
t

αtξj,t/cj

The last inequality must be true given that k ∈ S but j 6∈ S. Therefore, we have

−
∑
t

αtξj,tyj +
∑
t

αtξk,tyj(cj/ck) > 0

=⇒ U(Y∗) > U(Y)
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Thus, all feasible and affordable vectors of inputs Y 6∈W must be suboptimal, since there exists
another feasible and affordable vector of inputs that offers higher utility.

Now, we show that every element in W gives the same amount of utility. Consider an
arbitrary vector Y ∈W . Each input gives a constant marginal utility of

∑
t αtξi,t. Since utility

is linear, the total utility offered by Y is

U(Y) =
∑
i

(∑
t

αtξi,t

)
yi

=
∑
t

αtξ1,ty1 + · · ·+
∑
t

αtξn,tyn

where n is the number of inputs. By definition, we have yi > 0 =⇒ i ∈ S, so we have
i 6∈ S =⇒ yi = 0. Thus, we can simplify the utility to

U(Y) =
∑
t

αtξs1,tys1 + · · ·+
∑
t

αtξsm,tysm

where m is the number of elements in S. If m = 1, there is only one element in S, so there is
only one element in W and we are done; otherwise, assume that m > 1. Now, suppose that we
reduce element sm of Y to 0 and shift the additional income left over to the first element s1.
This gives us

Y(m) = Y − esmysm + es1ysm(csm/cs1)

Again, linear utility gives us

U(Y(m)) = U(Y)− U(esmysm) + U(es1ysm(csm/cs1))

And, since s1, sm ∈ S, we have ∑
t

αtξs1,t/cs1 =
∑
t

αtξsm,t/csm∑
t

αtξs1,t(csm/cs1) =
∑
t

αtξsm,t∑
t

αtξs1,t(csm/cs1)ysm =
∑
t

αtξsm,tysm

U(es1ysm(csm/cs1)) = U(esmysm)

Therefore, U(Y(m)) = U(Y). Furthermore, it is easy to see that Y(m) is feasible (elements
non-negative) and satisfies the budget constraint by an argument similar to one used earlier.
Next, if we repeat this procedure m − 1 times, we arrive at U(Y(1)) = U(Y) where Y(1) is
a bundle consisting only of the first input. Note that Y(1) must satisfy the budget constraint
with equality, so it must be equal to es1(I/cs1). In short, we have shown that every vector in
W offers utility U(es1(I/cs1)) =

∑
t αtξs1,t(I/cs1).

Overall, we have shown that all bundles in W offer the same utility, and all feasible and
affordable bundles not in W offer strictly less utility than those in W .

C. CES Production as a Special Case

Our framework nests the case where there exists a CES production structure between each
technology. This occurs when each technology can only produce in a single, unique period; note
that this is not a realistic scenario. For instance, this would occur if we had one technology that
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can only output electricity during the day and another that only outputs electricity at night.
Anyways, in this case, the CES production function’s elasticity parameter will be equivalent
to that of the consumer’s CES utility function – the intertemporal elasticity of substitution for
electricity consumption.
Proof: Firstly, note that we can reindex our technologies such that ξ is diagonal, since each
technology only produces in one period. Hence, without loss of generality, we have diagonal ξ.
Next, we may say that the electricity output in period i is given by Zi = ξi,iXi. Now, recall that
the FOC for profit-maximization is given by p = ξ−1c, hence we have pi = ci/ξi,i. Combining
these equations with the FOC for utility maximization, we have:

Zi
Zj

=

(
αipj
αjpi

)σ
=⇒ Xi

Xj
=

(
αipjξ

1/σ
j,j

αjpiξ
1/σ
i,i

)σ

=⇒ Xi

Xj
=

(
αicjξ

1/σ−1
j,j

αjciξ
1/σ−1
i,i

)σ
By definition, the elasticity of substitution between any two, arbitrary technologies i and j is
constant. Moreover, it can be shown that this FOC can be rearranged to give the following
demand equation for each technology i

Xi =

(
βi
ci

)σ I
P

P =
∑
t

βσi p
1−σ
i

where βi = αiξ
−φ
i,i , σ = 1/(1 − φ), and I is the consumers income. So, in total, accounting for

both the producer and consumer’s objectives, we are essentially solving for:

V =

(∑
i

βiX
φ
i

)(1/φ)

such that I =
∑
i

ciXi

This is a standard CES function.

D. Asymptotic Elasticity of Substitution

Suppose we are in a two-period, two-technology setting with σ = 1. Furthermore, suppose that
the output of our first technology is constant in both periods, ξ1t = ξ2t, but the output of our
second technology is zero in the second period ξ2s = 0. And, assume we have the parameter
restrictions mentioned in earlier in Table 1 that ensure X,Z > 0. This is a simple case where
we have (1) a constant output technology and (2) a highly intermittent technology. We now
show that, in this case, the elasticity of substitution approaches 1 as the relative cost of our
second technology c2/c1 approaches 0. Furthermore, we show that the elasticity of substitution
between X1 and X2 is a linear function of X1/X2.
Proof: Firstly, note that from earlier we have:

X =


αt ξ2s

c1 ξ2s − c2 ξ1s
+

αs ξ2t
c1 ξ2t − c2 ξ1t

− αt ξ1s
c1 ξ2s − c2 ξ1s

− αs ξ1t
c1 ξ2t − c2 ξ1t
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Let ξ1 = ξ1t = ξ2t and note that ξ2s = 0. Hence, we have:

X =


αs

c1 − c2
αt
c2
− αs
c1 − c2


Now, note that X1/X2 is given by:

X1

X2
=

αs c2
αt c1 − c2

where αt + αs = 1 by definition (see the Consumer subsection of the Electricity Market Equi-
librium section). Next, using the earlier result, we have

e12 =
−αs αt c1 c2 (ξ1s ξ2t − ξ1t ξ2s)2 (αs c1 ξ1t ξ2s − αs c2 ξ1s ξ1t + αt c1 ξ1s ξ2t − αt c2 ξ1s ξ1t)−1

(αs c1 ξ2s ξ2t − αs c2 ξ1s ξ2t + αt c1 ξ2s ξ2t − αt c2 ξ1t ξ2s)

=
−αs αt c1 c2 (ξ1sξ2t)

2(−αsc2ξ1sξ1t + αtc1ξ1sξ2t − αtc2ξ1sξ1t)−1

(αsc2ξ1sξ2t)

=
−αt c1 ξ1t

αs c2 ξ1t − αt c1 ξ1t + αt c2 ξ1t

=
αt c1

αt c1 − c2

Finally, it is simple to see that:

lim
c2/c1→0

∂ log(X1/X2)

∂ log(c2/c1)
= 1

Additionally, we can see that the elasticity of substitution between X1 and X2 is linear with
respect to X1/X2. That is, note that we may rewrite the elasticity above as:

∂ log(X1/X2)

∂ log(c2/c1)
=

αt c1
αt c1 − c2

=

(
αs c2

αt c1 − c2

)(
αtc1
αsc2

)
=

(
X1

X2

)(
αtc1
αsc2

)
Hence, we have shown that e can be written as a linear function of X1/X2.

11



II. Appendix B: Supplementary Figures

Figure 1 is a robustness check for fit (3) of Table 2 from the main text. We regress fit (3) on
subsamples where each state in our dataset is dropped out. In this figure, we plot the regression
results; specifically, the estimated coefficients and the inverse of their standard error.

[INSERT Figure B.1: Partially Linear IV Regression Estimates with State Drop Outs]

Figure 2 below models the elasticity of substitution for two technologies that are close to
being non-intermittent. That is, for technology 1, we have ξ1 = (0.95, 1), and, for technology
2, we have ξ2 = (1, 0.95). We further set their costs, c1 and c2, to equal values and allow
αt = αs. This example illustrates how the elasticity of substitution between technologies e1,2
would appear with minimal intermittency. We can see that the e1,2 takes on a u-shape.

[INSERT Figure B.2: The Elasticity of Substitution Between Two Minimally Intermittent
Technologies]

Figure 3 models the elasticity of substitution between coal and a hypothetical renewable
technology. This technology is parametrized equivalently to solar except that we have ξ2 =
(0.1, 1). In other words, it produces most of its energy during the off-peak rather than peak.
This figure illustrates how the hockey-stick shape of e persists even in a model where the
intermittent renewable technology does not primarily generate energy during the peak period.

[INSERT Figure B.3: The Elasticity of Substitution Between Coal and a Hypothetical
Renewable Technology]

Additionally, we repeat the exercise done to produce Figure 4 from the main text but with
ξ2 = (1, 0.01). That is, we assume here that solar is far more intermittent. We plot our results
below in Figure 4.

[INSERT Figure B.4: The VES Approximation of the Elasticity of Substitution between
Highly Intermittent Solar and Coal]
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III. Appendix C: Econometric Methodology

We aim to estimate σ in the following set of equations:

ln(Zt,i/Zs,i) = −σ ln(Pt,i/Ps,i) + f (At,i, As,i,∆t,s) + ui

ln(Zt,i/Zs,i) = β ln(Pt,i/Ps,i) + g (ln(Ct,i/Cs,i)) + vi

We base our estimation procedure on ?. To start, for simplicity, let us rewrite the above set of
equations as:

Q = Pβd + f(T ) + u

Q = Pβs + g(W ) + v

where βd is the parameter of interest. Furthermore, we assume that

E(u |T,W ) = 0

E(v |T,W ) = 0

Next, with α ≡ (βd − βs)−1 and assuming βd 6= βs, note that:

P = (βd − βs)−1 (g(W )− f(T ) + v − u)

E(P |T ) = α (E(g(W )|T )− f(T ))

E(P |W ) = α (g(W )− E(f(T )|W ))

E(P |T,W ) = α (g(W )− f(T ))

Now, differencing Q with its conditional expectation, we have:

Q− E(Q |T ) = (P − E(P |T ))βd + (f(T )− E(f(T ) |T )) + (u− E(u|T ))

= (α(g(W )− E(g(W )|T )))βd + 0 + u

Furthermore, it can be shown that:

E(P |T,W )− E(P |T ) = α(g(W )− E(g(W )|T ))

Hence, we can regress

(Q− E(Q |T )) = (E(P |T,W )− E(P |T ))βd + ud

to estimate βd. But, we cannot know the true values of these expectations. Hence, we estimate
each conditional expectation in this regression by using Nadaraya–Watson kernel regressions.
This requires us to trim the data, so we drop 1% of outliers of Q,P, T , and W . Additionally,
we use the ? rule-of-thumb to select bandwidths. After estimating E(Q |T )), (E(P |T,W ), and
E(P |T )) through kernel regressions, we finally regress

(Q− Ê(Q |T )) = (Ê(P |T,W )− Ê(P |T ))βd + ud

to obtain β̂d. Recall the earlier substitution, Q = ln(Zt,i/Zs,i) and P = ln(Pt,i/Ps,i). So, we
have −βd being σ, the intertemporal elasticity of substitution.
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IV. Tables and Figures

Table A.1: Parameter Restrictions for Z,X > 0

Case 1 Case 2

Cost Efficiency ξ2t/c2 > ξ1t/c1 ξ2t/c2 < ξ1t/c1
Restrictions ξ1s/c1 > ξ2s/c2 ξ1s/c1 < ξ2s/c2

Output Efficiency ξ2t/ξ2s > ξ1t/ξ1s ξ2t/ξ2s < ξ1t/ξ1s
Restrictions ξ1s/ξ1t > ξ2s/ξ2t ξ1s/ξ1t < ξ2s/ξ2t

Mixed Efficiency
Restrictions

αs (ξ1s/c1 − ξ2s/c2)

αt (ξ2t/c2 − ξ1t/c1)
> ξ2s/ξ2t

αs (ξ1s/c1 − ξ2s/c2)

αt (ξ2t/c2 − ξ1t/c1)
< ξ2s/ξ2t

αs (ξ1s/c1 − ξ2s/c2)

αt (ξ2t/c2 − ξ1t/c1)
< ξ1s/ξ1t

αs (ξ1s/c1 − ξ2s/c2)

αt (ξ2t/c2 − ξ1t/c1)
> ξ1s/ξ1t

Note: The inequalities in this table assume that all elements of ξ are greater than 0. The full proof
given below provides equivalent restrictions for the zero cases.
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Figure B.1: Partially Linear IV Regression Estimates with State Drop Outs

Note: This is a joint plot of the IES σ̂ against the inverse of its estimated standard deviation from fit (3)
of Table 2. Each point represents an estimate obtained from regressing on a dataset that drops out one
state from the full sample. Since the sample consists of the 48 contiguous US states, this regression is a
decrease in sample size of 2.08% relative to the full dataset. On the top and right side of the graph are
histograms for the two variables.
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Figure B.2: The Elasticity of Substitution Between Two
Minimally Intermittent Technologies

Note: The y-axis of the first plot is equivalent to log(X1/X2) and the x-axis of both plots is equivalent to
log(c2/c1). Technology 1 and 2 represent two arbitrary technologies that are practically non-intermittent.
The legend in the upper subplot also applies to the lower subplot. These results were obtained using
the following parameters: αt = 0.5, αs = 0.5, ξ1 = (0.95, 1), ξ2 = (1, 0.95), c1 = 100, c2 = 100. In
order to generate these numerical results, we first found the optimal quantities of X over a range of
prices c∗1 ∈ (0.5 c1, 1.5 c1). Then, we obtained estimates of the elasticity of substitution by numerically
differentiating ln(X1/X2) with respect to − ln(c1, c2). That is, the elasticity of substitution between
technology 1 and 2 is given by the slope of the upper subplot, and it is graphed in the lower subplot.
Finally, we repeat this procedure for various values of σ.
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Figure B.3: The Elasticity of Substitution Between Coal
and a Hypothetical Renewable Technology

Note: Technology 1 is coal and technology 2 is a hypothetical renewable technology. This hypothetical
technology has ξ2 = (0.1, 1) but is otherwise equivalent to solar. The legend in the upper subplot also
applies to the lower subplot. These results were obtained using the following parameters: αt = 0.6,
αs = 0.4, ξ1 = (1, 1), ξ2 = (0.1, 1), c1 = 104.3, c2 = 60. Furthermore, we set the parameter for the
intertemporal elasticity of substitution for electricity consumption equal to our estimate σ̂ = 0.8847. In
order to generate these numerical results, we first found the optimal quantities of X over a range of
prices c∗1 ∈ (0.5 c1, 2 c1). Then, we obtained estimates of the elasticity of substitution by numerically
differentiating ln(X1/X2) with respect to − ln(c1/c2). That is, the elasticity of substitution between
technology 1 and 2 is given by the slope of the upper subplot, and it is graphed in the lower subplot.
Finally, we repeat this procedure with σ equal to two standard deviations above and below its estimated
value σ̂; that is, the dashed lines represent σ = 0.8847± (1.96)(0.044).
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Figure B.4: The VES Approximation of the Elasticity of Substitution
between Highly Intermittent Solar and Coal

Note: Technology 1 is coal and technology 2 is a highly intermittent version of solar. The purple, dash-
dots line represents a linear approximation of e1,2 for σ = 0.8847 with a fixed intercept of 1. These results
were obtained using the following parameters: αt = 0.6, αs = 0.4, ξ1 = (1, 1), ξ2 = (1, 0.01), c1 = 104.3,
c2 = 60. Furthermore, we set the parameter for the intertemporal elasticity of substitution for electricity
consumption equal to our estimate σ̂ = 0.8847. In order to generate these numerical results, we first found
the optimal quantities of X over a range of prices c∗1 ∈ (c1, 2 c1). Then, we obtained estimates of the
elasticity of substitution by numerically differentiating ln(X1/X2) with respect to − ln(c1, c2).
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