
Appendix: On Finetuning Large Language Models

Yu Wang

Fudan Institute for Advanced Study for Social Sciences

Fudan University

Step-by-Step Replication

In this appendix, we report on the details of each step in the paper and link these details

to their corresponding script for replication.

1 How to replicate the original results

Häffner et al. (2023) report an MSE of 1.75 and R2 of 0.60 for ConfliBERT. To replicate

that set of results, we rerun the script(s) in the Harvard Dataverse package. The details

are as follows:

1. From code.zip, we get the training script final bert.py.

2. From data.zip, we get the data file cw texts clean bert.csv. We then put this file into

a Google Drive and make it public so that anyone could download.

3. Convert the final bert.py into an ipynb file, which we call Baseline Replication.ipynb,

so that we could run it on Google Colab using A100 GPUs.

Baseline Replication.ipynb does not edit final bert.py. It only adds a few new lines for

package installation and data download, as illustrated below.

Package installation:

!pip install transformers==4.28.0

!pip install datasets

!pip install accelerate -U

1

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/Y5INRM


Data download:

!gdown 1a1v06PvGaWmTCWvL33o2C133D90SRzMC

!mkdir output

!mkdir /data

!mv cw_texts_clean_bert.csv /data

Please see the replication results below. The file is available for download at Baseline Replication.ipynb.

This file generates the results on MSE and R2, which are the same as reported in Häffner

et al. (2023):

1.7503021153174287

0.6003749194371616

In addition, this file also contains the records of the training process, which we use to create

Table 1 (left) in the main paper. The file takes 37 minutes to run.

Figure 1: The training process when we freeze most layers as is done in Häffner et al. (2023).
This forms part of Table 1 in our paper.

2

https://colab.research.google.com/drive/1yZcAvzPRSAOGBxYDVgtDywAJgZmGD8AG?usp=sharing


2 How to create ConfliBERT Unrestricted (MSE: 0.99, R2:

0.77)

We need to change the following lines from Baseline Replication.ipynb. First, we comment

out the following two lines. These lines were responsible for freezing layers from finetuning.

for param in model.bert.parameters():

param.requires_grad = False

Second, we decrease the learning rate from 2e-3 to 2e-5. We need to decrease the learning

rate because 2e-3 is too high for finetuning all the parameters.1

LEARNING_RATE = 2e-3
LEARNING_RATE = 2e-5

With these changes, we create the file ConfliBERT Unrestricted V0.ipynb. One drawback

of ConfliBERT Unrestricted.v0.ipynb is that it is training for too long as we are inheriting

the number of training epochs from Häffner et al. (2023). To optimize the training process

(save some time), we use the learning logs to decide on a more appropriate number of epochs.

For simplicity and without too much hyperparameter tuning, we are setting the number of

epochs to 10. With this further change, we create ConfliBERT Unrestricted V1.ipynb.

EPOCHS = 20
EPOCHS = 10

3 How to create ConfliBERT Max Length (MSE: 0.87, R2:

0.80)

We propose to increase the max sequence length from 256 to 512 by changing the following

lines from ConfliBERT Unrestricted V1.ipynb. This could potentially improve the model’s

performance because a substantial number of the samples have more than 256 tokens. The

resulting file, ConfliBERT Max Length.ipynb, gives us the reported MSE of 0.87 and R2 of

0.80.

MAX_LENGTH = 256
MAX_LENGTH = 512

1For an example of training failure with too high a learning rate, please see ConfliB-
ERT Unrestricted V1 Large Learning Rate.ipynb.

3

https://colab.research.google.com/drive/1ANzmkq9pQ9AOKXss4DDMerzGBAEYLBSt?usp=sharing
https://colab.research.google.com/drive/11SJJZqfEwJTOTbCBMq8pTp-pt6eL6yHa?usp=sharing
https://colab.research.google.com/drive/1QDXUFst5Fo68FOwfEC7z6G9KA3VDunXL?usp=sharing
https://colab.research.google.com/drive/1tmnQ9AtvBbecS0XBsbbN9qqzb22-vFJz##scrollTo=_UUtlbRAySQ_
https://colab.research.google.com/drive/1tmnQ9AtvBbecS0XBsbbN9qqzb22-vFJz##scrollTo=_UUtlbRAySQ_


4 How to examine the model’s parameters and verify that

the pooler layer is randomly initialized and never updated

Readers can refer to ConfliBERT Parameters.ipynb for the details. In particular, we can

check out the number of parameters in each layer using the following lines:

print(sum(p.numel() for p in trainer.model.classifier.parameters()))

print(sum(p.numel() for p in trainer.model.bert.pooler.parameters()))

print(sum(p.numel() for p in trainer.model.bert.encoder.parameters()))

print(sum(p.numel() for p in trainer.model.bert.embeddings.parameters()))

print(sum(p.numel() for p in trainer.model.bert.embeddings.parameters()))

print(sum(p.numel() for p in trainer.model.dropout.parameters()))

We can confirm that the pooler layer is randomly initialized and never trained by (1)

observing that the bias parameters are all set to zero before and after finetuning (2) reading

the logs following the trainer.train() step.

1. bias parameters are all zero:

print(list(trainer.model.bert.pooler.parameters()))

2. training logs:

Some weights of BertForSequenceClassification were not initialized from the

model checkpoint at snowood1/ConfliBERT-scr-uncased and are newly initialized:

[‘classifier.bias’, ‘classifier.weight’, ‘bert.pooler.dense.bias’, ‘bert.pooler.

dense.weight’]

5 How to freeze only the pretrained layers

In this section, we show how we can freeze the pretrained layers and exclusively train over

the newly initialized parameters (the pooler layer and the classificiation layer).

def model_init():

model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL,

num_labels=1, ignore_mismatched_sizes=True)

for param in model.bert.encoder.parameters():

param.requires_grad = False

4

https://colab.research.google.com/drive/1B6vNvSrTGqJf-GzaNekm7lgSJjAQAfmK?usp=sharing


for param in model.bert.embeddings.parameters():

param.requires_grad = False

return model

We are able to achieve an MSE of 1.33 and an R2 of 0.70 by training the pooler layer

and the classification layer. This represents a large improvement over ConfliBERT Re-

stricted (Häffner et al., 2023) with an MSE of 1.75 and an R2 of 0.6. At the same time, the

results are considerably weaker than ConfliBERT Unrestricted, which suggests that fine-

tuning all parameters does provide performance improvement for this classification task.

Readers could compare the tradeoffs between ConfliBERT + Pooler Layer and ConfliBERT

Unrestricted and decide which one better fits their needs. Readers can find the details in

Corrected Baseline.ipynb.

Table 1: Results in Columns 1, 2, and 3 are from Table 2 in Häffner et al. (2023). In
Column 4, we make the pooler layer trainable on top of Häffner et al. (2023). In Column 5,
we make all the parameters trainable. In Column 6, we further increase the max sequence
length to 512. Best results in bold.

Model
OCoDi

Random Forest
(1)

OCoDi
XGBoost

(2)

ConfliBERT
Restricted

(3)

ConfliBERT
+Pooler Layer

(4)

ConfliBERT
Unrestricted

(5)

ConfliBERT
Max Length

(6)

MSE 1.59 1.60 1.75 1.33 0.99 0.87

R2 0.64 0.63 0.6 0.70 0.77 0.80

6 Impact on Computation Costs

We observe that running the original script in Häffner et al. (2023) takes 37 minutes on an

A100 GPU. If we unfreeze the parameters in the pooler layer, the script will take roughly

the same amount of time to run, given this is a relatively small layer with 0.6 million

parameters. Once we unfreeze all parameters, the script will take 96 minutes to run, which

is still acceptable. However, noticing that we probably do not need to finetune the model

for 20 epochs, as a step of optimization, we drop the number of epochs to 10 and reduce the

amount of running time to 50 minutes. Lastly, when we increase the max sequence length

from 256 to 512 while training for 10 epochs, the script takes 98 minutes to run (Column

5).2

2All the reported numbers are available from the corresponding running scripts. Interested readers might
want to consider using larger batches, among other things, to further speed up the training process.

5

https://colab.research.google.com/drive/1Suh2fi9bWPFtATn-4TGroLQ0nWV9fpDx


Table 2: Computation costs as measured in minutes in running the training (and evaluation)
script.

Model
ConfliBERT
Restricted

(1)

ConfliBERT
+ Pooler Layer

(2)

ConfliBERT
Unrestricted

(3)

ConfliBERT
Unrestricted (10 Epochs)

(4)

ConfliBERT
Max Length

(5)

Minutes 37 37 96 50 98

References

Häffner, S., Hofer, M., Nagl, M., & Walterskirchen, J. (2023). Introducing an interpretable

deep learning approach to domain-specific dictionary creation: A use case for conflict

prediction. Political Analysis, 1–19. doi: 10.1017/pan.2023.7

6


	How to replicate the original results
	How to create ConfliBERT Unrestricted (MSE: 0.99, R2: 0.77)
	How to create ConfliBERT Max Length (MSE: 0.87, R2: 0.80)
	How to examine the model's parameters and verify that the pooler layer is randomly initialized and never updated
	How to freeze only the pretrained layers
	Impact on Computation Costs

