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A Sources

It is important to consider the data-generating process for the leaked ISIS border doc-
uments. These documents contain detailed information on the home residence of each
recruit, age, education, marital status, previous employment, employment status, pre-
vious combat experience, and date of entry into ISIS-controlled territory. They derive
from a set of leaked documents recording the details of fighters who have crossed into
[SIS-controlled territory with the intention of becoming a recruit.

Supplementary Figure A.1 provides an imitation of one of the border documents.
We use data for nine countries in the MENA that were included in the leak. These
are: Algeria, Egypt, Jordan, Kuwait, Lebanon, Libya, Morocco, Tunisia, and Yemen.
In total, we have complete records for 1,051 recruits. It remains unclear whether these
constitute a representative sample of recruits. Dodwell et al. (2016) demonstrate, how-
ever, that 98% of these individuals can be matched against records for ISIS recruits
held by the U.S. Department of Defense. Further, the Bayesian case-control approach
we detail below takes into account the non-probability nature of the data-generating
process through its multilevel design.
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Forename and surname Abdul Karim al-Fadl
1
2 Nom de guerre Abu Hamza al-Masri
3 Mother’s name Layla
4 Blood type A
5 Date of birth 11/01/1991
6 Marital status () Married (*) Single
7 Place of Residence Cairo, Doki
8 Education level Bachelors in Engineering
9 Level of Sharia () Low (*) Medium () High
1 Occupation prior to arrival Unemployed
0
1 Countries transited None
1
1 Point of entry and contact Jarablus, Abu Abdi
2
1 Who recommended Abu Abdi
3
1 Date of entry 01/09/2013
4
1 Previous combat experience None
5
1 Fighter; Martyr; Suicide Bomber?
6
1 Prefered specialization () Admin () Security () Shara’i (*) Fighter
7
1 Current place of work
8
1 Items of luggage Suitcase
9
2 Level of hearing
0
2| Phone number and emergency contact Wife 123456789
1 Father 876543210
2 Date and place of death
2
2 Notes
3
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Figure A.1: Example of border document (details changed)



A.1 Independent variable details

The Arab Barometer surveys were in the field at different times for each country: De-
cember, 2012-January, 2013 for Jordan; February, 2013 for Tunisia; March-April, 2013
for Egypt and Algeria; April-June, 2013 in Morocco; July 2013 in Lebanon; November-
December 2013 in Yemen; and February-March 2014 in Kuwait (ArabBarometer 2014).

For both Egypt and Tunisia, we also include variables to capture subnational dif-
ferences in demographic and labor-market composition, employment opportunities, as
well as more context-specific variables designed to capture support for Islamist political
organizations and prehistories of contentious politics. Our choice of contextual variables
is based on existing research finding that lack of employment opportunities, prehistories
of mobilization and repression, as well as support for political Islam, are predictive of
ISIS recruitment (Devarajan et al. 2016; Rosenblatt 2018; Grewal et al. 2020; Barrie
and Ketchley 2018).

Table A.1: Individual-level variable codings across border documents and survey data

Variable Border Documents ABIII

coledu 1 if Education level men- 1 if q1003 >5 (or >4 for Tunisia; >6
tions “university” for Yemen)

age Date of entry - Date of ql1001
birth

married 1 if Marital status is 1010
“married”

student 1 if Occupation prior to 1004 = 3 (Student)
arrival is “student”

lowstat 1 if Occupation prior to 1004 = 5 (Unemployed) or q1010 =
arrival is agricultural or 4/5 (Agricultural or manual worker)
manual/unemployed




Variable

Details

Table A.2: Egypt district-level covariates

Source

Population density

Population

% Christian

% College Edu.

% Agriculture

% Mursi

Unemployment rate

Killed at Rabaa

Post-revolutionary
protest

number of individuals in
district/district area in
km"2

number of individuals in
district aged 10 or over
percentage of individuals
in district recorded as
Christian

percentage of individuals
in district who are univer-
sity educated

percentage individuals
employed in agriculture
denominated by total
active population

percent of total votes in
district for Muhammad
Mursi in the first round of
the 2012 presidential elec-
tion

number individuals aged
without employment de-
nominated by total active
population

number of deaths of in-
dividuals from district at
the 2013 Rabaa Massacre
(square-rooted)

number of protests
recorded in district in 12
months after Jan 25 Rev-
olution (square-rooted)

2006 Census

2006 Census

2006 Census

2006 Census

2006 Census

El-Masry and Ketchley (2021)

2006 Census

Ketchley and Biggs (2017)

Barrie and Ketchley (2019)




Table A.3: Tunisia district-level covariates

Variable

Details

Source

Population

Population density

% College Edu.

% Agriculture

Unemployment rate

Graduate unemployment

rate

% Ennahda 2011

% Ennahdha 2014

Post-revolutionary
protests

Distance to Libya

number of individuals in
district aged 10 or over

number of individuals
in district aged 10 or

over/district  area  in
km~"2

percentage population
with  higher education
certificate  denominated
by total population
percentage individuals

employed in agriculture
denominated by total
active population aged 15
or over

number individuals aged
18-59 without employ-
ment denominated by to-
tal active population aged
18-59

number individuals with
higher education certifi-
cate without employment
denominated by total ac-
tive population aged 18-
59

percentage of total votes
in district for Ennahdha
in 2011 election
percentage of total votes
in district for Ennahdha
in 2014 election

number of protests
recorded in district in 12
months after Jan 14 Rev-
olution (square-rooted)
distance to Libyan border
from centroid of target
district (square-rooted)

2014 Census

2014 Census

2014 Census

2014 Census

2014 Census

2014 Census

INS Tunisia

INS Tunisia

Barrie and Ketchley (2019)

NA




B MCMC Convergence

Convergence diagnostics provide a first measure of the reliability of our parameter
estimates for both the Bird’s Eye and Worm’s Eye models. Here, we follow Vehtari et
al (2021) and implement multiple state-of-the-art tests.

Per Supplementary Figures .1, F.5) and F.7, we examine four versions of the
Gelman-Rubin statistic (Zi’) to verify convergence is obtained broadly, as well as when we
encounter heteroskedasticity across chains, or when these are heavy-tailed. There exist
various convergence-thresholds in the literature — the most stringent requires R < 1.01,
a medium-stringency threshold suggests R < 1.05 (especially if we are estimating a
large number of parameters), whilst the historical recommendation was R<11 (Gel-
man and Rubin 1992). Recent work demonstrates that this latter threshold prematurely
diagnoses convergence in most cases (Vats and Knudson 2021). The parameters of all
of our models are broadly convergent under the harshest 1.01 threshold for all of the
measures of R, with the exception of a very small number of spatial effects which are
convergent under a slightly more laxed threshold, though still well below the ‘premature
convergence’ threshold R<11.°

Supplementary Figures .2, .6, and .8 present five measures of Effective Sample
Size (ESS), which tell us about the true number of independent draws from the joint
posterior distribution after accounting for auto-correlation within chains. The measures
check that the independent sample is ‘large enough’ to ensure stability of summaries
of the distribution at various moments (e.g. overall, at the median, at the tails, etc.).
Mirroring the performance of the R, the posterior samples for most of our estimates pa-
rameters are well above the recommended threshold (ESS > 400) for ensuring stability
of the central and tail estimates.

We further explore convergence at different quantiles of the posterior distribution
of our least-convergent parameters — those with the lowest bulk and tail ESS (Figure
.3 presents these measures for the Bird’s Eye model). The inference is that if these
relatively low-ESS parameters showcase satisfactory ESS at every quantile, we can be
reassured that the whole model has converged. These plots suggest broad reliability
of estimates at every section of the distribution. Finally, we explore the mixing prop-
erties of our chains for these least-convergent parameters (Figure F.4).” These plots
broadly suggest good mixing properties of our model, even for these relatively inefficient
posterior samples.

8Note that in the Bird’s Eye model, this struggle is slightly exacerbated by the inclusion of gover-
norates from Israel and Saud Arabia, for which we have no observations, and whose effects are fully
interpolated via the spatial process.

9Here, we choose to include mixing diagnostics for the Bird’s Eye model.



C Bayesian modeling in Stan

The model that we propose is amenable to Bayesian estimation via Monte Carlo Markov
Chain (MCMC) methods. Previous contributions to the case-control literature [e.g.,
Rota et al. 2013; Rosenfeld 2017] have used WinBUGS (Lunn et al. 2000) or JAGS (Plum-
mer et al. 2003) as software to implement some variations on a simple Gibbs sampler.
Due to the heavy computational burden imposed by the spatial prior, we propose in-
stead to innovate by estimating this model in Stan (Carpenter et al. 2017). Stan
leverages a version of Hamiltonian Monte-Carlo (HMC) called the ‘No U-Turn Sam-
pler’ (NUTS) (Hoffman and Gelman 2014), which dramatically improves the efficiency
and speed of convergence of our Markov-Chains. A challenge we face is that Stan
cannot handle the sampling of latent discrete parameters (r; in our hierarchical model
above), posing a problem for the estimation of mixture models. The state-of-the-art
solution is to marginalize the latent parameter out. In practice this means replacing our
model for the observed labels y with the following mixture of Bernoulli distributions:

f(yi | pi) = pi Bernoulli(y; | 61) + (1 — p;) Bernoulli(y; | ). (39)

Beyond allowing for model parameters to be informed by y; according to the mixed
structure above, marginalization provides significant advantages for posterior explo-
ration and MCMC efficiency as it leverages expectations rather than sampling of dis-
crete parameters. Listing | in the Supplementary Materials presents the Stan code
for our final model. Note that fixed-effects covariates are standardized.'” Estimates of
regression coefficients on the original, unstandardised scale are computed and available
in these Supplementary Materials.

C.1 Stan listings

Listing 1: Stan Data Declaration Block.

data{
int<lower = 1> n; // total number of observations
int<lower = 1> p; // number of covariates in design matrix
int<lower = 0> yl[nl; // vector of labels
matrix[n, pl X; // design matrix
int<lower = 1> small_area_id[n]; // small-area id
int<lower = 1> N_small_area; // number of small areas
int<lower = 1> N_small_area_edges; // number of edges in the spatial process

int<lower=1, upper=N_small_area> nodel_small_area[N_small_area_edges]; // nodel[i] adjacent to node2[il]
int<lower=1, upper=N_small_area> node2_small_area[N_small_area_edges]; // nodel[i] adjacent to node2[il

real scaling_factor; // scaling factor derived from the adjacency matrix
int<lower = 1> large_area_id[nl; // large-area ids

int<lower = 1> N_large_area; // number of large-areas

vector [N_large_areal log_offset; // log-scale offset

matrix [2,N_large_area] theta; // Pr(Y =1 | r=1,s =1)

}

10We standardize both dichotomous and continuous variables as this aids convergence.
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Listing 2: Stan Parameters Declaration Block.

parameters{

// cauchy prior for individual-level coefficients expressed as scale mixture of gaussian

functions
vector [p] aux_a;

// central component

vector<lower = 0>[p] aux_b;
vector [N_small_area] phi;

vector [N_small_areal] psi;
real<lower = O,upper = 1> lambda;
real<lower = 0> sigma_gamma;
vector [N_large_area] eta;
real<lower = 0> sigma_eta;

// scale component
// small-area unstructured effects
// small-area spatial effect
// mixing prior on spatial component
// small-area effect scale
// large-area unstructured effect

// large-area effect scale

density
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Listing 3: Stan Transformed Parameters Block.

transformed parameters{
vector [p] beta = aux_a ./ sqrt(aux_b); // individual-effect prior

vector [n] mu; // expected propensity of recruitment

vector [N_small_areal gamma = (sqrt(i-lambda) * phi + sqrt(lambda / scaling_factor) * psi)x*

sigma_gamma;
// convolved small -area effect

mu = log_offset[large_area_id] + etal[large_area_idl+*sigma_eta + gammal[small_area_id]
beta;

// linear function of the logit -scale propensity to be a recruit

}

+

X

*

Listing 4: Stan Model Declaration Block.

modeld{

aux_a ~ normal (0,1); // prior on the centrality of the cauchy prior
aux_b[1] ~ gamma(0.5,100%0.5); // prior on intercept-scale
aux_b ~ gamma(0.5,0.5); // prior on individual covariate scales

target += -0.5 * dot_self(psilnodel_small_areal - psilnode2_small_areal);
// ICAR prior

phi ~ normal(0,1); // unstructured random effect on small -area
sum(psi) ~ normal(0, 0.01 * N_small_area);

// soft sum -to-zero , equivalent to mean(psi) ~ normal (0 ,0.01)

lambda ~ beta(0.5,0.5); // mixing weight prior

sigma_gamma normal (0,1); // prior small-area scale

eta ~ normal(0,1); // prior large-area effect
sigma_eta ~ normal(0,1); // prior large-area scale

// likelihood
for (i in 1:mn) {
target += log_mix(1-inv_logit(mulil),
bernoulli_lpmf (y[i] | theta([l,large_area_id[i]l),
bernoulli_lpmf (y[i] | thetal[2,large_area_id[i]l));
// labels distributed as mixture of bernoulli distributions




D Simulation study

The model that we propose extremism researchers should adopt is significantly more
complex than the standard case-control design using rare-events logistic regression and
requires a substantial understanding of Bayesian methods to be fully appreciated. More-
over, the model’s estimation becomes roughly exponentially more computationally chal-
lenging as the sample size increases. To provide evidence that our approach is never-
theless preferable to a more straightforward case-control design, we report the results of
a comprehensive simulation study that compares the performance of our model against
the King and Zeng model (2001), as well as a simple fixed-effects logistic regression.
We score these models according to their ability to accurately predict the underlying
latent propensity of recruitment, p; = logit(p;). We further investigate these models’
performance in accurately estimating the intercept, regression coefficients, and residual
area effects.

We note that we did not test the ‘coverage’ properties of our models’ estimates as
part of the simulation study. To test coverage, we would have needed to run the chains
of each of our simulations long enough for the parameters of our models to converge
in their second-moment - this was not feasible under a simulation framework where
we had to run the model 200 times. As pointed out in our discussion of model fitting
strategy, the well-behaved models we use to derive our results took up to 48 hours to
achieve posterior samples displaying satisfactory convergence. We therefore leave it for
future work to formally quantify the coverage of or models.

Simulations show that our model is robust and general. The results suggest that
in a rare-event scenario, our model outperforms King and Zeng’s rare-events logistic
regression thanks to its ability to account for spatial auto-correlation, while also re-
maining largely unbiased to discrepancies in sample and population prevalence. As
prevalence increases, our model retains a degree of robustness that neither a simple
fixed-effects logistic regression, nor the ‘rare events logit’, can offer — largely thanks to
the contamination layer. This robustness extends not just to the ability to correctly
estimate latent propensity p*, but actively reduces bias and RMSE in the estimation
of coeflicients.

D.1 Data Generating Function

In what follows we present a more detailed view of the setup and results of the simulation
study. First, we create a data-generating function to draw sample-datasets generated
according to the mechanism implied by either the rare-events or contaminated case-
control model. We reduce the data generating process to its essence for simplicity: a
single continuous covariate x; is considered, and large-area effects are dropped. Small-
area effects are simulated according to a random intrinsic conditionally auto-regressive
process from one of three widely-used maps.'', available from the R package SpatialEpi
(Kim and Wakefield 2010). This enables the random sampling of ICAR effects whilst

UM = {scotland lipcancer,newyork_lukemia, pennsylvania_lungcancer}

10



preserving a plausible geography (i.e. neighbourhood structure and distance between
areal units). Pseudo-algorithm 1 describes the steps taken to generate the simulated
data.

Algorithm 1 A pseudo algorithm displaying the steps taken by the data generating
function to generate a random sample of data.

Require:
sample size: n € [100, 2000]
population prevalence: [1000000, 5
expected sample prevalence: 7 € [0.01,0.99]
global auto-correlation: Ie(0,1)
map: M € {scotland, newyork, pennsylvania}

(0.) derive key quantities directly from inputs:
i. expected number of case-labelled records:
Ny NXT
ii. expected number of unlabelled records:
Ny <= N —ny
iii. relative prob. of sampling a case v. control:

]]zl « (n1+7r><nu)/7r
iv. prof) of samphng a case-labelled record conditional on being a true control:
(90 ~— 0
v. prob. of sampling a case-labelled record conditional on being a true case:
81 — n1+77lrl><nu
(1.) sample area effects on selected map: ~ ~ ICAR(M)
(2.) sample initial value for intercept: Bl ~ N(0,1)
(3.) sample covariate value: ; ~ N(0,1)
(4.) sample covariate effect: 52 ~ N(0,1)
(5.) optimise intercept to meet specified sample prevalence:

B < argmaxg, f(7; 1)

(6.) calculate latent recruitment propensity: p < log (£1) + 8 + @35 + v
(7.) calculate recruitment propensity: p < inv_logit(u)

(8.) sample recruitment status: r ~ Bernoulli(p)

(9.) sample labels: y ~ Bernoulli(0,.)

We simulate n.sims = 200 datasets'’ using the data-generating function. The
inputs to the function (highlighted under the ‘Required’ header in the pseudo-code) are

12Tn practice we simulate datasets in two stages: first we examine the model performance by sampling
100 draws from a ‘rare event’ process (w € [1/1000000,1/10]); then, in a second stage, we sample
another 100 draws from a process with less extreme prevalence (w € [1/10,1/2]). This is done to
evaluate performance in two different scenarios — extreme (rare-event) v. non-extreme — and ensure a
large-enough sample size to capture salient dynamics in both.

11



sampled at random from uniform distributions conforming to the specified range for
each input - in the case of the maps, a map is chosen at random amongst the three
candidates.

D.2 Candidate Models

A second step is to define the models analysed in this simulation study. The candidate
models are: m.1 — a simple fixed-effects logistic regression, where the area-effects are
also estimated via fixed-effects; m.2 — similar to m.1, but importantly augmented with
the use on an offset (prior-correction) a-la (King and Zeng 2001); m.3 — an essential
version of our rare-events, Bayesian contaminated-controls model with a BYM2 area-
effects prior. The models are detailed in Figure D.1.

(m.1): Fixed-effects logit (m.2): King & Zeng (m.3): Cerina et al.
¥ ~Bernoulli(p,); (40) yi ~Bernoulli(p;); (45) yi ~Bernoulli(8,,); (51)
logit(p;) =561 + z;82 + Z zZy; (41) logit(p:) =log {(1,_,1-) (L)} + r; ~Bernoulli(p;); (52)
l ' T 1-3 . 1

B ~N(0,10); (42) (46) logit(p;) =log (Tr_nu + 1) + (53)
B2 ~N(0,1); (43) +hi+Tb+ Yy zum (A7) + B+ @B + s (54)
Y ~N(0,1). (44) : B ~Cauchy(0, 10); (55)
Zl - Eg i;’); Eig% B ~Cauchy(0, 1); (56)
2 ™ y L) / oo/ .
- NN((], 1) (50) T =0 (¢l (1 - A) + (A/S()E)Tv)
A ~Beta(0.5,0.5); (58)

| EL’#I Y1
W | by ~N ( dt,t s \/@) (60)
o N%N(O, ). (61)

Figure D.1: Hierarchical formulation of the three competing models considered in the
simulation study.

D.3 Computational Constraints

In order to fit the 600 models necessary for this simulation study, we have to ‘live dan-
gerously’™”, and lower our expectations over the stringent convergence properties of any
given model. What we are interested in is the stability of the simulation results, and
this is an aggregate set of quantities which is relatively robust to the semi-convergence
of any given model. We therefore run each model in Stan, with the following settings:
n.cores = 4; n.chains = 4; n.thin = 4; n.iter = 4000; n.warmup = %n. iter;

13 As others have done before when frequently fitting complex Stan models on large datasets — see
(Lauderdale et al. 2020) for an example running multiple short chains.

12



all other settings are set to the Stan default. This gives us posterior samples which
have relatively small effective sample-sizes, but are nevertheless able to give us reliable
central-estimates for the parameters of interest — proof of this is that the results from
the simulation study are replicable over multiple samples. Note that very rarely the
chains will diverge for m.3 under high-levels of contamination. When this happens, we
drop these simulations from the analysis and re-run the model.

D.4 Comparison Metrics

Finally, we define the parameters of the comparison. The simulations are intended
to investigate the ability of competing models to estimate the following quantities of

interest: p* = p — log (%), the latent propensity to be a recruit; (i, the baseline

propensity to be a recruit; (35, the effect of simulated covariate x; ~y, the set of area-
level effects which contribute to the latent propensity. p* is a good summary metric of
performance on all of these dimensions, so our primary inference refers to this quantity.
The models are scored only on their point-estimates, as an evaluation of uncertainty is
computationally unfeasible due to the large number of MCMC iterations necessary to
obtain convergent estimates of the second-moment for all these parameters.

The models are generating parameter estimates f to approximate the true simulated
parameters f; they are scored on three dimensions: i. bias(f) = L3 fi— fi il
Root-mean-square-error RMSE(f) = L3 fi — f;)% iii. Pearson correlation coefficient
T(f) _ Ziffi:fi)(fi_fi) _

\/Zq‘,(fi*fi)Z >i(fi—fi)?
error; the RMSE tells us about the average magnitude of the error, penalising large
deviations more heavily than smaller-ones; the Pearson correlation tells us about the

ability of the model to correctly order (rank) the parameters.

. The bias tells us the average direction of the estimation

D.5 Results

Figure D.2 presents a comparison of m.2 and m.3 in their ability to estimate latent
propensity p*, for each scoring function (on the y-axis) across key characteristics of the
data (on the x-axis). A comparison including m.1 is initially omitted here as the scale of
the errors in m.1 is so large that it makes it visually impossible to distinguish between
the (otherwise substantial) differences in m.2 and m.3 performance. A complete plot
including m.1 is available below.

A visual analysis of Figure D.2 presents two clear dimensions in which our model
advances the literature: i) m.3 is superior at moderate levels of prevalence (m > 0.1), a
feat obtained thanks to the contamination layer of the model; ii) m.3 is superior under
moderate-to-high levels of spatial auto-correlation (I > 0.2), due to the BYM2 spatial
component. Related to the first advantage, we note that as the discrepancy between
population and sample prevalence becomes positive (m — 7 > 0), the upward bias

13
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Figure D.2: Results of the simulation study, comparing the performance of our model
(m.3, in purple) and the more traditional rare-events logistic regression with prior-
correction for the intercept (King and Zeng 2001) (m.2, in orange) in estmating the
true latent propensity pu* = pu — log(%).

which m.3 suffers from as a result of contamination is significantly more contained than
the downward bias which characterises m.2 as a result of a non-contaminated offset,
again highlighting another robustness advantage, pertaining to the relationship between
sample and population prevalence. Moreover, Figures .5 and D.6, which present the
ability of m.2 and m.3 to estimate respectively the correct intercept parameter 3; and
the covariate effect (5, also paint a favourable picture. The ability of our model to
perform under high levels of prevalence affords significant reductions in bias an RMSE,
in both f; and f,, already at moderate levels of contamination. Figure .7 compares
models in their ability to estimate the correct area-level effect. Though all three models
are, unsurprisingly, unbiased, m.3 is clearly more precise (lower RMSE) and and better
at ordering areas according to their propensity (higher Pearson correlation), in the
presence of spatial auto-correlation.
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Figure D.3: Results from the simulation study, capturing the ability of the simple
fixed effects model (m.1, in black), the King & Zeng model (m.2; in orange) and our
proposed approach (m.3, in purple) to estimate the latent propensity of recruitment for
each record in our sample p*.

Figure D.3 presents the scoring of models in their ability to predict latent propensity
w; Figure D .4 displays the models’ performance in estimating the baseline propensity
(1, with Figure D.5 zooming-in to a comparison between out proposed model and the
rare-events logit by King & Zeng; Figure D.4 shows model performance in estimating
covariate effect fy; Figure D.7 presents a comparison with respect to the estimation of
area-level effects ~.
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Figure D.4: Results from the simulation study, capturing the ability of the simple fixed
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approach (m.3, in purple) to estimate the true intercept J;.
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Figure D.5: Results from the simulation study, capturing the ability of the King &
Zeng model (m.2, in orange) and our proposed approach (m.3, in purple) to estimate
the true intercept [;.
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E Practical Advice for Researchers

In this section we provide guidance to applied researchers who seek to analyse data on
recruitment to extremist organisations - or any other sort of data which can plausibly be
affected by selection on the dependent variable, contamination, spatial auto-correlation,
etc. - using our modeling framework. We focus on specific features of a typical appli-
cation, and leverage lessons from our simulation study as well as our experience from
the ISIS recruitment example detailed in this paper. We also address features of the
modeling framework which have not been tested, presenting our current understanding
of their potential impact, and outlining ways in which future research could mitigate
their influence. We refer to Rosenfeld (2018) for further treatment of the underlying
assumptions of a contaminated case-control model.

i. Sample size: our proposed strategy is unbiased for estimating recruitment propen-
sity p starting at n > 100 (the minimum sample size tested in our simulation
study). Compared to existing alternatives, our model affords greater returns on
additional samples in terms of reduction of average error (RMSE). The advantage
over other alternatives seems particularly evident for n > 1000 - where alterna-
tives’” RMSE tends to plateau, whilst our model’s RMSE continues to decrease
in seemingly linear fashion. A breakdown by estimated parameter tells us that
our model affords some meaningful RMSE gains for every estimated parameter:
for regression coefficients (both ; and ;) we see a stable reduction of RMSE
persisting after n > 1000, whilst alternative models plateau; the largest efficiency
gains however are observed on the area-level effects .

Our advice with respect to sample size is to use our model over any existing
alternatives at any sample size. The recommended sample size to obtain the best
results is n > 2000. We suspect decreasing returns will kick-in at some stage, but
we have not tested where that point might be, and leave it for future research.

ii. Population prevalence: w plays a two-fold role in our model: it is used to
calculate an optimal offset to account for selection, and it is used to account
for contamination in the unlabeled controls. Our model is robust to any level
of m € (0,0.5). Under a contaminated data generating process, this is in stark
contrast with the best available alternative - the King & Zeng model - which
suffers from negative-bias as the contamination rate increases. The gains appear
primarily as a result of estimating an unbiased intercept [, but also as a result of
having a precise estimate of By at any level of 7 - whilst the King & Zeng model
suffers from roughly linearly-increasing RMSE at increased contamination rates.

Our advice with respect to the true population prevalence is to use our model at
any level of m. There is no recommended level of prevalence at which our model’s
ability to estimate either propensity u or regression coefficients 5; and (35 under-
performs - our model is simply robust to contamination, given knowledge of 7 is
available.
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Discrepancy between sample & population prevalence: m — 7 captures
the difference between the true prevalence and the sample-prevalence. This arises
as a direct result of the stacking procedure, where whatever available cases are
artificially appended to a sample of unlabeled controls. Note that this is a measure
of the degree to which our sample ends up being a non-probability sample.

Here, compared to the best available alternative, we have a trade-off: both models
will tend to have biased intercepts at very high-levels of m — «. The King & Zeng
model will tend towards a negative bias, as the offset used here does not take into
account contamination, and the relatively large numbers of unlabeled controls
will be ‘hiding’ a very large number of cases, meaning the offset is inaccurately
calibrated. This model essentially believes that there are less cases in the data
than in reality, and therefore estimates a smaller intercept than it should. On
the other hand, our model will tend to do the opposite: by accounting for con-
tamination, it will tend to believe there are relatively more cases in the sample
than there actually are in the population. This bias however tends to be smaller,
and appear at higher levels of discrepancy, compared to that of the King & Zeng
model.

Our advice with respect to the size of the discrepancy between sample and pop-
ulation prevalence is as follows: researchers should prefer to account for con-
tamination rather than not, due to the relatively smaller bias and RMSE on the
intercept. They should however be aware that in a regime of large under-sampling
of the cases, the bias will be in the positive direction under our contamination
model, but in the negative direction if contamination is not accounted for. Re-
searchers should attempt to create stacked-samples that have sample prevalence
roughly equal to population prevalence; over-sampling of cases is not an issue,
but under-sampling is, if the discrepancy is large. As a conservative guide, we
advise researchers to ensure their stacked sample does not under-sample cases by
more than 10 percentage points, relative to population prevalence, when using
our model.

Spatial auto-correlation: spatial auto-correlation in the area-level effects
tends not to affect the bias of the model estimates, but it does impact efficiency (in
terms of RMSE) and the ability of models to properly rank individuals according
to their underlying recruitment propensity u. Large discrepancies in RMSE and
correlation of v tend to kick-in around a Moran-I of 0.2; the comparison with other
models increasingly favours our approach as [ increases, generating an advantage
as large as 0.2 correlation points at high-levels of spatial auto-correlation. Note
that under low-levels of auto-correlation, our model performs at least equally well
as any other alternatives.

Our advice with respect to spatial auto-correlation is to explicitly account for it
in the model. There are no drawbacks to doing so in terms of the metrics we
test. There might be some issues relative to the ‘coverage’ ability of the model,
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which we could not test due to computational burden, in the sense that estimates
of v under our model will be greatly ‘shrunk’ and therefore tend to have smaller
uncertainty than fixed effects. But regardless of the potential coverage issues, the
gains in terms of ability to order and discriminate between profiles are sufficiently
large we feel comfortable advising to use the ICAR model to account for spatial
auto-correlation.

. Prior knowledge of population prevalence: we encode in our model’s con-

tamination layer an expectation that the unlabeled cases will be recruited at a rate
roughly equal to the population prevalence of recruitment. The validity of this
assumption depends on the application at hand. For us, the known population
propensity made for a good prior because our hypothetically-contaminated obser-
vations came from a random sample of the population, so the known prevalence,
and the sampling design of the Arab Barometer, were at the same level. However
this assumption becomes increasingly inappropriate as the sampling frame of the
contaminated units veers further away from a random sample of the population
of interest. The degree of error induced by misspecification is not tested in our
simulation study - it is assumed that the correct prevalence is always known.

Speculating on the potential effects of misspecification we can consider the nature
of the bias we would be introducing: artificially increasing the contamination
rate relative to the true population rate will positively bias the intercept of the
model, by ‘flipping” an unreasonable amount of unlabeled observations to ‘cases’.
This is similar to what we see in the effect of sample and population prevalence
discrepancy m — 7.

In a fully Bayesian model this parameter can be estimated from the data (Rota
et al. (2013); Rosenfeld (2018)) though we have found, anecdotally in our exper-
imenting for this paper, that under this fully-Bayesian approach the estimated
posterior of 7 tends to be necessarily biased by the selection effects into the
artificially-stacked samples. This is somewhat in contradiction with Rosenfeld
(2018), and we merely point this out to encourage further exploration of this
question.

Our advice with respect to how to best use prior knowledge on the population
prevalence is to ‘use it with care’. If it is known with certainty, we advise to use it,
and introduce it as an ‘observed value’ for the prevalence in the Bayesian model.
If no knowledge on the true population prevalence is available, we do encourage
researchers to perform a fully-Bayesian analysis and estimate the prevalence as
part of the model parameters; however we would further advise, where possible, to
use strongly informative priors to counteract the bias introduced by the artificial
sampling design.

Exogenous Selection: a dimension on which our model is untested is the degree
to which non-random samples of cases could bias the analysis. Examples of this
would be if the sample of recruits in our data was obtained via snowball sampling,
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or any other sampling design which is vulnerable to systematic distortions brought
about by exogenous effects.

This paper takes the view that it is generally hard-to-impossible to obtain repre-
sentative samples of recruits, and therefore builds-in a series of robustness mea-
sures - such as regularising priors, random effects, and mixture models, to limit the
negative effects of non-representativity. More regularising approaches are worth
exploring and introducing into the modeling framework - for instance the use of
regularised horseshoe priors (Piironen and Vehtari (2017)) could contribute to ex-
cluding irrelevant covariates from the analysis, as well as regularising coefficients,
hence encouraging the avoidance of over-fitting to potentially biased data. It is
further worth noting that this model is amenable to post-stratification (Hanretty
et al. (2018); Park et al. (2004)), which would allow for more representative es-
timation of average recruitment propensities at the small-area level. Enhancing
this analysis with a post-stratification layer would enable the use of even more
extreme unrepresentative samples of recruits, such as individuals observed to be
extremists on social media or in other unconventional samples (Wang et al. (2015);
Cerina and Duch (2020)). But this approach would not solve the bias in regres-
sion coefficients, and is only relevant if the small-area is indeed the desired level
of analysis.

Our advice with respect to the potential impact of exogeneous selection effects is
to build into the model reasonable protections against over-fitting to biased data.
In our case, this is possible to some degree through the use of various regularising
priors. In general the conventional wisdom stands: if it is at all possible to obtain a
representative sample of cases, researchers should do whatever they can to obtain
it. However, reality dictates that this is very rarely possible, especially in the
context of extremist movements. Our regularised modeling approach therefore
becomes the preferred solution.
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F Convergence diagnostics

To ensure absolute convergence of all model parameters we run our model with ex-
tremely conservative settings: n.iter > 10,000, n.warmup > 9,000, n.chains > 4;
n.thin = n.cores = n.chains; max_treedepth = 25, adapt_delta = 0.99. Note that
the Worm’s Eye models take around 12 hours to run for Egypt, 24 hours for Tunisia,
whilst the Bird’s Eye model takes 48 hours. As a final note, it’s worth highlighting
that convergence of point estimates for the individual-level covariates happens under
far more laxed estimates, and exploratory versions of this model can be fit under 1 hour
in all cases.
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Figure F.1: Gelman-Rubin Statistics for the Bird’s Eye model.

4For the ‘Bird’s Eye model, we set n.iter = 10,000 and n.warmup = 9,000, and ran the model
over 8 chains spread over 8 cores, thnning by a factor of 8 — whilst for the Worm’s Eye models we
can afford a larger number of iterations — n.iter= 25,000 and n.warmup = 22,500, runnng 4 chains
spread over 4 cores, and thinning by a factor of 4.
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Figure F.3: Convergence dynamics for the parameters with the lowest bulk (top) and
tail (bottom) ESS, for the Bird’s Eye model. The quantile plots show satisfactory ESS
for every section of the posterior distribution, whilst the positive and close-to-linear
gradient in the ‘total number of draws’ plot suggests ESS would improve further by
drawing more samples — a sign that the posterior is well-explored.
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Figure F.5: Gelman-Rubin Statistics for the Egypt Worm’s Eye model.
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model.
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Figure F.7: Gelman-Rubin Statistics for the Tunisia Worm’s Fye model.
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model.
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G Posterior densities of regression coefficients
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Figure G.1: Posterior density of individual-level fixed-effect coefficients for the ‘Bird’s
Eye’ model. These effects are presented on the original, non-standardized scale.
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Figure G.2: Posterior density of individual-level fixed-effect coefficients for the Egypt

‘Worm’s Eye’ model.
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H Relative Deprivation Effects
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Figure H.1: Predicted propensity of recruitment for relative-deprivation profiles according to the
‘Bird’s Eye’ model. The effects are presented as odds relative to the ‘average’ recruitment profile.
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Figure H.2: Predicted propensity of recruitment for relative-deprivation profiles according to the
Egypt ‘Worm’s Eye’ model. The effects are presented as odds relative to the ‘average’ recruitment
profile.
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Figure H.3: Predicted propensity of recruitment for relative-deprivation profiles according to the
Tunisia “‘Worm’s Eye’ model. The effects are presented as odds relative to the ‘average’ recruitment
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‘Bird’s Eye’ model. The effects are presented as predicted counts under the assumption that everyone
in the population is an ‘average profile’, and only changing the profile’s relative deprivation status.
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Figure H.5: Predicted propensity of recruitment for relative-deprivation profiles according to the
Egypt ‘Worm’s Eye’ model. The effects are presented as predicted counts under the assumption that
everyone in the population is an ‘average profile’, and only changing the profile’s relative deprivation
status.
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Figure H.6: Predicted propensity of recruitment for relative-deprivation profiles according to the
Tunisia “‘Worm’s Eye’ model. The effects are presented as predicted counts under the assumption that
everyone in the population is an ‘average profile’, and only changing the profile’s relative deprivation
status.
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I Residual Area-Level Analysis

In Figure 5a in the main manuscript, edges connect nodes identified by the centroids of
governorates for each country. Minor adjustments were performed to ensure the absence
of islands or sub-graphs, which would have made the analysis needlessly complicated.
Note also that Israel and Saudi Arabia are included for the purpose of obtaining this
fully-connected graph, but no observations were available for either of these countries
in terms of recruits or Arab Barometer observations, and hence the direction of the
estimates for their governorates is entirely driven by the spatial component. Supple-
mentary Figure [.2 displays the observed number of recruits per area, along with the
residual for each governorate.

We are satisfied that the spatial pattern implied by the adjacency matrix derived
from the fully connected graph is completely extracted from the residuals, as shown
by the relatively uniform color pallet of the rightmost map in Figure .2, and most
importantly the posterior distribution of the residuals’ Moran’s I in Figure .1, which
is normally distributed around the expected null value.

Global Auto—Correlation

— EIY):0
- --- ean I(Y): 0.203
ean I(res.): 0

Density
30 40 50 60
! !

20
|

10

T T T T
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Moran's |

Figure I.1: Posterior distribution of Moran’s I, a coefficient of global spatial auto-correlation. The
adjacency matrix implied by Figure 5a is used as the weight matrix. I(Y") indicates the coefficient value
prior to spatial modeling; I(res) shows the complete nullification of auto-correlation as a result of the
ICAR prior. The expected value under the null distribution, E[I(Ys.1)], is calculated as

S
(riFna)—1°
Figure [.2 displays the observed number of recruits per area, along with the residual
for each governorate.
In [.2b the residual is calculated as follows: take z = zi,...,z; to be the subset
of individuals ¢ € z, who belong to small-area [; take s = 1, ..., S to be the index of

posterior sample draws; then res; = %ZS [m Zi@l (y; — @ZS)} A first concern

is the presence of spatial autocorrelation in the recruitment data, which could bias
individual-level coefficients. The spatial distribution in Figure [.2a seem to suggest the
possibility of spillover effects around high-density coastal areas. This is confirmed by
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Figure 1.2: Spatial distribution of observations (a) and residuals (b) at the Governorate level.

the Moran’s T (I(Y')), which shows statistically significant spatial auto-correlation.'”

We display below the spatial distribution of the point estimates for Governorate and
Country-level random effects in Figure [.3. The corresponding prediction intervals for
country and governorate effects are shown in Figure [.4 for country-effects and Figure
[.5 for Governorate effects. It is worth noting that part of the reason for heightened
recruitment propensity around the eastern Governorates could be the increasing prox-
imity to Syria and the ISIS caliphate itself, as well as higher proportions of refugees
from destabilized regions of Syria, and in general more potential for pro-ISIS unob-
servable network-dynamics. We see a strong unexplained effect in Tunisia, highlighting
unobserved but systematic variance in favour of recruitment , while Algeria, Egypt and
Yemen show significant unexplained negative effects on recruitment over and above
their spatial and unstructured Governorate-level variance.

15As I(Y) is an observed, not modeled, quantity, it carries no uncertainty around it; it is reasonable
to assume that the distribution of the I(Y') would be the same as that of the I(res) in terms of its
shape and variance, and only differ as a result of the mean paramater. This is what is commonly
assumed under standard hypothesis testing. Hence, it is easy to see that by applying the extremely
narrow simulated variance around the I(Y") dotted line, there would be a 0 probability of that distri-
bution crossing the E[I(Y)] line, and hence we can say the I(Y) is highly significant. Calculating the
significance of I(Y) in frequentist terms, using the ape package, reveals a p-value of 0. We plot and
describe our calculation for Moran’s I in Figure I.1
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Unstructured Small-Area Effect Spatial Distribution
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Figure 1.3: Spatial distribution of: (a) the unstructured Governorate-level effect - ¢; (b) the spatial
Governorate level effect - ¢; (c) the total Governorate effect - v = o(¢/1 — A) + ¥y/A/s); (d) the

unstructured Country effect - 7.
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effect size (log—odds of recruitment)
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Figure I.4: Unstructured large-area effect n for the ‘Bird’s Eye’ model.
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BYM2 small-area effect 7 for the ‘Bird’s Eye’ model.

Figure 1.5



Figure 1.6 presents the Egypt and Tunisia fully-connected graphs used to derive the
district-level adjacency matrices fed to the ICAR model. Again, a small number of
adjustments were made to connect islands and ensure full-connectivity.

(a) (b)

Figure 1.6: Fully-connected graphs of (a) Egypt and (b) Tunisia at the District level.

The residual plots in Figure [.8, along with the Moran’s I presented in Figure 1.7,
convincingly show we have extracted all spatial variance from the observations: the
resulting Moran’s Is are distributed around the null-value.

Figures [.9 and 1.10 present the spatial distribution of point-estimates for the Dis-
trict and Governorate effects of Egypt and Tunisia respectively. The spatial distribution
for Egypt indicates a substantially heightened propensity of recruitment in northeast-
ern regions. No similar pattern is evident in Tunisia, though the mid-eastern costal
areas do display systematically lower spatial recruitment effects than the rest of the
country. Both countries estimate a number of highly significant district-level effects,
which account for large portions of the variance in recruitment of both countries, with
highly significant effects ranging from —5 to +5 log-odds points . In Tunisia, we also
find evidence of a negative Sfax effect. Clearly, in order to be a recruit you must be sub-
jected to unobserved area-level heterogeneity; individual-level covariates alone cannot
counteract the underlying rarity of the event, as highlighted by the intercepts.
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Figure 1.7: Posterior distribution of Moran’s I for Egypt (a) and Tunisia (b). The adjacency matrices
implied by Figure 1.6 are used as the weight matrices.
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Outcome Spatial Distribution

&

(a)

Outcome Spatial Distribution
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Residual Spatial Distribution
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Figure 1.8: Spatial distribution of Egyptian observations (a) and residuals (b); Tunisian observations
(c) and residuals (d) at the District level. (a) and (c) present the spatial distribution of recruits.
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Unstructured Small-Area Effect Spatial Distribution

(a)

BYM2 Small-Area Effect Spatial Distribution

()

ICAR Small-Area Effect Spatial Distribution

(b)

Unstructured Large—Area Effect Spatial Distribution

(d)

-2

-4

0.0 0.5

-0.5

Figure 1.9: Egypt’s Spatial distribution of: (a) the unstructured Governorate-level effect - ¢; (b) the
spatial Governorate level effect - 1; (c) the total Governorate effect - v = o(p/1 — X) + ¢/ A/s); (d)

the unstructured Country effect - 7.
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Unstructured Small-Area Effect Spatial Distribution

(a)

BYM2 Small-Area Effect Spatial Distribution

ICAR Small-Area Effect Spatial Distribution
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(b)
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Figure 1.10: Tunisia’s Spatial distribution of: (a) the unstructured Governorate-level effect - ¢; (b)
the spatial Governorate level effect - 1; (c) the total Governorate effect - v = (/1 — A) + 1/ A/s);

(d) the unstructured Country effect - 1.
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unstructured large-area effect

unstructured large—area effect
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(b) Tunisia

(a) Egypt

Governorate effect () ordered by proportion of posterior simulations above zero.

Figure .11



small-area effect (unstructured + spatial)
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imulations above zero.

10T S

Total (structured + spatial) residual District effects in Egypt, ordered by proportion of posteri

Figure 1.12



small-area effect (unstructured + spatial)
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Figure 1.14: Birds Eye Distribution of predicted probabilities across a variety of hypothetical profiles. The distribu-
tion is presented on the odds relative to the average profile. To aid with interpretation, minimal and maximal estimates
are presented separately. These plots help showcasing the sharp non-linearity across profile’s recruitment propensities.
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Figure 1.15: Birds Eye Distribution of predicted probabilities across a variety of hypothetical profiles. The distri-
bution is presented on the probability scale. To aid with interpretation, minimal and maximal estimates are presented
separately. These plots help showcasing the sharp non-linearity across profile’s recruitment propensities.

48



Ranked Recruitment Profiles
90% Interval

Ranked Recruitment Profiles
Point Estimates

s
8
g 2
&
A
oy Y,
g & oy
S Dy %
H 5
E E 8
5 o H %, °
2 2 %
5] S S % %
g 8 ° 2 4%, %%,
5 5 o :*:/9 ‘ifp"% o %, e, %f"*f”*%z%'%
g g s o e, a0l Yy o e ol %, o
s 8 i, o %, o, o AR I
8 % 5 e X 5,65, % 000
S 5, %, g5 % % e, Y, RN &
3 s U 2y 0% oy oS0 oo %,
H T g e MM
. il Ll JH .
rrrrrrrrrrrrrrrrrrrrrrrrrrroroT rrrrrrrrrrrrrrrrrrrrrrrrrrroroT
10 w9 1% 127 16 105 %4 & 72 61 S0 3 28 17 61 160 49 13 127 16 105 %4 8 72 6 s I 28 17 61
recruitment rank recruitment rank
Ranked Recruitment Profiles Ranked Recruitment Profiles
Lowest Plausible Estimate (5th Percentile) Largest Plausible Estimate (95th Percentile)
i
)
8
L3 8
%, %
% %
4,6, o,
R 3 o %y
- — Uy e
g § g N
E E 2 °
] I
5 5
3 £ g "
s 5 % 7, 3
2 g A o, o’ o
8w B 8 e s, %, RACK e s, o, 7;%
%, %, % s,é% 70, %, Y PSS o
51 0,200, Y oy, %, B, b ey, o oo U, ol 08 G O
& e L % T P, @ e ol
Bl bl Y et 4,0,
o b 2 oy 22y 2%, RS
g 0,200 G, g a:%”% %y, o, S e,
0, 0 S Yoy Py, 0 0, oo s ey
= i % T gt T %
%
° °

160 149 1% 127 116 105 9 83 72 61 S0 39 28 17 6 1

recruitment rank

LI
160 149 138 127 116 105 94 8 72 61 S0 39 28 17 6 1

recruitment rank

Figure 1.16: Worm’s Eye (Egypt) distribution of the predicted probabilities across a variety of hypothetical profiles.
The distribution is presented on the odds relative to the average profile. To aid with interpretation, minimal and maximal
estimates are presented separately. These plots help showcasing the sharp non-linearity across profile’s recruitment

propensities.
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Figure 1.17: Worm’s Eye (Egypt) distribution of the predicted probabilities across a variety of hypothetical profiles.
The distribution is presented on the probability scale. To aid with interpretation, minimal and maximal estimates are
presented separately. These plots help showcasing the sharp non-linearity across profile’s recruitment propensities.
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Figure I1.18: worm’s Eye (Tunisia) distribution of the predicted probabilities across a variety of hypothetical

profiles. The distribution is presented on the odds relative to the average profile.
and maximal estimates are presented separately.
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Figure 1.19: wWorm’s Eye (Tunisia) distribution of the predicted probabilities across a variety of hypothetical profiles.
The distribution is presented on the probability scale. To aid with interpretation, minimal and maximal estimates are
presented separately. These plots help showcasing the sharp non-linearity across profile’s recruitment propensities.
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