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This Appendix provides additional analyses, diagnoses, and details regarding the application
and plots presented in the main text. It is organized into 9 sections.

• BoVW and CNNs (A1): pp. 2-7

– Discussion and comparison of CNN approaches for unsupervised learning and
BoVW+STM framework.

• Technical details: detection and description of key points (A2): pp. 8-9

– This section provides technical details and extended information regarding the
location and description of key points in images.

• Building a vocabulary: sample of features and clustering (A3): p. 10

– Extended information regarding the sampling of features and clustering for the
construction of visual vocabularies.

• Emulating the Document-Term matrix: the Image-Visual Word Matrix

(A4): p. 11

– Illustration of similarities between Document-TermMatrix and Image-Visual Word
Matrix.

• Extension and Supplementary Information of Application (Framing a Move-

ment) (A5): pp. 12-16

– Information and extended analysis of the running example in the main text re-
garding the migrant caravans from Central America.

• Structural Topic Models and Latent Dirichlet Allocation (A6): pp. 17-18.

– Discussion of the use of STMs for studying framing, theoretical and practical
comparison of both methods using the example of the Caravan of migrants.

• Topic modeling – label validation (A7): pp. 19-20.

– Table with responses to coding tasks and word clouds of words associated with
the content of the most representative images of each topic.

• Diagnosis and practical guidance – parameter selection (A8): pp. 21-28.

– Details and results from a set of diagnoses analyzing the consequences of param-
eter choice in the BoVW process.

• Credits for images/photos used in the main text and appendix (A9): p. 29-30.

• References used in the Appendix (A10): p. 31-32.
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A.1 BoVW and CNNs

In this section, I present a brief comparison of the performance and results from analyzing
images using a BoVW and a CNN. First, I discuss the di↵erences in the results that arise
from using a binary indicator to identify a given object (in this case a “dense crowd”) in
contrast to the proportion that the object as a theme occupies in the picture. Then, I use the
Google Vision API to extract content from the images (in this case the objects and their
“topicality”) and compare the output to the topic proportions from a visual STM. Finally, I
use a pre-trained CNN to learn and extract features from the images, and cluster the images
according to them. I present a brief comparison and discussion between this output and the
one from the BoVW approach.

A.1.1 Continuous vs. Binary classifications

Binary quantifiers of a picture such as “Presence of a crowd” might be fitting for certain
projects. However, as in the case of visual framing, if researchers do not only care about the
mere presence but also the way in which a given object or theme is included in a picture,
then other measures are more adequate. For example, a proportion of a given object in a
picture is more relevant for a researcher analyzing the salient content and focus of visual
coverage rather than just the knowledge of whether a given object exists. This is a common
issue in fields like political communication, journalism and advertising and a prevalent case
in the pictures under analysis (as Figure 7 in the main text shows).

However, below I provide example of how the two di↵erent measures can yield di↵erent
results. In the following table, I regress the proportions of the “dense crowd” topic per image
(Column 1 of Table A.1) and the indicator of whether there is a crowd (manually coded,
Column 2 of the same table) on the ideology of the news outlet. The use of a continuous
measure, the proportion of a frame, might not only be useful for research objectives but may
also uncover interesting results.

In this case, the proportion of crowds that center left and center right outlets use is
significantly lower than the proportion used by right leaning outlets. Although the model
with a binary indicator also shows a negative coe�cient for these outlets, the coe�cients are
not distinguishable from zero at conventional levels. However, it is also important to note
that both models show a reliable and negative e↵ect of being a left leaning outlet on the
prevalence of dense crowds in pictures about the Caravan. If the theoretical expectation of a
researcher was merely to test this di↵erence, using either of the two approaches would have
led to the same conclusion.

However, if the exercise is exploratory or the research question deals with the com-
parison of the right to other positions in the ideological spectrum, then the binary indicator
approach hides some valuable insights (that are in line with theoretical expectations) due to
a loss of nuisance in the main outcome variable. Further, either manually coding whether
there is a crowd in each image or finding an appropriate CNN to locate a dense crowd ac-
curately in a picture would have demanded higher costs than using the BoVW framework
(e.g., finding coders, time to label, discrepancies in coding, available CNNs for detection,
monetary costs if using an API, etc.).
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Table A.1: Binary vs. continuous measures of “crowds”

Dense Crowd proportion Presence of a crowd

OLS Logistic

(1) (2)

Center right �0.114 �0.096
(0.047) (0.528)

Center �0.090 �0.784

(0.035) (0.397)
Center left �0.078 �0.734

(0.035) (0.413)
Left �0.106 �1.469

(0.039) (0.482)
Not rated �0.211 0.656

(0.081) (0.927)
Constant 0.166 �16.470

(0.209) (2,399.545)

Date X X
N 688 688
R2 0.042
Adjusted R2

�0.007
Log Likelihood �301.910
AIC 671.820

Standard errors in parentheses. Bolded coe�cients indicate
statistical significance at conventional levels.

A.1.2 Object detection and BoVW: topicality vs. topics

An alternative approach to the BoVW for measuring “proportions” of certain elements in a
picture is to use CNNs and deep learning methods to detect all the objects in an image. In
fact, Karpathy and Fei-Fei (2015) conduct this approach to describe content in an image using
a CNN that detects objects in pictures. However, this approach requires the construction
and coding of a very complex and customized network able to detect all potential objects
in a picture. This might be necessary despite the existence of commonly used pre-trained
networks. This is due to the type of pictures used to train those models (which generally
include basic objects and colloquial scenes) that di↵er from those with political content.

Alternatively, researchers might want to use tools like the Google or Microsoft APIs
with CNNs embedded for object detection. These platforms o↵er a wide variety of services
for image analysis such as face and emotion detection, landmark identification, labeling, and
even web search. Among these, the object detection feature from the Google Vision API

provides a summary of the objects in a picture together with an indicator of “topicality”.
However, there are two issues with this measure. First, although the name suggests that it
captures the same thing as a topic proportion, the topicality of an object x is the probability
that a CNN finds that object in the scene. Thus, the topicalities available do not sum to
one or provide information about the proportion that the object occupies in the picture.
Second, the topicalities are available for objects that are likely to appear in the picture; that
is, objects with probability over 0.6. Thus, less salient objects are not included in the list
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provided by the API, which could also be informative for the full analysis of the picture. A
final minor issue is that using the API is not free, and although the cost of analyzing batches
of images is not excessive, when dealing with high volumes the final cost is not negligible.

To compare the topics and the “topicality” of a crowd, I ran the images through the
Google API and obtained this topicality measure. Then I compare that quantity (y-axis
in Figure A.1) to the topic proportion of “dense crowd” from the STM (x-axis in Figure
A.1). First, it is possible to see that although some pictures have a proportion of crowds
as indicated by the STM, if this element is not too salient the topicality is not going to be
high enough to be included in the list of objects describing the picture (i.e., there are many
observations with y = 0 but x > 0). Further, in other cases, although the topicality is high
(indicating a high likelihood of finding a crowd in the picture), the topic proportion might
be appropriately low when we do not actually observe a crowd in the images.

Figure A.1: Topicality (Google API) vs. Topics
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What is also interesting is to observe what happens when instead of analyzing the
mean proportion of topic crowd by ideological alignment, I use “crowd topicality” from the
API. In Figure A.2 I present the results which di↵er substantially from those presented in
Figure 12.

Finally, I would like to briefly discuss another method used by Kriegsmann et al.
(2020). In their paper, these authors use a CNN to classify the type of tumor present in
pictures of brains. As a validation exercise, they broke the images into pieces and used the
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Figure A.2: Ideology and topicality
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CNN to classify each of the pieces. Then they estimated the proportion of cancer types by
picture, as a robustness check of the initial classification (i.e. higher proportions of type A
pieces in an image are reassuring of the overall classification of it as type A).

This approach is extremely creative and can deliver quantities similar to the those
suggested by this article in certain instances. For example, I can break the images of the
caravan into segments, and use a CNN to detect if a crowd appears in each of them. Then,
it is possible to aggregate the information at the picture level and estimate the proportion
of pictures featuring a crowd. Just as with pieces belonging to brain tumors where a single
patch showing a piece of the concept of interest resembles some of the full images used to train
the CNN, the approach can perform optimally in similar instances. But in others this might
not be the case. For example, if the topic of interest is “portraits” or “two-people meetings”,
the pieces conforming a picture of two politicians shaking hands are not meaningful for the
estimation of proportions: I could have a hand, an eye or a piece of a head that the CNN
will not only have to correctly identify but also to aggregate to create meaningful concepts.

When the visual content is more heterogeneous and complex, this approach might
not be adequate, or might require models that are able to recognize a very large number of
objects and even characteristics or parts of them.

5



A.1.3 Using features from CNNs for clustering

Most of the classification of images using deep learning methods have focused on supervised
tasks. However, there are tools that take advantage of the models that have already been
extensively trained to learn about the features in the images to subsequently cluster them
and identify groups. In particular, it is possible to use the weights (or “coe�cients”) and
feature maps from pre-trained models to extract features from a sample of interest as input
for other clustering or grouping algorithms.

As I discussed in the main text, the features derived are not easily interpretable and
thus cannot be coerced into a format that allows the use of mixed-member classification
methods like STMs. However, these features can be used to feed regular clustering routines
like k-means.

To compare the results from this method with the creation of topics through the visual
STM presented in the current manuscript, I used a pre-trained CNN, a ResNet50, to extract
features from the images of the Caravan. A ResNet50 has 48 convolutional layers and has
been trained on a million images from the ImageNet database. In general, this CNN yields
a single label (with the highest probability) out of 1,000 categories for each image under
analysis. The model determines these labels after considering the weights and features of
the images. For the unsupervised setting, the idea is to use those features without reaching
the final classification step. Thus, I will extract the final vector of features to then use them
as input for the clustering method of choice (in this case a regular k-means with 15 classes).

Although the output from this routine is the groups or clusters to which each image
belongs, I can still inspect whether there is overlap with the topics from the STM, as well
as the connection between the two. Figure A.3 illustrates this relationship. For each cluster
from the CNN+k-means procedure, cl, I took the means of all K topic proportions in the
images belonging to that cluster. For example, for cluster 1, “Close-up of people”, I computed
the mean proportion of each of the 15 topics of the STM. Then, I identified the topic with the
highest proportion. Thus, for each cl in the x-axis, the gray point represents the proportion of
the most common topic among the images from that cluster. For example, the most prevalent
topic among the images belonging to the “People cluster” was the “Dense Crowds” (with a
mean proportion of this topic of about 0.19).

Although, it is di�cult to properly compare cluster membership to an actual propor-
tion, the main takeaway from this plot is that there is a very decent correspondence between
the topics identified by the visual STM and the content of the CNN clusters. Moreover,
there are relevant dimensions, like “Border/Fence” that the BoVW identified but the CNN
clustering did not. This could be as a result of the single membership process where other
more salient features define the classification.

A.1.4 Other advantages: Fully unsupervised approach

The BoVW has a feature extraction step that is separate from the final classification. This
means labeled data is not necessary. Thus, a natural application of this approach is for
fully unsupervised analysis. Although CNNs are designed to work as supervised methods,
researchers are exploiting their ability to learn complex features to conduct unsupervised
analyses. Some approaches use popular pre-trained CNNs to learn features from unlabeled
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Figure A.3: Clustering based on CNN features: comparison with STM output
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data that are subsequently fed to unsupervised algorithms (Kiela and Bottou 2014; Zhang
et al. 2018). Others use metadata, like text, to leverage the identification of patterns from
CNNs (Gomez et al. 2017).

While these approaches might be useful for certain tasks, there is still a reliance on
pre-trained models or sources that are based on labeled data or expected categories. This
make them unfit for other fully unsupervised and exploratory endeavors. Moreover, in cases
where the pool of images and the object of study di↵er considerably from those used to train
a given model, the classification results might be biased or inaccurate (Caron et al. 2019). In
turn, the BoVW can be used in a fully unsupervised setting with only the unlabeled sample
under analysis as input.
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A.2 Technical details: detection and description of key points

A.2.1 Key-point detection

The FAST Hessian is suitable detector for the purposes of this article given its two key
properties: scale invariance (i.e. key points should be both repeatable and recognizable at
di↵erent scales of the image), and high computational speed. To identify key points while
preserving the scale invariance property, the FAST Hessian relies on the approximation of
the Hessian matrix of a scale-space function, where space is measured by x = (x, y), and
scale by �. Let I(x, y) be the intensity of the pixel located at coordinates (x, y). Ideally, the
process starts by calculating the second order partial derivatives of the image, by convoluting
it with a second order scale normalized Gaussian kernel. Thus, the “ideal” Hessian matrix
has the form:

H(x, �) =


Lxx(x; �) Lxy(x; �)
Lxy(x; �) Lyy(x; �)

�
,

where, for example, Lxy(x; �) is the convolution of the Gaussian second order derivative,@
2g(�)
@x2 ,

with the image I in point x.1 The determinant of the Hessian of each pixel will then be
used to determine salient points. However, the estimation of this Hessian is computationally
expensive, especially as the size of the kernel grows. Thus, Bay et al. (2006), proposed an
approximation of the second derivative kernels by using “box filter” representations of those
matrices. Figure A.4 illustrates the original and approximated filters.

Figure A.4: Original second order derivative Gaussian filters and approximations

These box filter approximations of Lxx, Lxy and Lyy, denoted as Dxx, Dxy and Dyy

increase e�ciency and speed considerably, and allow us to estimate the determinant of the

1Where g(�) is the pdf of a normal distribution with µ = 0 and standard deviation �.

8



approximated Hessian as follows:

det(Happrox) = DxxDyy � (0.9Dxy)
2

To detect key points, I will build layers of the image by using increasing sizes of kernels as
a way of varying the scale of the original picture (for example, the smallest kernels possible
of size 9⇥9, will correspond to a real valued Gaussian with � = 1.2). Once this scale-space
3D structure is built, a maximal suppression is performed to find the salient points. In
other words, a pixel is considered a key point if its intensity is higher than the one of its 26
neighbors, comprised in the 3⇥3⇥3 cube that surrounds it: 8 along the x and y axis plane,
and 9 across scale layers. The final step involves interpolation of the data surrounding the
key points in order to reach sub-pixel accuracy. Figure 2 in the main text shows an example
of the key points that are found in one of the images in my sample. The green circles
represent the coordinates of the key points. The figure illustrates how most of the key points
are representing edges, corners or regions where color changes significantly. Once the key
points are identified, as in the case of this image, I proceed to extract its features.

In this article I use the RootSIFT descriptor. This is an extension of one of the most
popular descriptors in computer science: the Scale Invariant Feature Transform (Lowe 1999,
SIFT) which has the advantage of being invariant to image translation, scaling, rotation, and
even partially invariant to illumination changes. The RootSIFT was developed by Arand-
jelović and Zisserman (2012) who added two extra steps to the regular SIFT implementation
to drastically improve accuracy: a L1-normalization of the SIFT vectors, and the calculation
of the square root of the elements in each of those normalized vectors.
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A.3 Building a vocabulary: sample of features and clustering

The BoVW requires the researcher to select and cluster a sample of the total features iden-
tified in the images under analysis. Why does the process involve lumping together a subset
of the features instead of using the full set? Suppose that a sample of interest contains im-
ages of dogs, flowers, and humans and that researchers are interested in classifying this pool
according to the actor that each observation depicts. For simplification purposes, imagine
that after completing the steps above a finding is that one common neighborhood across
human photos is (unsurprisingly) a human nose. However, although similar, it is extremely
hard to find two identical noses; even two pictures of the same person would look di↵erent
due to lighting, position, angles, etc. Therefore, the average of those noses is necessary to
accurately represent a general concept of a nose. Thus, we can cluster the features associated
with the nose and take the feature vector of the centroid as the representation of our “visual
word”.

To achieve higher levels of speed and e�ciency I form this vocabulary based on a
random sample of the feature vectors. In general, taking 10-30% of the feature vectors is
accepted as a common practice and it avoids having clusters with extremely similar features
from the same image. However, this number will depend on speed necessities and size of the
data. Given the complexity of the images under analysis, especially in comparison to more
standard canonical datasets, for all the models in this article, I sampled 30% of the features.
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A.4 Emulating the Document-Term matrix: the Image-Visual word

Matrix

The Image-Visual Word matrix (IVWM) emulates the Document-Term matrix (DTM) in
text analysis. Their underlying logic and structure is similar: the units of analysis are in
rows, while each column has an element contained in the full sample. A cell in row i and
column j indicates the number of times that the element in column j appears in observation
i. This can be a count or proportion, either weighted or unweighted.

In the case of a DTM, each row represents a text under analysis, while the columns
are generally words, word stems, sentences, n-grams, etc. that appear in the full pool of
texts. In the IVWM, the rows are images, and the columns are visual words. Figure A.5
illustrates both.

Figure A.5: DTM and IVWM

(a) Document-Term MAtrix

(b) Image-Visual Word matrix
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A.5 Extension and Supplementary Information of Application (Fram-

ing a Movement)

The data used in this article was collected using the News API and manually curated by
the author. The News API is a tool that allows users to retrieve information of events and
news from more than 30,000 sources worldwide. I limited the search to sources in the U.S.
The reports and news are extracted from websites of several prominent outlets such as ABC,
Politico, The New York Times, Fox News, Hu�ngton Post, etc. The metadata includes date,
author, image, headline, the truncated text of the article, original length of the article, and
its URL.

The data was used to feed a structural topic model with 15 topics and three prevalence
covariates: news outlet, date, and ideology of the news outlet. The scores for ideology are
provided by All Sides and are based on surveys asking respondents about their own bias
and how they rate the bias of news sites. Then, this information and the aggregation of the
rankings by ideological group and news outlet are used to determine the average bias rating
of a source. Robertson et al. (2018) show that All Sides scores have a strong correlation
with other validated measures of media bias. The data for this article include 424 articles
published by 33 sites with di↵erent ideological groups: left leaning (center-left and left,
n=16), center (n=10), and right leaning (center-right and right, n=5). The other two have
not been rated. Examples of outlets in the “Right” category include Breitbart, Fox News

and the Washington Times whereas the “Left” includes outlets such as the Hu�ngton Post,
Politico, and MSNBC. The “Center” covers outlets like Bloomberg, CNBC, and USA Today.
For more information regarding the distribution of number of articles per ideological group,
see the Appendix.

A.5.1 Descriptive Statistics: BoVW

Table A.2: Summary of number of words in the IVWM

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Number of visual words 688 233.960 130.270 16 132 310.500 816
(per image)

Mentions of visual words 2, 000 80.480 38.700 0 54 101 452

A.5.2 STM Results (cont.)

The most representative images per topic, and most frequent and exclusive words for topics
7-15 are presented below in Figure A.6 and Figure A.7.

Although most of the topics are sensible and meaningful for the study of visual fram-
ing, I also find a few that are less relevant than the others. For example, there is a topic
whose most representative images are pictures with banners and ribbons that typically ap-
pear at the bottom of news shows. Although this “TV screenshots” topic is not a politically
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relevant dimension for the study of portrayals of immigration, it makes sense from the com-
putational viewpoint: there are elements of pictures with high proportions of this frame such
as figures with text at the bottom that make them look similar.
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Figure A.6: Most representative images per topic

Miscellaneous I: Indoor Portraits

Miscellaneous II: People with fuzzy backgrounds

Text/TV Screenshots

Crowds Outside

Infographics

Small group

Images with texture

Rectangular shapes

Graphs and plots

14



Figure A.7: FREX Visual Words per Topic

Miscellaneous I: Indoor Portraits

Miscellaneous II: People with fuzzy backgrounds

Text/TV Screenshots
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Graphs and plots

Note: The numbers of the topics in the replication file are 2, 3, 5, 7, 8, 10, 12, 14 &
15.
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I analyze the use of the topic “crowd” over time to identify whether there is any
variation in the coverage of the magnitude dimension of the caravan. Figure A.8 shows on
the y-axis the proportion of topic “dense crowd” in the full corpus of images at di↵erent points
in time (x-axis). The red dashed lines show relevant events that received wide coverage in
the U.S. media, such as the arrival of the caravan to Mexico City. It is interesting to notice
that these events correspond to peaks in the dataset, suggesting a stronger focus on the size
and magnitude of the caravan when its salience in the media market is higher.

Figure A.8: Use of topic “crowd” over time (2018)
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Note: The line shows the trend of the topic “crowd” from October to November of
2018. The gaps between points indicate that there was no coverage in that period.
The dashed lines indicate important dates in the time line of the migrant caravan
coverage and development.
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A.6 Structural Topic Models and Latent Dirichlet Allocation

In this article, I present an application of the framework using a Structural Topic Model for
the identification of “frames” in images. Although the method of constructing the Bag of
Visual Words as an input of several analyses is the main focus of this article, in this section
I o↵er a discussion of the suitability of STMs for the particular substantive application that
I present in the main text.

First, to study the way in which media uses visuals to frame stories, we must un-
derstand the type and prevalence of the themes that these visuals contain. Just as in text,
topics are a natural way to capture these themes. Further, given that I am interested in how
the ideological leaning of a media outlet a↵ects the particular distribution of topics in each
image, a topic modeling tool seems appropriate for the endeavor.

Notice that the topic modeling approach outputs proportions of di↵erent topics in
each image (a continuous measure bounded between 0 and 1 for each of the k topics), rather
than a global set of descriptors of whether a given object or theme k appears in an image.
Thus the proportion of images featuring a crowd that an outlet j publishes is not going to
be equal or comparable to the mean proportion that a crowd occupies in the pictures that j
publishes.

Although LDA provides those proportions, STM is more suitable for testing whether
ideology a↵ects the proportion of topic crowd in an image for the following reasons. First,
LDA assumes that topics within a document are independent of one another, an assumption
that is hard to fulfill in most of the applications in social sciences. STM weakens this
assumption and allows for independence conditional on covariates. Second, LDA implies
that a topic k for document i is defined by the same words as this topic in other documents
�i. Once again, this is a stringent assumption that STM does not require and that fits
our purposes given that the theoretical motivation is that images might portray the same
visual topic (e.g., water) but by using di↵erent words (e.g., river, lake). Finally, LDA states
that topics can be modeled entirely based on the text of the document. This will imply
that the frames that we see in the images are only a function of the visual words that
we created, and are not a↵ected by other factors (including the characteristics of whoever
produced the picture, time of the events, date, location, etc.). The theoretical motivation
and expectations of the research exercise is to indicate that metadata, such as date and,
in particular, ideological stands of the news outlets producing and selecting the images,
influence the words and the topics that we identify in them. Thus, a STM provides the set
up for including this information and testing their e↵ect in the generation of topics. This is
a feature that also captures the hypothesis Ideology ! V isualFrames more appropriately.

Beyond these arguments, the STM set up allows me to illustrate the benefits of the
BoVW as a dimension reduction technique for images given that social scientists use the
tool often and are familiar with their structure, implementation, and results. As of August
10, 2022, Google Scholar reports that the three most prominent pieces related to STMs
(Roberts, Stewart, and Tingley 2019, Roberts et al. 2014, and Roberts, Stewart and Airoldi
2016) have collected 2,817 citations. Further, the use of STM extends and reinforces the
main contribution of the article regarding the “translation” of tools for text to images.

However, there are concerns regarding the potential sensitivity of the topic distribu-
tion to the prevalence covariates in the structural model setting that the researcher selects.

17



To ameliorate this, I conduct a regular Latent Dirichlet Allocation (LDA) analysis and a
subsequent regression of the identified “crowd” proportions on the ideological leaning of the
media outlets. The topics, most frequent words, and most representative images are very
similar to those from the STM.

The table below shows two columns with the results from regressing two outcome
variables on ideological slant: the first column, the proportions of topic crowd per image
from the STM model with prevalence covariates, and the second column, the proportions of
topic crowd from a vanilla LDA model. The results are remarkably similar and lead to the
same substantive conclusions. This is one case where the decision between LDA or STM
does not a↵ect the implications of a study, but the decision to use one over another was
impacted by underlying assumptions and a specific theoretical framework.

Table A.3: Comparison of results STM vs LDA: Relationship between outlet’s ideology and
proportion of topic crowd in images

STM LDA

(1) (2)

Center right �0.114⇤ �0.114⇤

(0.047) (0.047)
Center �0.090⇤ �0.091⇤

(0.035) (0.035)
Center left �0.078⇤ �0.079⇤

(0.035) (0.036)
Left �0.106⇤ �0.106⇤

(0.039) (0.039)
Not rated �0.211⇤ �0.211⇤

(0.081) (0.081)
Constant 0.166 0.169

(0.209) (0.210)
Date Yes Yes
N 688 688
R2 0.042 0.042
Adjusted R2

�0.007 �0.007
F Statistic (df = 33; 654) 0.858 0.862

Bolded coe�cients indicate p<0.05
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A.7 Topic modeling – label validation

Looking at both the most representative images and the most frequent visual words help with
the labeling of the topics. This, however, is not a trivial task and is not immune to the user’s
biases and subjective considerations. Thus, a labeling strategy is to expose human coders
to several representative images of each topic and ask them to provide words describing
the content of each image. After that, they can assess a cluster of images belonging to a
particular topic and give a label to it. The results from this process for labeling the topics
of the application are in Table A.4 and Figure A.9 below.

Four coders (three graduate students and one professor) completed those two labeling
tasks. I determined the final label of each topic based on the responses given by the coders,
as well as my own qualitative inspection of both the most representative images and visual
words per topic. I noticed that o↵ering the visual words had an impact on the coders’ answers
and gave some qualifiers to their original responses. Instead of saying “people talking”, the
visual words helped to complement the answers with other information “people talking in
an indoor/dark setting”.

Table A.4: Top words and labels per topic

Topic Most frequent words Labels by coders Final label
1 wall, people, fence, vertical, ground, bars border, fence, graph, speech Border
2 people, walking, plants, pavement, road, shoes caravan, walking, America,

kids
Groups walk-
ing

3 sky, mosaic, people, map, cloud, pavement control, sky, cloud,
Graphs/Maps and Land-
scapes

Sky/Sand

4 people, plants, walking, water, night, person domestic, walking, Contrast
images (Dark/Light), inter-
view

Small
groups/Individuals

5 dark, person, trump, background, tie, face politics, Trump, press confer-
ence, Clinton

Portrait with
dark back-
ground

6 people, crowd, plants, rally, trump, walking sides, crowd, packed, rally Dense crowd

Figure A.9 show the word clouds of all the responses given by coders (weighted by
frequency).

This is only one way of interpreting the labels and results from the visual STM.
However, there are other methods like the one proposed by Ying, Montgomery, and Stewart
(Forthcoming) that take advantage of crowd sourcing for the labeling and validation of topics.
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Figure A.9: Word clouds of words describing most representative images per topic
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A.8 Diagnosis and practical guidance – the impact of parameters

on topic discovery and estimation

In this section, I present an analysis of the impact that several decisions throughout the
process of the BoVW have on 1) topic quality, and 2) the estimates of the e↵ect that preva-
lence covariates, like news outlet’s ideology, have on the generation of visual frames. For
the former, I use statistics like semantic coherence, exclusivity and residuals as Roberts,
Steward, and Tingley (2014) suggest.2. For the latter, I estimate the di↵erences in mean
“dense crowd” proportions between right leaning outlets and left leaning outlets. Recall that
Figure 12 in the main text shows a positive and reliable di↵erence between these two types of
outlets indicating that right leaning outlets tend to publish higher proportions of the “dense
crowds” frame in the articles they publish about the migrant caravan.

The areas I explore and compare are a) number of key points detected in an image,
b) number of visual words in the vocabulary, c) number of topics in the visual STM, and d)
labeling the final topics.

A.8.1 Detecting key points

There are two important things to consider during the key point detection: 1) the type of
salient regions to identify, and 2) the precision of this identification. The first one relates to
the definition of what constitutes a salient region. For example, certain applications require
an accurate identification of “corners” in an image (e.g., identification of buildings and
houses, captured with rectangular shapes). Others, however, rely more heavily on “blobs”
(e.g., classification of texture). For more complex content, as in the case of most social
sciences applications, the detection of all edges, blobs, and corners is in general more fitting
(Olaode, Naghdy, and Todd 2014). The final definition of a salient region determines the
type of detector to use. For example, the FAST and GTTT detectors are used to detect
corners in images, while DoG and FAST Hessian focus on the detection of corners, edges,
and the combination of both.

The second feature, the precision, will have an impact on the number of key points
that the detector identifies in each image. The decision should consider what features are
substantively relevant to the objective of the study. For example, the FAST Hessian with
a low threshold captures even small changes in pixel intensity and therefore yields a large
number of key points. A visual inspection of a small sample of images and the key points
detected in each of them using di↵erent thresholds is helpful to address this issue. Consider
Figure A.10 where a low threshold of 300 yields a very large number of key points detecting
finer features such as lines on the pavement. In contrast, a higher threshold of 3000 leads to
the identification of more prominent features like the people and cars in the picture.

The Hessian threshold is a parameter that regulates the accuracy of the key point
detection. In other words, only features whose Hessian threshold is larger than the defined
value are retained by the SURF detector. This means that the larger the threshold, the lower
the number of key points identified. Figure A.10 in the main text illustrates the points that
a SURF detector identifies when this threshold changes. It is clear from these pictures that a
low threshold of 300 yields a high number of points detected. Substantively this means that

2Held-out likelihood should be used for model selection but I will not include it for comparison purposes
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Figure A.10: Comparison of key point detection outputs with di↵erent thresholds

(a) Original image (b) Threshold = 300

(c) Threshold = 1000 (d) Threshold = 3000

Credit, original image: Johan Ordonez (AFP/Getty Images).

the detector considers even minor changes in pixel intensity as salient. In contrast, a detector
with a large threshold focuses on the most prominent pixel intensity changes and therefore
retains only the most salient key points in an image. The decision to have a higher or lower
threshold depends on the research objectives of the user as well as on the nature of the images
under study. For example, images in canonical computer vision datasets like CALTECH 101
tend to depict one or a few close-up objects with low complexity. In this case, a threshold
between 300 and 500 would retain an adequate number of features to make subsequent
classifications. However, as Figure A.10 shows, the complexity in the composition of the
images under analysis is high, which leads to a very high number of key points identified
when using a low threshold. Several of these key points do not contribute with meaningful
information about the image (e.g., points along the lines on the pavement). However, a high
threshold misses a few key points that provide information about the environment and set
up of the event depicted in the picture. Thus, a number in the middle is an adequate option.

How would the number of key points impact the construction and application of the
BoVW? In a nutshell, more key points represent more information about the picture. This
extra information is represented by a larger number of features that especially impact the
clustering process. First, the process is more computationally expensive due to the higher
volume of features. Second, for a fixed number of clusters (visual words) v, the within-cluster
sum of squared errors (WSSE) will be larger as the number of key points increases. Thus,
if the objective is to achieve low WSSE while also keeping a low number of visual words, a
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lower number of key points is preferred.
Consider Figure A.11. For the same number of clusters v (on the x-axis), the WSSE

is the lowest when using a threshold of 3,000 (around 19,000), and the highest with one of
300 (around 66,000). However, it is interesting to notice that while in absolute terms, as
expected, the model in the bottom panel minimizes the WSSE, all models show a similar
trend in the reduction of WSSE as the number of clusters increases. From the plots and
using the “elbow” method, the chosen number of clusters would be 2,000 in all cases.

The e↵ects on topic quality are illustrated in Figure A.13, where the di↵erent colors
correspond to the di↵erent thresholds. Although the di↵erences in exclusivity between the
models are not stark, it is worth highlighting that this indicator is higher when there are
more key points. For semantic coherence, the di↵erences are larger even when comparing
models with the same number of visual words. In this case, those with lower thresholds show
more semantic coherence. Given that more key points retain more information about the
picture, it is not surprising to find that the topics are better described when using additional
features. However, this is also conditional on increasing the number of visual words in the
vocabulary to preserve the cohesiveness of the clusters identified.

Figure A.11: Comparison of WSSE by Hessian threshold
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A.8.2 Building a vocabulary

For the visual vocabulary, the first consideration based on the particular research question
should be from what images it will be constructed: from a corpus of reference or the corpus
of interest. If the former, the next choice is to determine the type of images that will form
it. As explained above, each of the feature vectors in an image is associated with a visual
word. Thus, it could be the case that a given feature is linked to a visual word that does
not properly represent it if there are no better candidates.3 Therefore, it is crucial to build
a vocabulary with images relevant to the target pool under study.

Another consideration is the number of clusters or “visual words” to extract. A richer
vocabulary has more power to discriminate and distinguish features, but a more parsimonious
one focuses less on the details that each visual word is capturing. The decision to have a more
fine-grained vocabulary depends on the substantive motivation of a project: is it relevant to
keep features of a given object with light and dark backgrounds as separate visual words? If
only the object itself is a relevant component of the visual theme then it might be adequate
to keep them together. If instead the background is relevant as a time-space indicator, then
the separation is more useful.

Researchers can also rely on commonly used tests providing an “optimal” number of
clusters. Figure A.12 illustrates the “elbow” method. The x-axis of the figure shows the
number of potential clusters/visual words, and the y-axis the within-cluster sum of squared
errors (WSSE). A lower WSSE is desirable suggesting more cohesiveness of a cluster (i.e.
smaller distances between the features and the cluster centroid). The elbow method consists
of determining a “break point” or “elbow” in the plot where the WSSE decreases sharply
and starts flattening afterwards. In Figure A.12 we observe a strong jump between 1000
and 2000 visual words but a less intense change from 2000 to 3000. Thus, this test informs
our decision to select an appropriate number of visual words in our vocabulary (in this case,
2000 visual words).

Using the elbow method, I find that the number of clusters have an e↵ect on the
discovery of topics. While there are topics and frames that can be clearly identified regardless
of the parameter definition, even in small models like a STM with 5 topics, there are still
di↵erences in the composition of the topics across the di↵erent vocabularies. In this particular
case, while topics like “dense crowd”, “sky” or “dark background” where constant across
the three visual vocabulary categories, the model with the smallest vocabulary yielded a
topic whose distinctive features corresponded to light backgrounds and “sand” like texture.
In contrast, the longer vocabularies containing pieces with text and drawings on similar
backgrounds contributed to the formation of a topic with “maps and infographics” rather
than just “light backgrounds”. When the number of key points and visual words increase, the
information retained from the pictures also increase and lead to a finer distinction between
pictures. This might be something desirable depending on the characteristics of the study
and the research objectives of the user.

Here I analyze the impact that this number might have on topic quality as well as
on the results from e↵ect estimation of prevalence covariates in topic models. Figure A.13
shows the result for the former. With respect to exclusivity, the lowest levels come from the

3Although this could be improved by using “acceptance thresholds,” it is still advisable to build sensible
and conceptually coherent vocabularies.
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Figure A.12: Within-cluster sum of squared errors by number of clusters
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models with the smallest number of visual words. The relationship between this parameter
and exclusivity does not seem to be linear. While the simpler vocabulary has the lowest
levels of exclusivity, the models with 2,000 words (middle category) evidence the highest
levels of exclusivity. In contrast, the semantic coherence seems to be the highest among
models with the shortest vocabularies, and it decreases as the number of visual words grows.
This is in line with the intuition that more words, and the added complexity that these
represent, make topics less cohesive given the increased number of components to consider.
However, it is important to highlight that these statistics also interact with other parameters
such as key point detection. For example, the di↵erences in semantic coherence are not large
between models with 500 visual words and Hessian thresholds of 300 or 1,000. However,
this indicator decreases sharply when the Hessian threshold is 3,000. The lowest levels of
semantic coherence are found in models with low number of key points but high levels of
clustering. Overall, these findings highlight the importance or running multiple diagnosis
exercises and comparisons between parameters to understand the particular e↵ects of certain
choices on indicators like the ones discussed in this section.

With respect to the impact that the number of clusters has on the estimation of an
e↵ect of a prevalence covariate on a topic of interest, the results are remarkably similar within
number of topic and Hessian threshold groups. Figure A.14 shows three plots corresponding
to di↵erent Hessian thresholds. The lowest with 300 contains the highest number of key
points while the one with 3,000 has the lowest. The rows in each plot correspond to a STM
initialized with k topics. The estimates with their respective confidence intervals correspond
to the di↵erence in “dense crowd” proportions used in images published by right leaning
and left leaning outlets. While there are strong di↵erences between the results of models
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Figure A.13: Quality indicators across BoVW designs
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with high and low numbers of topics, within each of these categories the di↵erences between
number of visual words are very small. In a few cases, the results and their implications are
di↵erent depending on the length of the vocabulary (based on statistical significance), but
for the most part the results and findings are the same across categories. This is also due to
the distinctiveness of the topic under analysis. “Dense crowd” was a topic that was clearly
identified in all the topic models regardless of the specification of the parameters. However,
these results might di↵er in the cases where the parameters substantially a↵ect the topic
structure or composition. Further investigation regarding these e↵ects is required.

A.8.3 Determining the number of visual frames

Another parameter to consider is the number of topics to extract from the visual STM. Here,
I follow the practices recommended by Roberts, Stewart, and Tingley (2014) involving the
evaluation of aspects like semantic coherence and exclusivity. Using the functions embedded
in the STM package paired with the functions provided in the replication code of this article,
researchers can obtain average measures of mean held-out likelihood, semantic coherence,
exclusivity, and residuals from models with a varying number of topics. Visual inspection
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Figure A.14: Comparison of “ideology” e↵ects by number of topics, vocabulary, and Hessian
threshold
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of plots with this information such as those in Figure A.13 allows researchers to select an
“optimal” number of topics that preserve parsimony, and maximizes semantic coherence,
held-out likelihood and exclusivity. Researchers can take these statistics as guidance for
their decision but should also complement them with considerations of their research needs
and qualitative inspection of the topics using the FREX visual words and most representative
topics.

To inspect the e↵ect of this parameter, I implemented a series of topic models varying
the number of topics, and across di↵erent BoVW specifications with respect to number of key
points detected (Hessian threshold) and number of visual words in the vocabulary. From

27



visual inspection of the topic composition, there are substantive di↵erences between the
models. While smaller models with 5 topics cluster many di↵erent pictures into a “crowd”
topic containing visual words with small human bodies and granular textures, increasing
the number of topics allows for a more careful di↵erentiation of topics like “crowd”. For
example, setting the STM to 15 topics allows for the identification of di↵erent types of
crowds: “groups walking” that not only contain visual words of people but also of pavement,
or “outside crowds” where the focus is more on environmental factors like the sky than the
people. The di↵erences between these frames and the role they play in the research projects
should help with the user’s decision regarding the selection of topics. Other methods aimed
to assess topic quality, such as semantic coherence, held-out likelihood, and exclusivity are
also suggested as part of the STM routine to evaluate the optimal number of topics to keep
as illustrated in Figure A.13.

Finally, beyond the di↵erences that exist in topic quality and composition, it is also
important to assess how the number of topics a↵ects some of the potential inferences that
researchers can make about the e↵ect of prevalence covariates on the generation of visual
frames. In this case, if I focus on whether the ideology of the news outlet (right vs. left)
has an e↵ect on the proportion of topic “dense crowds” in the pictures that such outlets use,
and compare these di↵erences between topic models, I get some interesting results. First,
although the results are di↵erent between model set ups, in most of them the substantive
finding that right leaning outlets publish pictures with higher proportions of dense crowds
than left leaning outlets does not change. Second, the e↵ect size decreases as the number
of topics increases. This is a natural consequence of increasing the number of topics: the
proportions of a single topic go down as the possibility of containing other similar but new
themes arises. Thus, finding a di↵erence distinguishable from zero as the proportions of a
given topic become smaller gets more complicated as the number of topics increase. In Figure
A.14, it is possible to observe that although there is still a positive and reliable di↵erence
between right and left outlets, this di↵erences becomes indistinguishable from zero when
there are 50 or more topics. This is solely based on the estimation of the proportion “dense
crowd” topic and does not consider summing up the proportions of topics associated with
“crowds”.
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Infographics

MSNBC Wall Street Jour-
nal/NBC News

USA Today USA Today

Small group

Sandra Cu↵e (Al
Jazeera)

Rebecca Blackwell
(AP)

CNN Rebecca Blackwell
(AP)

Images with texture

AFP/Newsweek Getty Images CBS/AP Ryan F. Smith
(AFP/Getty Images)

Rectangular shapes

CNN Drew Angerer (Getty
Images)

NBC Global Initiative

Graphs and plots

AP The Wall Street
Journal

USA Today Vice News
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