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A Additional Theoretical Results

This section contains additional theoretical results. First, we provide a more detailed
exposition of the Gaussian model. It unifies our presentation in the main text with more
classical presentations of hierarchical/multilevel models (e.g., Hazlett and Wainstein 2022).
It also allows us to derive our justification for robust/clustered standard errors as well as
providing new standard errors for (traditional) KRLS. Second, we discuss the alternative
estimation methods available in mgcv (gam vs bam). Finally, we explain how our software
estimates average marginal effects.

A.1 Alternative Standard Errors

We consider the following Gaussian outcome model for our discussion on standard errors
following Hazlett and Wainstein (2022). Extensions to non-Gaussian outcomes can be
made using standard arguments (see Wood 2006). We do not assume any special structure
on Ω but are more general than the main text insofar as Σ need not be diagonal. We
assume that Ω and Σ are known and full rank. A rank-deficient Ω can be addressed via
an eigen-decomposition and adjusting the fixed effect design matrix X. Σ = σ2I and
Ω = 1/σ2Sλ recovers the model in the main text (Equation 4b).

y ∼ N (Xβ +Zα,Σ) (A.1)

p(β) ∝ 1; α ∼ N(0,Ω−1) (A.2)

The penalized maximum likelihood estimator is shown below, mirroring Equation 5.

[
β̂
α̂

]
=

[
XTΣ−1X XTΣ−1Z
ZTΣ−1X ZTΣ−1Z +Ω

]−1 [
XT

ZT

]
Σ−1y (A.3)

Despite our different presentation, it can be easily verified (see also Wood 2017, p.80-
81) that β̂ and α̂ are identical to the standard multilevel estimators (e.g., Hazlett and
Wainstein 2022, p. 51). In terms of appropriate estimators for the variance of β̂ and α̂,
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Wood (2006) suggests two options; a “Bayesian” estimator that is the inverse of the Hessian
of the log-posterior and a frequentist estimator. We consider each in detail. First, the
Bayesian estimator VB is shown below. This is justified based on the posterior distribution
of {β,α} given y if Σ and Ω are known (Wood 2006).

VB =

[
XTΣ−1X XTΣ−1Z
ZTΣ−1X ZTΣ−1Z +Ω

]−1

; Vβ
B =

(
XT

[
Σ+ZΩ−1ZT

]−1
X

)−1

Note that the upper left-block, corresponding to the estimated variance of β̂, denoted
as Vβ

B is identical to the “standard” multilevel model estimator for β̂ (see Wood 2017, p.
80 and Hazlett and Wainstein 2022, p. 52). Second, Wood (2006) suggests a “frequentist”
estimator where, for some choice of variance of y denoted as Var(y), the estimator VF is
shown below.

VF = VB

[
XT

ZT

]
Σ−1Var(y)Σ−1[X,Z]VB

There are different possible choices for Var(y). Following Wood (2006), we can assume
the model is correct, condition on β and α and thus use Var(y) = Σ. We denote this
estimator as VWood

F . When comparing VB and VWood
F , Wood (2006) suggests that VB

is preferable insofar as it reflects a coherent Bayesian model and the VF estimator is
likely to have considerably undercoverage due to the fact that neither E[β̂] ̸= β nor
E[α̂] ̸= α. A variety of work has corroborated this suggestion empirically and theoretically
(see, amongst others, Wood 2017, Ch. 6.10 or Marra and Wood 2012). VB has been shown
to have usually rather good frequentist coverage despite coming from a regularized model.
In general, this is our preferred estimator as it is naturally derived from our Bayesian
and hierarchical interpretation of KRLS. However, VF is useful insofar as it lends itself
to “robust” estimators by choosing a specific choice of Var(y) that does not hue to the
assumptions of the model. For example, if one suspected heteroskedastic errors, Var(y)
could be swapped with the usual “meat” of the squared residuals, possibly scaled by a
finite sample correction (Cameron and Miller 2015).

This idea is not novel to our paper, although we think it is perhaps underappreciated
in the literature: Hazlett and Wainstein (2022) consider it in the case of clustered standard
errors and a hierarchical model with a single random effect. Our formula, with the same
corresponding “meat”, recovers an identical variance matrix on β̂ to their proposal in
Equation 8 (p. 51) with some re-arrangement. However, a benefit of this formulation is
that the joint uncertainty on β̂ and α̂ is quantified so any quantity of interest that includes
both terms (i.e., most marginal effects and predicted values) can be fully incorporated.

Our justification does not assume any particular structure on Ω or Σ so applies to
generic generalized additive models as other types of robust standard errors (e.g., multiway
clustering, Conley standard errors for spatial dependence, etc.; Cameron and Miller 2015).
Following the arguments in Wood (2006) that generalize VF and VB to non-Gaussian
outcomes, one could also apply our logic to non-Gaussian outcomes. Exploring these
alternative standard errors in more detail is an interesting area for future research.
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A.1.1 Implications for Traditional KRLS

We briefly consider the implications for traditional KRLS. Beyond justifying (cluster) ro-
bust standard errors, there is a more subtle point about the appropriate “regular” standard
errors for KRLS. Hainmueller and Hazlett (2014, p. 153) propose frequentist standard er-
rors, i.e. VF assuming Var(y) = σ2I. Noting that in their model, β does not exist (and
J = 1), Z = K, Ω = λ

σ2K, and Σ = σ2I, the possible variance estimators are shown
below where VHH is the suggestion in the original paper and coincides with VWood

F .

VB = σ2 [KK + λK]−1

VHH = VWood
F = σ2 (K + λI)−1 (K + λI)−1

(A.4)

While exploring the coverage properties of these estimators in detail is outside of the
scope of this paper, we note that the suggested variance-covariance matrix from Hain-
mueller and Hazlett (2014) is thus not the standard recommendation for generalized addi-
tive models (VB) and thus may have worse coverage properties than the Bayesian alterna-
tive. We examine this in a simple stylized example. We use a bivariate smoothing example
from mgcv, shown below. We draw 250 observations indexed with i ∈ {1, · · · , N}.

yi|xi, zi ∼ N (f(xi, zi), 1) ; xi ∼ Unif(0, 1); zi ∼ Unif(0, 1) (A.5a)

f(x, z) = πσ2
xσ2

z ·
(
1.2 · exp

[
− (x− 0.2)2

σ2
x

− (z − 0.3)2

σ2
z

]
+ 0.8 · exp

[
− (x− 0.7)2

σ2
x

− (z − 0.8)2

σ2
z

])
(A.5b)

In this case, we compare the coverage over the response surface itself, i.e. over the
Cartesian product of a grid of 40 evenly spaced values of x (from 0 to 1) and 40 evenly
spaced values of z (from 0 to 1). We repeat the simulation 200 times, i.e. generate 200
sets of y and report the average coverage on the predicted values across all simulations.

We consider KRLS with its default standard errors (VHH), KRLS with VB, gKRLS with
default standard errors (VB), gKRLS with default standard errors and the two variables xi

and zi also included linearly outside the kernel as fixed effects. This latter model is more
comparable to the default splines in mgcv where the null space of the penalty contains
an additive linear model. In this specification, as λ → ∞, the model approaches a linear
additive one in x and z versus an intercept only model for standard (g)KRLS. We finally
compare against the tensor smoothing spline suggested by gam. Table A.1 shows the results.
It reports the size of the average standard error on a predicted value, the coverage averaged
across all points and simulations, and the mean absolute error (MAE) in prediction.

It illustrates the expected problem with KRLS’s default standard errors, VHH . While
the point estimates are of high quality (better than gam), the coverage is very poor. By
contrast, simply replacing the variance estimator with VB immediately improves coverage
dramatically—albeit remaining below nominal. In terms of gKRLS, we see that it performs
equivalently to KRLS in performance—beating mgcv—and has similar coverage to the
KRLS with VB. The model that includes xi and zi linearly outside of the kernel (gKRLS
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Table A.1: Performance of Methods for Bivariate Smooth

Method Coverage MAE Average SE
KRLS (default) 0.526 0.170 0.086
KRLS (Bayes SE) 0.859 0.170 0.167
gKRLS 0.850 0.175 0.182
gKRLS + Linear 0.931 0.218 0.261
gam 0.939 0.234 0.277

Note: The coverage proportion of a 95% confidence interval across the entire grid of test values is shown.
The mean absolute error (MAE) in prediction and the average standard error for each prediction is shown.
These quantities are all averaged across 200 simulations.

+ Linear) has slightly worse performance but close to nominal coverage and improves in
terms of MAE upon the tensor product smooth (gam).

Figure A.1 plots the average coverage for each observation by the true value; it shows
that for more extreme fitted values, the coverage of KRLS and gKRLS is increasingly poor.
Using the Bayesian standard errors improves KRLS considerably although it is still usually
below nominal.

Figure A.1: Coverage by True Value
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Note: The coverage proportion for each observation given the 95% confidence interval on the predicted
value, averaged across 200 simulations, is shown. The true fitted value is on the horizontal axis.
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Finally, we use a simple example that illustrates the importance of clustered standard
errors. Sticking to the above simulation, we assume that there is a group g that is drawn
randomly from one of forty clusters (g ∈ {1, · · · , 40}). For two observations in the same
cluster, our generative model assumes they are correlated with ρ = 0.6 and are otherwise
uncorrelated. We re-estimate the same models from before, but also consider cluster-robust
errors for gam and gKRLS. We see from Table A.2 that cluster-robust standard errors improve
the coverage for the gKRLS and mgcvmethods. We have written additional software to allow
mgcv methods (gam and bam) to be used with the sandwich package. Without our software,
there is a bug (at the time of writing [April 2023] affecting at least versions 3.0.2 and older)
that results incorrect robust/clustered standard errors for Gaussian outcomes and certain
models with non-canonical links.

Table A.2: Cluster-Robust Errors for Smoothing Methods

Regular SE Clustered SE
Method Coverage MAE Average SE Coverage MAE Average SE
gam 0.830 0.159 0.146 0.910 0.159 0.177
gKRLS 0.775 0.148 0.126 0.879 0.148 0.153
gKRLS + Linear 0.844 0.156 0.151 0.909 0.156 0.172
KRLS (default) 0.522 0.150 0.072

Note: The same quantities from Table A.2 are shown. The first three columns consider regular standard
errors; the final three consider the cluster-robust version.

A.2 Alternative Estimation Methods

The main text notes that mgcv provides two methods for estimation: gam and bam. gam is
designed to be a highly stable numerical procedure. However, it is sometimes slow especially
when the number of observations is very large (e.g., the simulations in Appendix B) or when
the number of parameters is very large (e.g., the replication of Newman 2016). The latter
may often occur when a random intercept with many levels is included. In these cases,
some alternative estimation technique is needed. Wood, Goude and Shaw (2015) develop
bam to address these limitations. The two main innovations are as follows (see Wood 2017,
p. 290 for a concise summary): First, bam slightly alters the estimation procedure for λ.
In the initial exposition in the main paper, for a proposed λ, β̂λ and α̂λ are estimated
to convergence—e.g. using penalized iteratively re-weighted least squares (PIRLS) with
multiple iterations for a non-Gaussian outcome. This can be expensive so bam optimizes λ
after each step in PIRLS estimation. This is known as “performance orientated iteration”
and can be less numerically stable than the main algorithm (Wood, Goude and Shaw,
2015).
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Second, and perhaps more interestingly, bam never forms the entire design matrix.
Rather, it splits the data into chunks of size p (10,000 by default) and then builds the
matrix iteratively as needed. This allows it to exploit multiple cores—although we do not
use this in our paper. This can lower the memory footprint of the algorithm considerably.
One point of caution, however, is that the basis for the penalized terms (i.e., the hierarchical
terms) are formed only on a random sample of chunk size p taken at the start of the
algorithm. For our purposes, this means that bam freezes the size of the sketching matrix
at δ(p)1/3. If p = 10, 000 (default), this is around 21δ if N > 10, 000. This chunk size
can be modified using arguments to bam but may slow down the algorithm somewhat.
Thus, while bam can be helpful for large-scale problems, one should be careful to check any
potential impacts of chunk size p (perhaps by increasing δ).

We examine bam systematically throughout the appendices. The main places where the
chunk size issue could cause different results would be for (i) the simulations in Section 4
where N > 10, 000 and (ii) the analysis of Gulzar, Haas and Pasquale (2020) where N =
30, 000 for the full-sample analysis (although note that N < 10, 000 for the algorithms
relying on sample-splitting). We find little evidence of difference between bam and gam.

A.3 Calculating Average Marginal Effects

Our accompanying software provides the ability to calculate average expected outcomes
(e.g., average predicted probabilities) as well as “marginal effects” (e.g., first differences).
For continuous predictors, we also include the ability to calculate the average marginal
effect, i.e., the average of the partial derivative of the prediction with respect to a single
covariate (Hainmueller and Hazlett, 2014); Appendix D provides a specific example.

Following existing software, we do this using numerical differentiation; Leeper (2016)
provides a detailed discussion. This is especially important for complex models where a
single covariate could appear multiple times and using an analytical approach is difficult to
implement in a flexible fashion. We use following formula following Leeper (2016), shown
for a two argument function for simplicity:

∂f(x, y)

∂x
= lim

h→0

f(x+ h, y)− f(x− h, y)

2h

In practice, some small h is used to approximate the derivative. The default setting
for h is h = max(|x|, 1)

√
ϵ where max(|x|, 1) ranges over data distribution that one is

marginalizing over (following Leeper 2016) and ϵ is machine precision. h can be modified
by the user if desired. Our package includes a function legacy marginal effect that can
calculate the analytical average marginal effect in the simple case of a single kernel and
some limited choices for outcome (e.g., Gaussian). Standard errors and confidence intervals
on these quantities (or their averages) are calculated using the delta method.
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B Additional Simulations: Scalability of gKRLS

This appendix provides additional simulations to complement Section 4. Appendix B.1
defines how we measure model performance and shows the error on estimating the average
marginal effect. Appendix B.2 shows the performance of alternative sketching methods as
the dataset grows to one million observations. Appendix B.3 breaks down estimation time
by different parts of gKRLS.

B.1 Assessment of Model Performance

We consider two ways of assessing the performance of gKRLS following Hainmueller and
Hazlett (2014). First, the main text considers the out-of-sample predictive accuracy. We
do this by generating a dataset of identical size to the estimation data using the same data
generating process. We then calculate the prediction for each observation in the test data
and summarize the performance using the root mean squared error (RMSE).

Alternatively, we compare the estimated average marginal effect to the true value. The
true value is computed by calculating the marginal effect for each observation in the training
data (i.e. the analytical partial derivative of the data generating process with respect to
the covariate) and then taking their average. Computing this quantity with respect to an
out-of-sample dataset, i.e. the average effect on an identically sized population not used
to estimate the original model, returns nearly identical results.

Figure A.2 shows the results for the five models in the main text on the root mean
squared error (RMSE; averaged across fifty simulations and both variables) of the esti-
mated average marginal effect. It shows a worse performance of bigKRLS with truncation
(“bigKRLS (T)”) for some sample sizes—although less dramatically than in the main text.

B.2 Alternative Sketch Methods

Yang, Pilanci and Wainwright (2017) raise a number of issues with random sketching—
especially in the case of complex data where sub-sampling is likely to yield a bad repre-
sentation of the original data; Lee and Ng (2020) provides a recent overview of different
techniques that may address this problem. To explore this for our initial simulations, we
also consider Yang, Pilanci and Wainwright (2017)’s Gaussian sketching; Appendix C.5
considers it for the second set of simulations.

Formally, for some sketching dimension M , Gaussian sketching generates a matrix that
is M × N where each element is drawn from a N(0, 1/

√
M) following Yang, Pilanci and

Wainwright (2017). In this case, the sketched kernel is some randomized combination of all
observations—rather than simply being constructed on a subset of observations. Despite
the beneficial nature of this method, it incurs a considerably higher computational burden
in building the sketched kernel as the kernel matrix K (N ×N) must be multiplied by a
dense N ×M matrix. If N is very large, this can be quite expensive to compute even once.
One possible solution is the parallelization of KST .
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Figure A.2: Error on Estimating Average Marginal Effect

Note: The figure reports the RMSE of the estimated average marginal effect (AME) averaged across both
covariates and fifty simulations. 95% confidence intervals are reported using a percentile bootstrap using
1,000 bootstrap samples.

Figure A.3 compares computational cost of Gaussian sketching. To examine alternative
estimation methods designed for huge datasets (e.g., gam vs. bam; see Appendix A.2),
we also compare results for gam and bam and types of sketching (sub-sampling sketching
or Gaussian), denoted by “method-sketching type”. We see that Gaussian sketching is
considerably slower and rather expensive after around 45,000 observations.

As noted in the main text, when using gam (sub-sampling sketching; multiplier δ = 5),
estimation takes around 30-40 minutes for 1,000,000 observations. This figure illustrates
that bam can help considerably. Estimation time is around three minutes, although as
discussed in Appendix A.2 this is partially due to a freezing of the size of the sketching
dimension.

We can also use the log-log plot to provide a rough estimate of the computational
complexity of the various algorithms and sketching procedures; since the plot looks highly
linear (above a certain sample size), we can use the slope p of that log-log line to estimate
the complexity as roughly Np for sufficiently large N . As expected, KRLS and bigKRLS
is around N3, with an estimated slope of around 3 when the sample size is over 100
for KRLS and 1,000 for bigKRLS. For the sub-sampling sketched methods, if we focus
on a sample size above 40,000—as the relationship appears clearly linear—the estimated
slope for the methods is around 1.3, suggesting a cost that increases much more slowly
than traditional methods. When using bam (discussed in Appendix A.2), the slope is
around 0.95, presumably because the size of the sketching dimension does not grow after

8



Figure A.3: Estimation Time of Different Methods

Note: This figure shows the average computational time in minutes averaged across fifty iterations. The
left panel shows a multiplier of δ = 5 and the right shows a multiplier of δ = 15. The main text defines
the abbreviations. 95% confidence intervals are shown.

N > 10, 000. With Gaussian sketching, the estimated slope (when N > 2500) for gam

is around 2.10; lower than the unsketched methods but considerably larger than the sub-
sampling methods.

Figure A.4 shows that all sketching methods are equally accurate.

B.3 Estimation Time Disaggregation

When estimating gKRLS and using it for inference, there are three steps that the applied
user may perform; it is useful to know which takes more time as sample size increases. First,
the model must create the (sketched) kernel and estimate the parameters (“Estimation”);
second, one might wish to perform prediction on a new dataset; we use one of the same
size as the estimation data (“Prediction”). Finally, one might wish to calculate marginal
effects (“Marg. Effects”); this requires repeated predictions on counterfactual versions of
the estimation data. The total time is reported in the main text.

Figure A.5 reports the average time for each stage across sample size and for the four
sketching methods considered. It uses a log-scale for readability. We see that, for sub-
sampling sketching, estimation time becomes highly expensive as N (and the parameter
dimension) grows very large and dominates the overall cost. For Gaussian sketching, the
cost of calculating marginal effects becomes increasingly expensive as the cost of actually
evaluating the kernel begins to dominate the computational cost. This also likely explains
the explosion of computational time for estimation at an earlier stage than the sub-sampling
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Figure A.4: Performance of Alternative Sketching and Estimation Methods

Note: This figure shows the root mean squared error (RMSE) of predicting the outcome on a dataset of
the same size to the estimation data, averaged across the fifty simulations. The main text defines the
abbreviation for each method. 95% confidence intervals are shown; they are calculated using a percentile
bootstrap using 1,000 bootstrap samples.
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method. As expected, bam provides considerable gains in speed—mostly in the estimation
stage.

Figure A.5: Estimation Time of gKRLS by Step

Note: This figure shows the average computational time in minutes averaged across fifty iterations by each
stage of estimation (“Estimation”, “Prediction”, “Marg. Effects”). The main text defines the abbreviation
for each method. 95% confidence intervals are shown.

C Additional Simulations: gKRLS with Fixed Effects

This appendix contains additional information on the simulations in Section 4.1 where
we include fixed effects in the data generating process. Appendix C.1 reports different
performance metrics such as bias and out-of-sample predictive RMSE (see Appendix B.1
for definitions). Appendix C.2 reports the performance on the other covariate (xi,2). Ap-
pendix C.3 varies the number of observations. Appendix C.4 considers different variants of
gKRLS to understand what drives the improved performance versus bigKRLS. Appendix C.5
provides information on the impact of sketching in this more complicated scenario.

C.1 Alternative Performance Metrics

In addition to the RMSE, Figure A.6 shows the estimated bias of the methods in Figure 3
for the AME of the main covariate of interest (xi,1). It shows, as expected, that the
fixed effects estimator is unbiased and that the bias of the OLS and RE methods increase
considerably as ρ increases. In the linear model, the kernel methods are biased downwards
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although the bias for gKRLS is considerably smaller. In the non-linear case, both have a
small bias, although bigKRLS’s is slightly larger at small ρ.

Figure A.6: Bias of AME

Note: The figure reports the bias of the estimated average marginal effect (AME) on the first covariate
(xi,1), averaged across all simulations, as ρ varies. The left panel shows the linear data generating process
and the right shows the non-linear data generating process. 95% confidence intervals are shown; they are
calculated using a percentile bootstrap using 1,000 bootstrap samples.

We next compare the out-of-sample predictive accuracy of the methods—estimated
using the procedure in Appendix B.1. Figure A.7 reports the RMSE averaged across
all 1,000 simulations. For the linear data generating process, the kernel methods perform
worse than fixed effects or random effects, although the differences are more modest. In the
non-linear case, we see the kernel methods perform the best although gKRLS out-performs
bigKRLS by a considerable margin.

C.2 Performance on Other Covariate (xi,2)

We replicate Figure 3 from the main text on the covariate xi,2, i.e. one that is not correlated
with the fixed effect. Figure A.8 shows that, in the linear case, all methods perform rather
similarly at estimating this average marginal effect—including methods such as random
effects or OLS. In the spline case, gKRLS clearly out-performs all other methods.

C.3 Varying Number of Observations Per Group

In the main text, we consider 50 groups (J = 50) and set the group size (i.e. number
of observations per group) at 10. We vary that here and consider T ∈ {5, 10, 25, 50}.
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Figure A.7: Out-of-Sample Predictive Accuracy

Note: This figure shows the root mean squared error (RMSE) of predicting the outcome on a dataset of the
same size to the estimation data, averaged across 1000 simulations, as ρ varies. The left panel shows the
linear data generating process and the right shows the non-linear data generating process. 95% confidence
intervals are shown.
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Figure A.8: RMSE on the Average Marginal Effect of xi,2

Note: The figure reports the bias of the estimated average marginal effect (AME) on the second covariate
(xi,2), averaged across 1000 simulations, as ρ varies. The left panel shows the linear data generating
process and the right shows the non-linear data generating process. 95% confidence intervals are shown;
they are calculated using a percentile bootstrap using 1,000 bootstrap samples.
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Figures A.9 and A.10 show the results as group size varies where the gray box indicates
the results in the main text. Each panel displays a different value of ρ.

Figure A.9: Estimating AME for Varying Sample Size (Linear)

Note: This figure reports the RMSE of the estimated AME on the first covariate (xi,1) at varying sample
sizes for the linear data generating process. The shaded box indicates the values reported in the main
analyses, i.e. T = 10. 95% confidence intervals are shown; they are calculated using a percentile bootstrap
using 1,000 bootstrap samples.

Looking first at the linear case (Figure A.9), we see that as the cluster size increases,
random effects and both kernel methods improve considerably. For larger cluster sample
sizes, gKRLS is close to the RMSE for the fixed effect method although bigKRLS remains
noticeably worse. This provides further evidence for the limitations of adding the fixed
effects directly into the kernel. In the non-linear case, the story is similar—random effects
improves with increasing sample size towards fixed effects—although gKRLS and bigKRLS
are much closer in performance (as in the main text).

C.4 Understanding Why gKRLS Does Better

This section explores in more depth why gKRLS provides an improvement on bigKRLS.
We first consider the most similar model to bigKRLS fit using mgcv (i.e. no sketching,
standardized covariates, and fixed effects inside the kernel). We then vary each of these
dimensions separately to the default settings in gKRLS and see which affects performance.
This allows us to disaggregate what seems to improve performance in a more controlled
setting. We consider the following models.
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Figure A.10: Estimating AME for Varying Sample Size (Non-Linear)

Note: This figure reports the RMSE of the estimated AME on the first covariate (xi,1) at varying sample
sizes for the non-linear data generating process. The shaded box indicates the values reported in the main
analyses, i.e. T = 10. 95% confidence intervals are shown; they are calculated using a percentile bootstrap
using 1,000 bootstrap samples.
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1. “Baseline”: gKRLS estimated with no sketching, fixed effects inside the kernel, stan-
dardized covariates (mean zero; variance one), GCV for penalty parameter selection.

2. “Mahal.”: “Baseline” but use Mahalanobis distance between covariates in the kernel.

3. “FE”: “Baseline” but include the fixed effects outside the kernel.

4. “Sketch(5)”: “Baseline” but use sketching with the default multiplier of five.

5. “Sketch(5)+REML”: Identical to “Sketch(5)“ but use REML instead of GCV to
select λ.

6. “Naive”: This method includes the fixed effects in the kernel, but uses sketching,
Mahalanobis distance, and GCV for penalty selection. It is “naive” as it simply
swaps bigKRLS for gKRLS under the default settings of the package and mgcv.

7. “gKRLS (GCV)”: gKRLS estimated with sub-sampling sketching (multiplier of 5),
fixed effects outside the kernel, Mahalanobis standardization, GCV for penalty pa-
rameter selection.

8. “gKRLS + Lin.”: This method includes the fixed effects and both covariates both
inside and outside of the kernel. It ensures that as the amount of regularization
increases, this shrinks towards a linear additive model.

9. “gKRLS”: The method shown in the main text. That is, “gKRLS (GCV)” but using
REML for penalty parameter selection.

Figure A.11 reports the results where the estimated RMSE on the AME is divided by the
RMSE from bigKRLS without truncation. Values above “1” indicate worse performance;
values below 1 indicate better performance.

The first observation is that the “Baseline” gKRLS model that is as similar as possible
to bigKRLS returns nearly equivalent performance. This corroborates the results in the
first set of simulations (Section 4).

Next, consider the models that change only one feature of the “Baseline” model: “Ma-
hal.”, “FE”, “Sketch(5)”. With a linear data generating process, all three result in im-
proved performance. In the non-linear data generating process, “Sketch(5)” results in worse
performance. After further investigating, this is seemingly a function of using GCV (Gen-
eralized Cross-Validation) to select λ; the bar below (“Sketch(5)+REML”) uses REML
instead of GCV and finds a slight degradation in performance (see Appendix C.5) but
nothing as catastrophic as with GCV. This may be due to some weaknesses of GCV,
including a tendency to overfit for modestly sized datasets (see Wood 2011).

Of all of the simple modifications, note that “FE” is the only one that results in
considerably improved performance. Thus, this provides evidence that putting the fixed
effects outside of the kernel is what drives stronger performance of gKRLS.

Next, we examine the “Naive” specification; this simply swaps bigKRLS for gKRLS—
using random sketching and Mahalanobis distance while keeping the fixed effects inside the
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Figure A.11: Additional Versions of gKRLS

Note: This figure reports the RMSE of various methods for estimating the AME on xi,1 relative to the
RMSE of bigKRLS. The abbreviations are defined in the text.
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kernel. In the non-linear setting, “Naive” incurs some penalty against a method with no
sketching (“Baseline”). By contrast, “gKRLS (GCV)” that is the sketched, Mahalanobis,
version of “FE” incurs a very slight penalty upon the unsketched version (“FE”). Methods
that include fixed effects outside the kernel (“gKRLS (GCV)”, “gKRLS”, “gKRLS + Lin.”)
improve considerably upon the “Baseline” and “Naive” model—especially with a non-linear
data generating process. In terms of penalty parameter selection after using sketching and
Mahalanobis distance (REML vs GCV; “gKRLS” and “gKRLS (GCV)”, respectively), we
see a small negative impact for REML in the linear model, although there is little difference
in the non-linear case.

Finally, we consider the “gKRLS + Lin.” specification that includes the group indi-
cators and two covariates as unpenalized fixed effects β as well as a kernel on the two
continuous covariates. In this model, there is one hierarchical term (J = 1) and as λ → ∞,
this model converges to a linear additive model of the group indicators and two covariates.
By contrast, simply placing a kernel on the two variables (with no linear component) would
converge a model that predicts the mean for all observations as λ → ∞. We see that in the
linear case, where this model is true, this specification has very strong performance. How-
ever, in the non-linear model, it incurs some penalty versus the “default” gKRLS. Thus, this
suggests that deciding whether include linear terms in addition to kernel is either tested
empirically or motivated based on what theory suggests is a reasonable limiting case for
the model as λ → ∞.

C.5 Impact of Sketching

Give the somewhat varying results of sketching procedures depending on whether the fixed
effects are included in the kernel or not, we conducted one additional set of simulations
to more systematically understand the impact of sub-sampling sketching in this more
complicated example. We focus on sub-sampling sketching and conducted the following
set of simulations using the same data generating process in Section 4.1.

• Generate a set of simulated data; for δ ∈ {1, 3, 5, 7, 9, 11, 13, 15}, estimate gKRLS 100
times (i.e., varying the sketching matrix).

• We consider two quantities of interest. First, what is the RMSE of the average
marginal effect on xi,1 (the key quantity of interest in the main text) across the 100
repetitions for each δ? We define this as follows, where AME∗ is the true AME
as calculated in our main simulations (see Appendix B.1) and AME

(m)
δ is the AME

estimated for the m-th repetition with sketching multiplier δ.

RMSEδ =

√√√√ 1

100

100∑
m=1

[
AME

(m)
δ − AME∗

]2
Next, we also calculate the AME for the unsketched method, define this as AMEunsketch;
we can calculate the corresponding RMSE without sketching as RMSEunsketch—
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corresponding to the absolute error the unsketched model is deterministic for a single
dataset:

RMSEunsketch = |AMEunsketch − AME∗| =
√

[AMEunsketch − AME∗]2

• Given those quantities for a single simulated dataset, we repeat this process 150
times as the quality of the unsketched estimates can vary across datasets. Define
s ∈ {1, · · · , 150} as indexing this “outer” simulation. We average the estimated
RMSEs across simulations and create a measure of “relative impact” of sketching, i.e.
the relative increase in (averaged) RMSE for using sketching versus the unsketched
estimates.

RMSEδ =
1

150

150∑
s=1

RMSE
(s)
δ ; RMSEunsketch =

1

150

150∑
s=1

RMSE
(s)
unsketch

RelativeImpactδ =
RMSEδ − RMSEunsketch

RMSEunsketch

We consider all four ρ from the original simulations, sub-sampling sketching, and three
different standardizations methods for the covariates (none [no standardization], scaled
[i.e., all covariates have zero mean and unit variance], and Mahalanobis). Figure A.12
begins by showing the RMSE, averaged across simulations, for each combination. “FE
Outside” denotes a model where the fixed effects are included outside the kernel and “FE
Inside” denotes the one where they are included inside. We include the average RMSE of
unsketched estimates as a dot on the right side of the figure after the black vertical bar.

As expected from the earlier simulations, including the fixed effects outside the ker-
nel is highly amendable to sketching; at almost any multiplier, the RMSE is very close
to the unsketched estimates, and this does not seem especially dependent on ρ or the
standardization method.

By contrast, including the fixed effects inside the kernel shows more nuanced results.
Before examining sketching, we note that including the fixed effects inside the kernel re-
sults in worse performance, on average, at every δ, ρ and standardization method than
including them outside the kernel. However, given that choice of specification, there is
more divergence between the standardization methods (especially with poor performance
for no standardization as ρ grows). For this complex kernel, the convergence in the esti-
mated RMSE to the unsketched method is much slower (i.e., a large multiplier δ is needed
to closely approximate the RMSE of the unsketched method).

To show this more clearly, we report the standardized change in RMSE for sketch-
ing: RelativeImpactδ, defined above. This can be interpreted the proportional increase in
RMSE that comes from using sketching with multiplier δ versus the unsketched method.
Figure A.13 corroborates the above results. After a sketching multiplier of around δ = 3,
the RMSE for sketching when the fixed effects are outside the kernel are nearly identical to
the unsketched RMSE. When fixed effects are included inside the kernel, there is a much
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Figure A.12: RMSE For Varying Sketching Multiplier
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Note: The RMSE for each sketching multiplier, ρ and model specification is shown. 95% confidence
intervals, using a percentile bootstrap over the 150 datasets using 1,000 bootstrap samples, are shown.
The RMSE of the unsketched method is shown to the right of the vertical bar.

more gradual decline in the relative impact of using sketching on the RMSE versus the
unsketched estimates.

Interestingly, scaled covariates (mean-zero; variance one) seems to improve more quickly
than Mahalanobis relative to the unsketched baseline, although note that the absolute
performance of scaled vs. Mahalanobis standardization depends on ρ (see Figure A.12.

Overall, while more work is needed to understand the impacts of sketching with these
complex kernels, we note that a likely cause is the fact that the sketched kernel likely
contains zero or a few observations for each group and thus the estimation may be unreli-
able. This intuition is discussed further in Yang, Pilanci and Wainwright (2017) (Example
4) about issues with sub-sampling sketching when there is considerable variation in the
data. Future research might explore better methods for sketching to improve performance
even with kernels that include fixed effects (e.g., those discussed in Lee and Ng 2020).
For example, stratified sampling based on the fixed effect may be helpful in improving
performance.

D Additional Results: Newman (2016)

This appendix provides additional results for the analysis in Section 5. First, we provide
information on the questions analyzed in Newman (2016). For the main analysis, the
respondent is coded as “1”, rejecting meritocracy, if they agreed with the statement pre-

21



Figure A.13: Relative Impact of Sketching
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Note: This figure shows the relative impact of sketching (RelativeImpactδ) for each sketching multiplier,
ρ and model specification (described in the main text). 95% confidence intervals are reported using a
percentile bootstrap over the 150 datasets using 1,000 bootstrap samples.

sented to them or with both statements if both were presented—shown below. Otherwise,
they are coded “0” (Newman 2016, p. 1013).

• “Success in life is pretty much determined by forces outside our control”

• ”Hard work and determination are no guarantee of success for most people”

We consider the following two quantities. First, the average predicted probability p̄(e)
as a function of earning inequality e where xi indicates all other covariates in the model.
Second, we consider the popular average marginal effect AME(e) where we evaluate the
derivative using the finite difference method (Appendix A.3). Both quantities are cal-
culated using the “observed value” strategy (e.g., Hanmer and Kalkan 2013) where one
covariate (inequality) is set to some counterfactual value, all other covariates are held
at their observed values, and the quantity of interest is the average across the observed
sample.

p̄(e) =
1

N

N∑
i=1

Pr(Yi = 1|xi, ei = e) (A.6)

AME(e) =
1

N

N∑
i=1

∂Pr(Yi = 1|xi, ei)

∂ei

∣∣∣∣
ei=e

(A.7)
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For a secondary analyses as to the lack of a statistically detectable non-linear effect of
economic inequality, we considered the following tests. Define e∗min as the smallest value of
earnings inequality considered (0.349), define e∗inf as the model-specific inflection point—
or the closest point in the grid of values considered, and define e∗max as the largest value
considered (1.119).

The first test examines the difference in average marginal effect at the end points, i.e.
AME(e∗max)−AME(e∗min). For the original model in Newman (2016), the point estimate is
-1.36 and the 95% confidence interval (using the delta method) is [−2.05,−0.67]. For the
gKRLS model, the point estimate is -0.44 and the 95% confidence interval [−1.28, 0.40] does
contain zero. The second test compares the difference in changes in predicted probability
above and below the inflection point, i.e.

[
p̄(e∗max)− p̄(e∗inf )

]
−

[
p̄(e∗inf )− p̄(e∗min)

]
. The

95% confidence interval on this quantity for the Newman (2016) model is [−0.58,−0.07].
The 95% confidence interval for gKRLS is [−0.36, 0.04] and does contain zero.

The third test considers the average second derivative, i.e., average of the derivatives
of the individual marginal effects:

1

N

N∑
i=1

∂2Pr(Yi = 1|xi, ei)

∂e2i

∣∣∣∣
ei=e

This tests the idea that for a concave function (as posited by Newman 2016, p. 1011),
the second derivative should be negative. Figure A.14 shows that, for the model used
in Newman (2016), the average second derivative is usually negative and its confidence
intervals do not contain zero except in the most extreme regions. For gKRLS, however, the
confidence intervals contain zero at all points considered.

Figure A.14: Average Second Derivative of Earnings Inequality
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Thus, none of the tests shows evidence of a statistically distinguishable effect of a
“u-shaped” relationship using gKRLS.

D.1 Additional Questions

The final test uses a secondary analysis in Newman (2016) where, on a different survey,
the following five questions were analyzed. The below text is quoted directly from the
supporting information in Newman (2016). Each question is colored in red with our anno-
tation. For the two ordinal questions, Newman (2016) focuses on the probability of “major
reason”.

Barriers to Women’s Professional Advancement

“As you may know, although women have moved into the work force in great
numbers, very few top level business positions in this country are filled by
women. There may be many reasons that there are so few women in high
corporate positions. Here is a list of some of them. For each one, would you tell
me whether you think it is a major reason, a minor reason, or not a reason why.”
(1) Discrimination: “Women are discriminated against in all areas of life, and
business is no exception”, and (2) Old-Boy Networks: “Women who try to rise
to the top of major corporations get held back by the ‘old-boy network”’ [Q15B
& Q15E]. Constructed variables each have three ordered categories, ranging
from (1)-“Not a reason” (2)-“Minor reason” (3)-“Major reason.”

Traits of Men and Women

“Now I would like to ask about some specific characteristics of men and women.
For each one I read, please tell me whether you think it is generally more true
of men or more true of women”: (1) Intelligent [Q11A], and (2) Arrogant
[Q11G]. For “Intelligent,” constructed variable is dichotomous, and coded ”1”
for respondents who believed the trait is “More true of women” and “0” other-
wise. For “Arrogant,” constructed variable is dichotomous, and coded “1” for
respondents who believed the trait is “More true of men,” and “0” otherwise.

Gender Equality in Nation

”Which of these two statements comes closer to your own views—even if neither
is exactly right”: ”This country has made most of the changes needed to give
women equal rights with men” OR ”The country needs to continue making
changes to give women equal rights with men.” [Q13]. Constructed variable
coded ”1” if respondent selected latter statement and ”0” otherwise.

Figure A.15 shows the predicted probabilities and average marginal effects as a function
of earnings inequality. As before, while the questions generally show an inverted “u-
shape” estimated using gKRLS, there are concerns about a lack of a statistically detectable
relationship. For most questions, the confidence intervals for the average marginal effects
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usually contain zero for most of the values for gKRLS but not for the specification in Newman
(2016). Applying the additional tests in the previous section of the Appendix shows limited
evidence for a statistically detectable effect for gKRLS—only one question passes either of
the first two tests (men arrogant; difference in differences of p̄(e)). The confidence interval
on the average second derivative does not contain zero (and is negative) for many values
of earnings inequality with the Newman (2016) model, but usually contains zero for the
gKRLS model; Figure A.16 shows the results.

Figure A.15: Additional Questions in Newman (2016)
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E Additional Results: Gulzar et al. (2020)

This appendix provides additional results for the analysis in Section 6.

E.1 Additional Results: Main Effects (Section 6)

We examine the sensitivity of the estimates to (i) the size of the sketching multiplier (5
or 15) and (ii) the use of bam or gam (see Appendix A.2 for a discussion). For each of the
twelve outcomes, we ran the model fifty times. Note that for the double/debiased machine
learning method (DML-PLR; DML-ATE), there is an additional source of randomness—
the five folds that the data is split into—that is also accounted for in the uncertainty.

Figure A.17 presents the results for the two double/debiased machine learning methods
(DML); the partially linear regression model (DML-PLR) and the average treatment effect
model (DML-ATE). 95% confidence intervals are shown and the estimated results are
sorted by their point estimates for clarity. We see that, for both methods, there is a large
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Figure A.16: Average Second Derivative Additional Questions in Newman (2016)
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amount of stability in the confidence intervals across repeated runs of the double/debiased
machine learning procedure and the accompanying random sketching. It is rarely the case
that re-running the model would change whether the confidence interval contains zero. The
choice of bam vs gam and the multiplier also seem somewhat less important here. Across all
methods, the ratio of the standard deviation of the point estimates to the average standard
error is around 0.40 (for DML-ATE) and 0.20-0.25 (for DML-PLR).

Figure A.18 considers repeated estimation of the two gKRLS models that include either
all variables in the kernel (“gKRLS (All)”) or only the geographic coordinates (“gKRLS
(Geog.)”), both described in the main text. It shows a broadly similar story to the DML
methods. There is somewhat more variability when all variables are included in the ker-
nel. Especially in this case, using the larger multiplier (δ = 15) decreases the ratio of
the standard deviation of the estimates to the average standard error from around 0.40
(comparable to DML-ATE) to around 0.20 (around 0.30 for bam).

In terms of computational cost, Table A.3 reports the average estimation time for
each method, averaged across all repeated estimations and outcome variables. It shows,
as expected, that increasing the sketching multiplier can increase the cost considerably—
especially for double/debiased machine learning methods or a kernel with many covariates
(“gKRLS (All)”). bam provides considerable increases in speed especially in the case of the
DML methods.

E.2 Additional Results: Heterogeneous Effects

We conduct an additional application of gKRLS on the Gulzar, Haas and Pasquale (2020)
to estimate heterogeneous effects. There is a large and active literature on how to use
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Figure A.17: Repeated Estimation of Double/Debiased Machine Learning with Sketching

(a) Partially Linear Regression (PLR)

(b) Average Treatment Effect (ATE)

Note: This figure reports the estimated effects and 95% confidence intervals from fifty repetitions of each
model for each outcome and group. The horizontal axis is truncated as occasionally the confidence interval
from a method is very large. The top panel shows thee results of DML partially linear regression (DML-
PLR) and the bottom shows the results for the DML algorithm for estimating the ATE (DML-ATE).
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Figure A.18: Repeated Estimating gKRLS with Sketching

(a) All Variables in Kernel

(b) Geographic Kernel

Note: This figure reports the estimated effects and 95% confidence intervals from fifty repetitions of each
model for each outcome and group. The horizontal axis is truncated as occasionally the confidence interval
from a method is very large. The top panel shows the results of gKRLS that includes all covariates (“gKRLS
(All)”) and the bottom includes results from a method that only includes the geographic coordinates
(“gKRLS (Geog.)” .
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Table A.3: Run Time of DML and gKRLS Methods on Gulzar et al. (2020)

Method
DML gKRLS

PLR ATE Geog All
bam-5 0.63 1.37 0.04 0.07
bam-15 2.31 6.40 0.09 0.26
gam-5 7.54 5.71 0.48 1.00
gam-15 45.14 38.15 0.63 5.93

Note: This table reports the average estimation time in minutes on a computer with 8GB of RAM and
1 core, averaged across the simulations and outcome variables. “DML” reports the time of two methods
(DML-PLR; DML-ATE) discussed in the main text. “gKRLS” reports the two kernel methods (“gKRLS
(Geog.); “gKRLS (All)”) discussed in the main text. “Method” indicates the method used with bam or
gam and the sketching multiplier (“-5”; “-15”).

arbitrary machine learning algorithms to estimate heterogeneous effects (e.g., Künzel et al.
2019; Nie and Wager 2021). We focus on a recent method (“R-learner”) by Nie and Wager
(2021) as representing a current state-of-the-art method.

The R-learner is a type of meta-learner (see Künzel et al. 2019 for a general review)
that allows the researcher to use an arbitrary machine learning algorithm to estimate
heterogeneous treatment effects. The core innovation of the R-learner is to estimate a
heterogeneous treatment effect function τ ∗(.) (as a function of a vector of pre-treatment
covariates Xi—noting their notation differs from that in the rest of our paper) by minimiz-
ing the following empirical analogue τ̃(.) on a dataset with N observations wherem∗(x) and
e∗(x) represent the conditional mean outcome—E[Yi|Xi = x]—and treatment propensity—
P (Wi = 1|Xi = x), respectively. Λn{τ(.)} regularizes the estimated τ(.) function.

τ̃(.) = argmin
τ

1

N

N∑
i=1

([Yi −m∗(Xi)]− [Wi − e∗(Xi)] τ(Xi))
2 + Λn{τ(.)} (A.8)

One of the meanings of “R” in R-learner gestures at the fact that this function depends
on residualizing the observed outcome Yi and the treatment Wi from their expected values
(m∗(Xi) and e∗(Xi), respectively). This ensures a more robust objective function when
trying to estimate the heterogeneous treatment effects (Nie and Wager 2021). The key
difficulty of estimating τ̃(.) is that the two key functions m∗(.) and e∗(.) are unknown so
τ̃(.) cannot be estimated directly. A second key innovation of Nie and Wager (2021, p. 301)
is to first estimate m∗ and e∗ and use these “pilot estimates” to create a feasible version
for estimating τ̃(.).

They propose obtaining estimates m̂ and ê using a procedure known as “cross-fitting.”
This process is similar in implementation to ensemble methods (stacking, SuperLearning)
and starts by separating the data into K-folds. Using K-1 folds of the data, one estimates
the conditional mean outcome (i.e. predict Yi with covariates Xi) and the propensity score
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(i.e. predicting treatment Wi with covariates), and then generate predictions on the held
out fold. By cycling through all of the folds, one gets an out-of-sample prediction for each
observation. These are combined as shown below to estimate the heterogeneous treatment
effect function τ̂(.). Formally, the R-learner algorithm is sketched below (Nie and Wager,
2021, p. 301).

1. Split the data into K folds. Fit m̂ and ê using cross-fitting with some machine
learning algorithm, i.e. hold out one fold and estimate the model using the other
K − 1.

2. Estimate τ(.) using the out-of-sample predictions for each observation. Define m̂−k(i)(Xi)
as the estimate of m∗(x) that does not include the fold k of which i is a member; sim-
ilarly define ê−k(i)(Xi). The objective is shown below where some machine learning
algorithm is used to estimate τ̂(.).1

τ̂(.) = argmin
τ

1

N

N∑
i=1

([
Yi −m−k(i)(Xi)

]
−
[
Wi − e−k(i)(Xi)

]
τ(Xi)

)2
+ Λn{τ(.)}

(A.9)

While any machine learning algorithm can be used for the R-learner, there is an es-
pecially interesting reason to use gKRLS. Nie and Wager (2021) prove that if one uses
traditional KRLS in estimating τ̂(.) (and some weaker assumptions on the quality of the
estimates of m̂ and ê), then the resulting estimator τ̂(.) has a “quasi-oracle” property.
Roughly speaking, this means that the accuracy on estimating τ̂(.) is asymptotically equiv-
alent to the accuracy one would obtain if the researcher knew m∗(Xi) and e∗(Xi) exactly.
Thus, there is no loss of information from having to use the estimated analogues. This
provides a formal justification for using the “pilot estimates” m̂−k(i)(Xi) and ê−k(i)(Xi) in
the final estimation of τ̂(.).

In their numerical experiments, Nie and Wager (2021) use Sonnet and Hazlett (2018)’s
implementation of traditional KRLS for Gaussian and binary outcomes for estimating
m̂(.), ê(.) and τ̂(.). However, this has the disadvantages discussed in Sections 2 and 3 (e.g.,
requiring cross-validation for the binary case and being quite slow). Indeed, Nie and Wager
(2021) consider a coarse grid of only thirteen values when calibrating λ and only examine
problems of 500 or 1000 observations. Thus, gKRLS allows for the theoretical promise of
the R-learner when combined with KRLS to be scaled to much larger datasets.

We apply this to the Gulzar, Haas and Pasquale (2020) application, using gKRLS for
all machine learning procedures where we include the covariates linearly as well as kernel

1In the spirit of their accompanying code, we perform one final step of K-fold cross-validation (with
the same folds) for the final estimation of τ̂(.). If one were to estimate effects on truly out-of-sample data,
the τ̂(.) estimated on the entire training data could be used.
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that includes all of the covariates. The formula in pseudo-code (see Appendix F) is shown
below where “x1 + x2 + ...” indicates the covariates.2

y ~ x1 + x2 + ... + s(x1, x2, ..., bs = "gKRLS")

The procedure takes under three minutes on a machine with 8 GB of RAM and a single
core. Our initial examinations of the estimated heterogeneous effects suggested a key role
of geography. Figure A.19 shows that, in general, one state—Himachal Pradesh—exhibits
quite different patterns of estimated treatment effects. It shows the distribution of effects
for each observation in each state across the four groups and three outcomes. In total,
their analysis includes nine states. We also include a symbol (■) to indicate the estimated
treatment effect, without controls, for each variable inside of each state. It is reassuring
that the treatment effects obtained from the R-learner are similar to those calculated by
simply calculating the difference-in-means within each state.

In substantive terms, Himachal Pradesh has much larger effects for the targeted minor-
ity group (Scheduled Tribes). We also find slightly negative effects for the non-targeted
minority group (Scheduled Castes) and large negative effects for the other individuals
(non-minorities). While fully exploring the reason for the differential effects in Himachal
Pradesh is outside of the scope of this paper, we note that it is distinct amongst the states
considered in that it (i) has the smallest population, (ii) has the largest share of the non-
targeted minority group (Scheduled Castes; 25% of the population in 2001), and (ii) has
the smallest share of the targeted group (4% of the population in 2001). This suggests
a possibility of an interesting qualification of the effect of an electoral quota scheme to
benefit a small minority group when there is another larger, although still historically dis-
advantaged group, who is not affected by the scheme. We found similar distributions of
estimates by state if we used different multipliers, e.g., 5 vs. 15, and gam instead of bam.

F Software

This appendix briefly discusses software packages for estimating KRLS and provides a brief
demonstration on how to use the core function in the gKRLS package.

2After our first explorations of the Gulzar, Haas and Pasquale (2020) data, we noted that two controls
(share of scheduled tribes in 1991 and 2001) are extremely highly correlated with the treatment indicator
in Himachal Pradesh (0.87 and 0.94, respectively; standard error of 0.039 and 0.027, respectively) but in no
other state (correlations ranging from -0.05 and 0.25; standard errors ranging from 0.010 to 0.031). No other
control variable’s correlation with treatment within a state with treatment is higher than 0.47 (standard
error of 0.070). Following supplemental analyses in the original paper, we find that this imbalance on ”share
of scheduled tribes in 2001” in Himachal Pradesh between treated and untreated units does not decrease as
the geographic bandwidth decreases, although it does decline in all other states. The imbalance on ”share
of scheduled tribes in 1991” does decrease although more slowly. Exploring this and the implications
for Gulzar, Haas and Pasquale (2020) in more detail is outside of the scope of this project. However,
we exclude these two covariates for the heterogeneous effect analysis as their inclusion led to unstable
estimates for Himachal Pradesh given minor changes in specification. Their exclusion has a limited effect
on the results in the main text (e.g., Figure 5).
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Figure A.19: Heterogeneous Effects in Gulzar, Haas and Pasquale (2020)

Note: This figure shows the distribution of heterogeneous treatment effects by state, outcome, and group
using the R-learner approach described in the main text. The ■ indicates the treatment effect estimated
within each state using a difference-in-means estimator.

F.1 Existing Software Packages

In the main paper, we consider KRLS and bigKRLS as the two well-known packages for
estimating KRLS to political scientists. They are only able to assume a Gaussian outcome
and must include all predictors in the kernel. An additional package KSPM (Schramm et al.
2020) provides additional flexibility by allowing multiple kernels and additive terms. It is
still considerably less flexible than mgcv (e.g., a lack of other methods of penalization, the
use of non-Gaussian outcomes, sketching, selection of penalty parameter using something
other than LOO-CV, etc.). It does have some novel features (e.g., the use of alternative
kernels besides the Gaussian one; interactions between kernels) that are straightforward
to include in future development of gKRLS. Unfortunately, preliminary experiments also
suggested that it was considerably slower than either KRLS or mgcv and thus it was not
explored further in our empirical analyses.

F.2 Software Demonstration

We demonstrate how to estimate gKRLS, average marginal effects, and double/debiased
machine learning.

# to install gKRLS

# install.packages(’gKRLS ’)

# load SuperLearner before gKRLS/mgcv to address clashing object names
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library(SuperLearner)

library(gKRLS) # this also load "mgcv" and "sandwich"

library(DoubleML)

library(caret) # for sample splitting

# simulate data

n <- 1000

x1 <- rbinom(n, 1, 0.45)

x2 <- rnorm(n, 0, 1)

x3 <- rnorm(n, 0, 1)

x4 <- rnorm(n, 0, 1)

state <- as.factor(sample(letters [1:10] , n, replace = TRUE))

error <- rnorm(n, 0, 0.5)

# target function

y <- 0.6*x1 +0.15*x2 -0.2*x1*x2 + 0.3*x3^3 - 0.2*x4^2 + error

data <- data.frame(y, x1 , x2, x3, x4, state)

We estimate three versions of gKRLS; one that includes all variables in the kernel, one that
includes some in a linear fashion (i.e., fixed effects for state), and one that includes two
kernels.

# All variables in kernel: "gam" is exported from "mgcv"

gkrls_est <- gam(y ~ s(x1, x2, x3, x4 , bs = "gKRLS"),

data = data)

summary(gkrls_est)

# State fixed effect

gkrls_fx <- gam(y ~ state + s(x1 , x2 , x3, x4, bs = "gKRLS"),

data = data)

# Multiple kernels

gkrls_dk <- gam(

y ~ state + s(x1 , x2, bs = "gKRLS") +

s(x3 , x4 , bs = "gKRLS"),

data = data)

We can estimate predictions and marginal effects using the accompanying functions. If
individual=TRUE, the individual marginal effect (i.e. for each observation) in addition to
the average is returned. If marginal effects on only certain variables are desired, this can
be specified using the variables argument.
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gkrls_pred <- predict(gkrls_fx , newdata = data)

gkrls_ame <- calculate_effects(gkrls_fx ,

variables = c("x1", "x2"),

continuous_type = "derivative", individual = T)

A variety of estimation options can be set using the gKRLS argument to xt. This is
further described on the package documentation and some options are shown below, e.g.
changing multiplier and sketching method.

gkrls_alt <- gam(y ~ s(x1, x2, x3, x4 , bs = "gKRLS",

xt = gKRLS(sketch_method = "gaussian",

sketch_multiplier = 15)),

data = data)

We can also integrate gKRLS with double/debiased maching learning method.

# double/debiased machine learning

ml_g <- LearnerRegrBam$new ()
ml_g$param_set$values$formula <- ~ s(x2 , x3, x4, bs = "gKRLS")

ml_m <- LearnerRegrBam$new ()
ml_m$param_set$values$formula <- ~ s(x2 , x3, x4, bs = "gKRLS")

ml_g$param_set$values$method <- "REML"

ml_m$param_set$values$method <- "REML"

data_DML <- double_ml_data_from_data_frame(

df = data ,

y_col = "y",

d_cols = "x1",

x_cols = setdiff(names(data), c("y", "x1", "state"))

)

# Fit Partial Linear Regression

dml_plr <- DoubleMLPLR$new(data_DML , ml_g , ml_m)

dml_plr$fit ()

Finally, we show how to use gKRLS to estimate heterogeneous effects using the SuperLearner
package and the R-learner (Nie and Wager 2021) discussed in Section E.2.

# Set x1 as "treatment" for this analysis

data$treatment <- data$x1
data$x1 <- NULL

# Define function for R learner

heteff_SL <- function (...){ suppressMessages(
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SL.mgcv (..., bam = T, method = "REML",

formula = ~ s(x2 , x3, x4, bs = "gKRLS")))

}

# Create the folds for post -stratification using

# caret. Ensure they are the same across both

# initial estimations

id <- createFolds (1: nrow(data), 5)

# Estimate the conditional mean function

fit_SL_m <- SuperLearner(Y = data$y ,
X = data , family = ’gaussian ’,

SL.library = ’heteff_SL ’,

cvControl = list(V = 5, validRows = id))

# Estimate the propensity score

fit_SL_e <- SuperLearner(Y = data$treatment ,
X = data , family = ’binomial ’,

SL.library = ’heteff_SL ’,

cvControl = list(V = 5, validRows = id),

verbose = T)

# Extract estimated propensity scores

estimated_ps <- fit_SL_e$Z [,1]
# Truncate to avoid extreme scores

estimated_ps[estimated_ps < 0.01] <- 0.01

estimated_ps[estimated_ps > 0.99] <- 0.99

# Get the R-learner outcome

data$resid_PS <- data$y - estimated_ps

data$resid_outcome <- data$y - fit_SL_m$Z [,1]
data$rlearner_outcome <- data$resid_outcome/data$resid_PS

# Esimate heterogeneous effect

fit_SL_R <- SuperLearner(Y = data$rlearner_outcome ,
X = data , family = ’gaussian ’,

obsWeights = data$resid_PS ^2,
SL.library = ’heteff_SL ’,

cvControl = list(V = 5, validRows = id),

verbose = T)

# Get the cross -validated estimates of heterogeneous

# treatment effect using held -out data

data$stacked.heteffect <- fit_SL_R$Z [,1]
# Get the estimates fit on the entire dataset

data$fullsample.heteffect <- fit_SL_R$SL.predict [,1]
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# To predict for new out -of-sample data

predict(fit_SL_R , newdata = data [1:5 ,])
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