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A1 Cases included in the data and distribution of 𝑁𝑆0 and 𝑁𝑉 0
The list of countries included in the data is reported as Table A1.1; the frequencies of different values of
𝑁𝑆0 and 𝑁𝑉 0 are reported in Table A1.2. Note that the number of seat-winning parties can, on occasion,
be larger than the number of vote-winning parties because of “independents” who win seats but who are not
reported in the lists of vote-winning parties.
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Table A1.1: Elections included in the analysis

Country Elections Earliest Latest

Australia 46 1901-03-30 2019-05-18
Austria 28 1919-02-16 2019-09-29
Belgium 38 1900-05-27 2019-05-26
Bulgaria 9 1991-10-13 2017-03-26
Canada 35 1900-11-07 2019-10-21

Croatia 7 2000-01-03 2020-07-05
Cyprus 10 1976-09-05 2021-05-30
Czech Republic 9 1990-06-09 2017-10-21
Denmark 46 1901-04-03 2019-06-05
Estonia 8 1992-09-20 2019-03-03

Finland 30 1917-10-02 2019-04-14
France 29 1902-05-11 2017-06-18
Germany 28 1919-01-19 2017-09-24
Greece 18 1974-11-17 2019-07-07
Hungary 8 1990-04-08 2018-04-08

Iceland 32 1919-11-15 2017-10-28
Ireland 31 1922-06-22 2020-02-08
Israel 23 1949-01-25 2020-03-02
Italy 19 1946-06-02 2018-03-04
Japan 27 1946-04-10 2017-10-22

Latvia 10 1990-04-29 2018-10-06
Lithuania 9 1990-03-10 2020-10-11
Luxembourg 24 1919-10-26 2018-10-14
Malta 18 1947-10-27 2017-06-03
Netherlands 28 1918-07-03 2017-03-15

New Zealand 39 1902-11-25 2020-10-17
Norway 32 1900-07-01 2017-09-11
Poland 10 1989-06-18 2019-10-13
Portugal 16 1975-04-25 2019-10-06
Romania 9 1990-05-20 2020-12-06

Slovakia 10 1990-06-09 2020-02-29
Slovenia 9 1990-04-12 2018-06-03
Spain 15 1977-06-15 2019-11-10
Sweden 34 1911-09-24 2018-09-09
Switzerland 33 1902-10-26 2019-10-20

Turkey 11 1983-11-06 2018-06-24
United Kingdom 28 1918-12-14 2019-12-12
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Table A1.2: Elections with this many ...

𝑁0 Seat-winning parties Vote-winning parties

2 28 1
3 49 40
4 87 53
5 128 109
6 117 121

7 97 90
8 64 88
9 61 59

10 44 74
11 42 58

12 33 36
13 28 33
14 13 15
15 12 18
16 5 9

17 3 6
18 3 1
19 1
20 2 1
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A2 R package
We provide an R package, sharesimulatoR, which can be used to simulate party systems of different sizes.
For example: the following code simulates a system with five seat-winning parties:
if (!require(sharesimulatoR)) {

devtools::install_github("chrishanretty/sharesimulatoR")
}

sims <- simulate_shares(5,
what = "seat-winning parties",
basis = "Posterior draws of alpha",
n_sim = 1000,
seed = 25)

head(sims)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.3543476 0.3237846 0.2652073 0.04594701 0.010713508
## [2,] 0.5324663 0.2140941 0.1662906 0.07503400 0.012115017
## [3,] 0.5488410 0.2483659 0.1264265 0.07135274 0.005013934
## [4,] 0.3161309 0.2385102 0.2835152 0.12403142 0.037812270
## [5,] 0.4719239 0.3185325 0.1440487 0.04678374 0.018711092
## [6,] 0.3219415 0.2843948 0.1645433 0.14127280 0.087847635

Users can supply their own values of alpha if they wish to adjust the precision of the estimates. For example:
the following code simulate a system with five seat-winning parties, but with greater variation in party shares
(since the concentration parameter 𝛼 is smaller):
sims <- simulate_shares(5,

what = "seat-winning parties",
basis = "Freely chosen stochastic alpha",
n_sim = 1000,
alpha = 30,
sd_alpha = 5,
seed = 25)

head(sims)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.4929119 0.3157156 0.15278755 0.03330252 0.005282441
## [2,] 0.3246160 0.4078130 0.17708343 0.08953676 0.000950807
## [3,] 0.3874909 0.3986882 0.09334301 0.08324753 0.037230336
## [4,] 0.6107953 0.1830553 0.15057098 0.03977732 0.015801015
## [5,] 0.2435688 0.4328033 0.30379325 0.01441943 0.005415183
## [6,] 0.4269170 0.2872121 0.21915392 0.05003723 0.016679720
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A3 Generative model for simulating shares from an ordered
Dirichlet distribution

In this section, we explain how we simulate the marginal proportions (i.e., seat or vote shares) in a party
system of a given size 𝐾 using a vector of concentration parameters 𝜃⋆ estimated from our ordered Dirichlet
models.

As explained in the main text, we estimate 𝜃⋆ as the product of a unit simplex of location parameters for
the 𝐾 + 1 differences describing a party system of size 𝐾, p⋆, and a general scale parameter 𝛼. Conversely,
we can recover p⋆ and 𝛼 from 𝜃⋆ as follows:

𝛼 =
𝐾+1
∑
𝑖=1

𝜃⋆
𝑖

p⋆ =𝜃⋆

𝛼

Following Dorp and Mazzuchi (2004), we take the cumulative sum for each element 𝑖 of p⋆,

p+
i =

𝑖
∑
𝑘=1

p⋆
i

and use the scalar scale parameter 𝛼 and the transformed location parameters p+ to simulate each marginal
proportion 𝑦𝑖 from a reparameterized Beta distribution (cf. Dorp and Mazzuchi (2004), Eqs. 1 and 5).
Mapping this reparameterization back onto the conventional parameterizatzion of the Beta distribution with
two vectors of positive shape parameters, Beta(𝑎, 𝑏), yields

𝑎𝑖 =𝛼p+
i

𝑏𝑖 =𝛼(1 − p+
i ).

We then simulate the share 𝑦𝑖 for party 𝑖, 𝑖 ∈ {1, ..., 𝐾} as 𝑦𝑖 ∼ Beta(𝑎𝑖, 𝑏𝑖). This procedure is implemented
in the user-supplied function orddir_rng() in the Stan code below.
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A4 Code
A4.1 Stan code used to fit models with deterministic 𝑝/𝑝⋆

A4.1.1 Unordered Dirichlet

Note: Code used for null, logical, and political unordered Dirichlet models.

## data {
## int<lower=1> nobs;
## int<lower=1> max_K;
## array[nobs] int<lower=1, upper = max_K> K;
## matrix[nobs, max_K] y;
## matrix[max_K, max_K] p;
## }
##
## parameters {
## real<lower=0> theta;
## }
##
## model {
## for (i in 1:nobs) {
## segment(y[i, ], 1, K[i]) ~ dirichlet(theta * segment(p[K[i], ], 1, K[i]));
## }
## // Prior on theta
## theta ~ lognormal(2.5, 0.75);
## }
##
## generated quantities {
## // Structured this way to match output of dirichlet_rng
## matrix[max_K, nobs] repy;
## vector [nobs] log_lik;
## vector [nobs] N_s;
##
## // Pre-populate with zeros
## repy = rep_matrix(0.0, max_K, nobs);
##
## // Add on the predictions
## for (i in 1:nobs) {
## repy[1:K[i], i] = dirichlet_rng(theta * segment(p[K[i], ], 1, K[i])');
## }
##
## // Calculate N_s
## for (i in 1:nobs) {
## N_s[i] = 1.0 / sum(pow(repy[1:K[i], i], 2.0));
## }
## for (i in 1:nobs) {
## log_lik[i] = dirichlet_lpdf(segment(y[i, ], 1, K[i]) | theta * segment(p[K[i], ], 1, K[i]));
## }
## }
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A4.1.2 Ordered Dirichlet

Note: Code used for logical and political ordered Dirichlet models.

## functions {
## array[] real orddir_rng(vector theta) {
## // See van Dorp and Mazzuchi 2003, section IV
## int mp1 = rows(theta);
## int m = mp1 - 1;
## real beta = sum(theta);
## vector[mp1] alpha = theta / beta;
## vector[m] alpha_plus = cumulative_sum(alpha[1:m]);
## array[m] real y = beta_rng(beta * alpha_plus,
## beta * (1.0 - alpha_plus));
## return(y);
## }
## }
##
## data {
## int<lower=1> nobs;
## int<lower=1> max_K;
## array[nobs] int<lower=1, upper = max_K> K;
## matrix[nobs, max_K] y;
## matrix[max_K, max_K + 1] p;
## }
##
## transformed data {
## int<lower=1> max_Kp1 = max_K + 1;
## matrix[nobs, max_Kp1] deltas;
##
## deltas = rep_matrix(0.0, nobs, max_Kp1);
## deltas[, 1] = y[, 1];
## for (i in 1:nobs) {
## for (j in 2:K[i]) {
## deltas[i, j] = y[i, j] - y[i, j - 1];
## }
## deltas[i, K[i] + 1] = 1.0 - y[i, K[i]];
## }
## }
##
## parameters {
## real<lower=0> theta;
## }
##
## model {
## for (i in 1:nobs) {
## segment(deltas[i, ], 1, K[i] + 1) ~
## dirichlet(theta * segment(p[K[i], ], 1, K[i] + 1));
## }
## // Prior on theta
## theta ~ lognormal(2.5, 0.75);
## }
##
## generated quantities {
## // Structured this way to match output of dirichlet_rng
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## matrix[max_K, nobs] repy;
## vector [nobs] log_lik;
## vector [nobs] N_s;
##
## // Pre-populate with zeros
## repy = rep_matrix(0.0, max_K, nobs);
##
## // Add on the predictions
## for (i in 1:nobs) {
## array[K[i]] real tmp;
## tmp = orddir_rng(theta * segment(p[K[i], ], 1, K[i] + 1)');
## for (m in 1:K[i])
## repy[m, i] = tmp[m];
## }
##
## // Calculate N_s
## for (i in 1:nobs) {
## N_s[i] = 1.0 / sum(pow(repy[1:K[i], i], 2.0));
## }
##
## for (i in 1:nobs) {
## log_lik[i] = dirichlet_lpdf(segment(deltas[i, ], 1, K[i] + 1)' |
## theta * segment(p[K[i], ], 1, K[i] + 1)');
## }
## }
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A4.2 Stan code used to fit models with estimated 𝑝/𝑝⋆

A4.2.1 Unordered Dirichlet

Note: Code used for saturated unordered Dirichlet models.

## data {
## int<lower=1> nobs;
## int<lower=1> max_K;
## array[nobs] int<lower=1, upper = max_K> K;
## matrix[nobs, max_K] y;
## }
##
## parameters {
## real<lower=0> theta;
## vector[max_K] eta[max_K];
## }
##
## transformed parameters {
## matrix[max_K, max_K] p = rep_matrix(0.0, max_K, max_K);
## for (i in 1:max_K) {
## p[i, 1:i] = softmax(segment(eta[i], 1, i))';
## }
## }
##
## model {
## for (i in 1:nobs) {
## segment(y[i, ], 1, K[i]) ~ dirichlet(theta * segment(p[K[i], ], 1, K[i]));
## }
## // Prior on theta
## theta ~ lognormal(2.5, 0.75);
## }
##
## generated quantities {
## // Structured this way to match output of dirichlet_rng
## matrix[max_K, nobs] repy;
## vector [nobs] log_lik;
## vector [nobs] N_s;
##
## // Pre-populate with zeros
## repy = rep_matrix(0.0, max_K, nobs);
##
## // Add on the predictions
## for (i in 1:nobs) {
## repy[1:K[i], i] = dirichlet_rng(theta * segment(p[K[i], ], 1, K[i])');
## }
##
## // Calculate N_s
## for (i in 1:nobs) {
## N_s[i] = 1.0 / sum(pow(repy[1:K[i], i], 2.0));
## }
## for (i in 1:nobs) {
## log_lik[i] = dirichlet_lpdf(segment(y[i, ], 1, K[i]) | theta * segment(p[K[i], ], 1, K[i]));
## }
## }
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A4.2.2 Ordered Dirichlet

Note: Code used for saturated ordered Dirichlet models.

## functions {
## array[] real orddir_rng(vector theta) {
## // See van Dorp and Mazzuchi 2003, section IV
## int mp1 = rows(theta);
## int m = mp1 - 1;
## real beta = sum(theta);
## vector[mp1] alpha = theta / beta;
## vector[m] alpha_plus = cumulative_sum(alpha[1:m]);
## array[m] real y = beta_rng(beta * alpha_plus,
## beta * (1.0 - alpha_plus));
## return(y);
## }
## }
##
## data {
## int<lower=1> nobs;
## int<lower=1> max_K;
## array[nobs] int<lower=1, upper = max_K> K;
## matrix[nobs, max_K] y;
## }
##
## transformed data {
## int<lower=1> max_Kp1 = max_K + 1;
## matrix[nobs, max_Kp1] deltas;
##
## deltas = rep_matrix(0.0, nobs, max_Kp1);
## deltas[, 1] = y[, 1];
## for (i in 1:nobs) {
## for (j in 2:K[i]) {
## deltas[i, j] = y[i, j] - y[i, j - 1];
## }
## deltas[i, K[i] + 1] = 1.0 - y[i, K[i]];
## }
## }
##
## parameters {
## real<lower=0> theta;
## vector[max_Kp1] eta[max_K];
## }
##
## transformed parameters {
## matrix[max_K, max_Kp1] p = rep_matrix(0.0, max_K, max_Kp1);
## for (i in 1:max_K) {
## int ip1 = i + 1;
## p[i, 1:ip1] = softmax(segment(eta[i], 1, ip1))';
## }
## }
##
## model {
## for (i in 1:nobs) {
## segment(deltas[i, ], 1, K[i] + 1) ~

A-11



## dirichlet(theta * segment(p[K[i], ], 1, K[i] + 1));
## }
## // Prior on theta
## theta ~ lognormal(2.5, 0.75);
## // Prior on eta
## for (i in 1:max_K)
## eta[i] ~ normal(0, 1);
## }
##
## generated quantities {
## // Structured this way to match output of dirichlet_rng
## matrix[max_K, nobs] repy;
## vector [nobs] log_lik;
## vector [nobs] N_s;
##
## // Pre-populate with zeros
## repy = rep_matrix(0.0, max_K, nobs);
##
## // Add on the predictions
## for (i in 1:nobs) {
## array[K[i]] real tmp;
## tmp = orddir_rng(theta * segment(p[K[i], ], 1, K[i] + 1)');
## for (m in 1:K[i])
## repy[m, i] = tmp[m];
## }
##
## // Calculate N_s
## for (i in 1:nobs) {
## N_s[i] = 1.0 / sum(pow(repy[1:K[i], i], 2.0));
## }
##
## for (i in 1:nobs) {
## log_lik[i] = dirichlet_lpdf(segment(deltas[i, ], 1, K[i] + 1)' |
## theta * segment(p[K[i], ], 1, K[i] + 1)');
## }
## }
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A5 Observed versus predicted values
A5.1 Seat shares
A5.1.1 Null model, Dirichlet
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Figure A5.1: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.2 Logical model, Dirichlet
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Figure A5.2: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.3 Logical model, Ordered-Dirichlet

18 20

14 15 16 17

10 11 12 13

6 7 8 9

2 3 4 5

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Observed proportions

P
re

di
ct

ed
 p

ro
po

rt
io

ns

5

10

15

20
Rank

Figure A5.3: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.4 Political model, Dirichlet
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Figure A5.4: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.5 Political model, Ordered-Dirichlet
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Figure A5.5: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.6 Saturated model, Dirichlet
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Figure A5.6: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.1.7 Saturated model, Ordered-Dirichlet
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Figure A5.7: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2 Vote shares
A5.2.1 Null model, Dirichlet
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Figure A5.8: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.2 Logical model, Dirichlet
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Figure A5.9: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.3 Logical model, Ordered-Dirichlet
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Figure A5.10: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.4 Political model, Dirichlet
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Figure A5.11: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.5 Political model, Ordered-Dirichlet
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Figure A5.12: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.6 Saturated model, Dirichlet
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Figure A5.13: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A5.2.7 Saturated model, Ordered-Dirichlet
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Figure A5.14: Observed vs. predicted proportions (with 90% posterior prediction intervals). The facets
disaggregate the plot by different party system sizes 𝑁𝑆0. Party ranks are represented by colours, with
lighter colours representing lower ranks.
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A6 Heterogeneity in concentration parameters: Parliamentary
vs. presidential systems

Our main text analyses use ParlGov data, which we have chosen due to its unparalleled coverage of both
vote and seat shares. ParlGov does, however, have certain limitations. Most notably, it lacks information
on seat- and vote-shares in presidential regimes. As our estimates and recommendations for simulating
party shares are thus exclusively informed by parliamentary systems, one may question if our results equally
extend to presidential systems. One reason to expect that this may not be the case is that in presidential
democracies, the presidential party system spills over to the legislative party system, with the result that
legislative systems will tend to have fewer parties than an otherwise comparable parliamentary party system
(e.g., Hicken and Stoll 2011).

First, we note that this argument has less force when conditioning on the number or seat- or vote-winning
parties (as our approach does). The argument of Hicken and Stoll (2011) is that where there are few (relevant)
presidential candidates, this exerts a downward pressure on the (effective) number of legislative parties. If we
assume for the moment that more presidential systems are characterized by having a few relevant candidates
than by having many relevant candidates, one way in which the effective number of parties could come
down is if some parties drop out entirely or fail to win seats. This would reduce the raw number of seat- or
vote-winning parties. If we are able to condition on this smaller number, our simulations would include the
effect that Hicken and Stoll (2011) identify.

Another way the effective number of parties could come down, however, is if the same parties compete and
win seats as before, but if their shares are more concentrated. If all of the reduction in the effective number
came through this route, then our model would produce inaccurate simulations. We would then have to
resort to more radical criticisms of Hicken and Stoll (2011; and Neto and Cox 1997), of the kind found in
Shugart and Taagepera (2017) (ch. 11, and pp. 309-310).

We address this question empirically by modeling vote shares from 304 election in 20 presidential democracies
in the Americas included in the Latin American Electoral Volatility Dataset provided by Mainwaring and
Su (2021). After removing non-democratic elections and dropping vote shares below one percent to make
the data more comparable to ParlGov, we were able to estimate the same models as before. The results are
presented in the table below.

The table shows, as before, that the logical model is preferable to the political model on the basis that
it provides a better fit to the data. This is important, because one way that presidential systems might
have a lower effective number of parties is through a concentration of share in the “top’ ’ parties supplying
presidential candidates. Although the political model rewards the top parties, it does not do better at
explaining vote shares in presidential systems.

The table does show that an ordered Dirichlet distribution offers a better fit to the data than an unordered
Dirichlet. However, the differences in fit are not significantly different, in the sense that there is considerable
overlap in the 90% credible intervals surrounding RMSE.

Finally, the table does show that vote shares in presidential systems are less tightly clustered around the
vector of mean values p. Whilst the estimated value of 𝛼 in ParlGov vote share data was close to 50, the
estimated value of 𝛼 in this data is closer to 40, or around as predictable as seat shares were. While this
10-point discrepancy in the estimated 𝛼 might seem substantial, it only results in very modest differences in
the dispersion of the simulated shares: For instance, the 90% posterior predictive interval on the vote share
of the largest party in a simulated two-party system widens from [0.60, 0.82] when 𝛼 = 50 to [0.58, 0.83]
when 𝛼 = 40; in a simulated ten-party system, it widens from [0.21, 0.42] to [0.20, 0.43].

On the basis of this analysis, we think that our main conclusion – realistic seat- and vote- shares for a party
system of a given size can be simulated using an unordered Dirichlet distribution with a mean vector given
by the rule described in Taagepera and Allik (2006), and with an estimated precision parameter – still stands.
There might, however, be grounds for allowing a little more variability when simulating the results of vote
shares in presidential systems.
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Table A6.3: Evaluation metrics for models of vote shares. RMSE measured in percentage points. Errors on
𝑁𝑆, 𝑠1, 𝑠2 are expressed in percentages of the true values [-100, +100]. Figures in square brackets are 90%
credible intervals.

Model 𝛼 RMSE Calibration Error 𝑁𝑣 Error 𝑣1 Error 𝑣2

Null Dirichlet 7.16 17.6 89.3 16.6 0.0328 0.179
[6.85, 7.48] [17.2, 18.1] [13.8, 19.4] [-0.522, 0.611] [-0.413, 0.763]

Logical Dirichlet 37.2 8.16 82.1 6.07 -0.154 0.000803
[35.5, 39.0] [7.89, 8.44] [4.61, 7.51] [-0.387, 0.0843] [-0.246, 0.252]

Ordered 16.0 8.06 81.2 5.42 -0.213 0.00665

[15.4, 16.6] [7.76, 8.36] [3.08, 7.85] [-0.439, 0.0106] [-0.235, 0.257]
Political Dirichlet 36.3 8.26 73.2 -7.78 -0.229 -0.0239

[34.7, 38.0] [7.99, 8.52] [-8.89, -6.68] [-0.455, 0.00109] [-0.261, 0.220]
Ordered 15.1 8.15 69.3 -7.72 -0.269 -0.0202

[14.5, 15.7] [7.87, 8.43] [-9.60, -5.76] [-0.476, -0.0561] [-0.241, 0.206]

Saturated Dirichlet 60.1 6.42 89.8 4.72 -0.190 0.159
[57.5, 63.4] [6.21, 6.63] [3.16, 6.29] [-0.378, -0.00444] [-0.0408, 0.362]

Ordered 18.7 6.92 82.9 27.9 -0.0561 0.104
[17.7, 19.7] [6.68, 7.17] [24.9, 31.0] [-0.227, 0.116] [-0.0855, 0.296]

More generally, we note that whenever practitioners expect substantial heterogeneity in 𝛼 – across different
executive systems, regions, time periods, etc. – they can flexibly use the statistical models we implemented
to estimate 𝛼 across any subsets of elections that is of interest to them and that they have data for. The
corresponding Stan model code is included in Online Appendix A4 and made available along with our data-
processing routine as part of the replication materials. Practitioners can use these tools to explore potential
heterogeneity in alpha and use the resulting estimates within the simulation tools we provide to simulate
realistic party systems that are specific to, e.g., particular regions, eras, or executive systems.
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