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A Additional figures and results

Figure A.1: D with three covariates: a binary for self-reported female, discretized age, and party
identification (2, 4, and 3 levels, leading to J = 24 distinct cells). The (1 + 4 + 2 = 7) columns of
D(1) represent the margins of the three covariates, while the (3× (1 + 2) + 1× 2 = 11) columns of
D(2) represent the 2nd order interaction terms, and the (24−7−11 = 6) columns of D(3) represent
the remaining 3rd order interactions required to uniquely identify the cells. Each row corresponds
to a distinct interaction between these three covariates, where the black areas represent elements
of this matrix that are equal to 1.

B Comparison to inverse propensity score weighting via multilevel
modelling

We now show that the multilevel calibration approach is a form of inverse propensity score weighting
with a multilevel non-response model. This connection is instructive, especially for DRP, because
traditional propensity score models can have steep data requirements, often requiring detailed
individual-level data for both the sample and the target population (see Chen, Li, and C. Wu,



Figure A.2: DRP estimates and approximate 95% confidence intervals of state-level Republican vote
share including up to 6th order interactions and gradient boosted trees, restricting to respondents
in the same region.

2020). By contrast, the data requirements for multilevel calibration weights are somewhat weaker,
requiring aggregate data on all interactions of interest.

In particular, when we enforce exact balance on all interactions, multilevel calibration weights
are equivalent to IPW with propensity scores estimated via a fully-saturated generalized linear
model (GLM) — and both our proposed weights and traditional IPW weights are equivalent to
post-stratification weights. As we show, the primary difference between the multilevel calibration
approach and a multilevel GLM is in how the propensity score coefficients are regularized. Through
the Lagrangian dual, we will see that the multilevel calibration approach implicitly regularizes the
coefficients on interactions to guarantee balance while the multilevel GLM approach does not.



B.1 Dual relation to multilevel non-response modelling

We begin by deriving the Lagrangian dual to the optimization problem (9). By inspecting the
dual, we can characterize the implicit propensity score model associated with the weights, moving
smoothly between raking on margins and post-stratification. This builds on recent results noting the
connection between approximate balancing weights estimators and calibrated regularized propensity
score estimation (e.g. Wang and Jose R Zubizarreta, 2020; Hirshberg, Maleki, and J. Zubizarreta,
2019; Zhao, 2019; Chattopadhyay, Christopher H. Hase, and Jose R. Zubizarreta, 2020; Tan, 2020;
Ben-Michael, Feller, and Rothstein, 2020) as well as a long history linking raking weights to IPW
with a propensity score that is log-linear in the first-order marginals (Little and M. M. Wu, 1991).

The dual problem involves optimizing over a series of Lagrange multipliers. The raking con-
straint induces one set of Lagrange multipliers β(1). In the same way, the approximate post-
stratification objective induces an additional set of Lagrange multipliers β(k)— one for each group
of higher order interactions. These dual variables are then chosen to optimize a regularized objective
function.1

Proposition A.1. If a feasible solution to (9) exists, the Lagrangian dual problem with L = 0 and
U = ∞ is
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where β = (β(1), . . . , β(d)). If β̂ solves (A.1), the primal weights are recovered as

γ̂(s) = max

{
0,

d∑
k=1

D(k)
si · β̂(k)

}
≡ γ(s; β̂). (A.2)

To connect this to propensity score estimation, we can inspect the minimizer of the expected loss,
E[q(β)]. The zero gradient condition for the expected loss is

∇E[q(β)] = 0 ⇐⇒
∑
s

NP
s π(s)γ(s;β)Ds =

∑
s

NP
s Ds.

The unique weights that solve the expected zero gradient condition are precisely the inverse propen-
sity weights γ(s;β) = 1

π(s) . Therefore, the dual solution is a regularized M -estimator for the
propensity score, with a fully saturated propensity score model that includes all interactions.

B.2 The role of regularization

We now compare regularization in multilevel calibration weights versus more traditional multilevel
GLM estimation for the propensity score. These two models have the same starting point: both
are M -estimators for the propensity score and, in the special case without regularization, both are
equivalent to post-stratification weights and to each other. Both estimators also partially pool the

1For ease of exposition we have derived the Lagrangian dual for the the usual case where L = 0 and U = ∞. For
general L < U , γ(s; β̂) will be truncated at L and U , and the loss function will change slightly.



propensity score estimates across cells. However, in practical settings where full post-stratification
is infeasible, regularization affects the two approaches differently. For multilevel calibration, the
regularization in the dual problem (A.1) ensures a level of balance on interaction terms. By contrast,
for the multilevel GLM, the regularization instead controls a different quantity that is only indirectly
relevant for estimating the population average.

To see this, we can examine the zero gradient conditions for the two approaches. First, for
multilevel calibration weights, the level of partial pooling directly relates to balance in the higher
order interactions. The zero gradient condition for the regularized dual problem (A.1) implies that
the imbalance in the kth order interactions is

1
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Therefore λk directly controls the level of balance in the kth order interactions, and so the level of
regularization controls how far the re-weighted sample is from the target.

We can compare this to the zero gradient condition of the propensity score π(s; β̂) estimated
via a multilevel GLM with equivalent hyper-parameters:
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Here the hyper-parameter λk instead controls the difference between the observed sample counts
and the expected counts under the model. This difference is only indirectly related to estimating the
population means, in essence estimating the propensity score π(s) rather than the inverse propensity
score 1

π(s) . Therefore, while both approaches are estimators of a fully-interacted propensity score,
the regularization in multilevel calibration controls an upper bound on the bias when estimating
the population average µ. In contrast, regularization in the multilevel GLM provides a condition
on a quantity that is incidental to estimating µ.

C Asymptotic normality

We consider an asymptotic framework with a sequence of finite populations of size N , and let
N → ∞. In this framework, we make several modifications to our setup. First, we strengthen
Assumption 2 to hold strictly for all population sizes N , so that mins π(s) ≥ π∗ > 0, and we allow
the lower bound π∗ to change with the population size N . This ensures that we have a strictly
non-zero probability of having a respondent in each cell in all the populations we consider. We
then allow the number of cells J to grow with the population size N . Denoting κ ≡ ∥D−1∥2∥D∥2
as the condition number of the J × J matrix D, we restrict the number of cells so that κ2J

(π∗N)α

converges to a constant for a rate 0 ≤ α < 1. We also adjust the multilevel calibration procedure to
approximately (rather than exactly) rake on margins without regularization, ensuring that there is
always a feasible solution for every finite population. Finally, we restrict the response variables Ri

to be independent. We detail these and other regularity assumptions on the design in the following
assumption.

Assumption A.1. There is a sequence of populations of size N with N → ∞ such that



(a) The condition number of D, κ ≡ ∥D−1∥2∥D∥2, and the number of cells J satisfy κ2J
(π∗N)α → c

for some constant c and for an 0 ≤ α < 1

(b) The response variables Ri are independent.

(c) π(s) ≥ π∗ > 0 for all N , where 1
π∗2N

→ 0 as N → ∞.
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Theorem A.1. If κ2J
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Theorem A.1 shows us that as long as the modelled cell averages estimate the true cell averages
well enough, the model and the calibration weights combine to ensure that the bias will be negligible
relative to the variance, asymptotically. The rate at which the number of cells grows with the
population size affects how well the modelled cell averages need to perform. If the number of cells
is constant, the model needs only to be consistent. On the other hand, if the number of cells grows
quickly then Theorem A.1 implicitly requires more structure on the outcomes, so that the model
can estimate the cell averages well enough. As we discuss in Section 3.1, we expect main effects
to be much stronger than higher order interaction terms in practice. Therefore, including a new
covariate or using a finer discretization of continuous covariates will primarily impact the outcome
model through these main effects, leading to a substantial amount of underlying structure even
though the total number of cells is increasing. As we discuss in Section 6, there are alternative
ways to account for an increasing number of cells J that may allow J to grow more quickly relative
to the population size N . We leave a thorough investigation of these alternatives to future work.



Note that the minimum cell response probability π∗ affects the quality of the asymptotic ap-
proximation; if individuals in some cells are very unlikely to respond, it will be difficult both to
model those averages and achieve good balance from the respondents. Theorem A.1 is analogous
to recent double-robustness results in survey estimation, such as from Chen, Li, and C. Wu (2020).
Rather than estimating a parametric outcome and non-response model, we instead consider all
interactions.

D Proofs and derivations

Lemma A.1. Let κ ≡ ∥D−1∥2∥D∥2 be the ratio of the maximum and minimum singular values of
D. The solution to (A.3) satisfies
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Proof of Lemma A.1. Slightly abusing notation, denote 1
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π is feasible for optimization problem (A.3), and so
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Multiplying by ∥D−1∥2 gives the result.

Lemma A.2. Let π∗ = mins π(s). For any δ > 0,
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From Lemma A.1 we can further bound this by√√√√∑
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Proof of Theorem A.1. First, we write µ̂drp(γ̂)− µ as
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of Slutsky’s theorem gives the second result.

Proof of Proposition A.1. We begin by re-writing the optimization problem (9) with L = 0 and
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Since there exists a feasible solution to (9) by assumption, by Slater’s condition minβ q(β) is equiv-
alent to the solution to the primal problem. The solution to the inner minimization shows that the

primal and dual variables are related by γ̂(s) = max
{
0,
∑d

k=1D
(k)
s · β̂(k)

}
.

E Simulation study calibrated to the 2016 U.S. presidential elec-
tion

We now evaluate the statistical behavior of the multilevel calibration and DRP estimators on
simulated data based on our application to the 2016 United States Presidential election, described
in Section 1.1. We calibrate two non-response models to the response structure in this population.
First, we fit a random forest model to predict response (i.e., inclusion in the Pew sample) with
B = 500 trees, so that the probability of responding in cell s is

πrf(s) =
∑
s′

nR
s′

B

B∑
b=1

1{s′ ∈ Lb(s)}
|Lb(s)|

.

We also consider a fourth-order model, where the response probability for cell s is

π(4)(s) = logit−1

(
4∑

k=1

β̂(k) ·D(k)
s

)
,

and the coefficient vector β̂ is under-regularized so that there is poor overlap. We similarly consider
two different outcome models for presidential candidate vote choice. First, we fix the outcomes to
be unchanged from the original data; second, we model the probability that unit i votes Republican
(Yi = 1) as a fourth order logistic regression model as above, similarly under-regularized.

To generate simulation runs, we re-sample from the population with replacement, so the total
number of units N is fixed while the number of units within each cell NP

s varies. We then generate
responses and outcomes according to the probabilities above using two pairs: (a) fourth order
models for both the response and the outcome, and (b) a random forest response model with the
true, deterministic outcomes. We consider using multilevel calibration weighting in Equation (9),
balancing first, second, third, and fourth order interactions with λ(k) = 1 and setting λ(k) = 0 for
interactions of higher order. We also consider the DRP estimator, bias correcting with either a
third-order ridge regression or a random forest, as well as MRP with these outcome models. Finally,
we compare to the oracle Horvitz-Thompson estimator with the true response probabilities.

Figure E.1 shows the bias and root mean square error (RMSE) of these approaches across
simulation runs. First looking at the bias, we see that under both data generating processes
(DGPs) it is not enough to rake on margins, and there are substantial gains to balancing second
and higher order interactions. Next, bias correction can provide large improvements: under both
DGPs, DRP reduces the bias relative to raking on the margins alone by nearly the same degree
as directly balancing higher order interaction terms. Even in the under-regularized fourth order
DGP—where the oracle Horvitz-Thompson estimator performs poorly—we can significantly reduce
the bias. DRP also has reduced bias relative to MRP alone with the same outcome model. Focusing
on RMSE, we see that the decrease in bias from balancing higher order interactions outweighs the
increase in variance only when balancing second order interactions, with third and fourth order



Figure E.1: Bias and RMSE across 1000 simulation runs. RMSE for the oracle Horvitz-Thompson
estimator in the under-regularized fourth order model (6%) omitted for scale.

interactions having a worse bias-variance trade-off. We see however, that the bias-variance trade-
off for including an outcome model through DRP is favorable under both outcome models and
DGPs, with the DRP estimator with a random forest outcome model and raking weights having
the lowest RMSE. Finally, MRP with ridge regression has higher RMSE than multilevel calibration
and DRP, while MRP with random forest (the oracle estimator for one of the DGPs) has lower
RMSE. Finally, Figure E.2 shows the empirical coverage for 95% confidence intervals constructed

as µ̂(γ̂)± z1−0.025

√
V̂ for multilevel calibration and DRP with both bias correction methods. The

intervals for multilevel calibration are fairly conservative, while the intervals for both bias-correction
approaches achieve close to nominal coverage.
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