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Appendix
Software Implementation
With the exception of the two word scaling techniques (Wordscores and Wordfish) that were im-
plemented in R with the Quanteda and Quanteda Textmodels packages, all other approaches
have been implemented using Python 3.9. The neural networks for the dictionary creation were
built utilizing Keras while the BERT model was implemented applying the Transformers library
(Hugging Face) in conjunction with Pytorch. The computation of the feature importance scores
was mostly performed with the Autograd Numpy library. Other libraries involved include Sklearn,
especially for evaluation metrics and the creation of the document term matrix, as well as Nltk
and Spacy for text preprocessing. More information on software requirements can be found at
https://doi.org/10.7910/DVN/Y5INRM.

Sensitivity analysis
To extract the relative feature importance of our input words, this paper employs the feature
importance metric defined by Horel et al. (2018) (sensitivity analysis). Technically, the sensitivity
of a model is defined as the derivative of a model’s output with respect to its inputs. Although
it is possible to use a number of different feature importance techniques for the creation of our
dictionary (see e.g. Ribeiro, Singh, and Guestrin 2016; Lipovetsky and Conklin 2001; Hooker et
al. 2018; Samek et al. 2016), according to Horel et al. (2018), sensitivity analysis is an especially
suitable approach for assessing the predictions of a neural network. First, assessing a model’s
output with respect to its input is a very intuitive way to explain the predictions of a neural network.
Second, neural networks are naturally differentiable as the training process involves taking the
derivative of the loss function with respect to the weights of a neural network. Sensitivity analysis is
consequently computationally cheap as the libraries used to train the network can be leveraged in
order to compute the derivatives. Horel et al. (2018) showed that their approach was able to produce
similar results compared to the Local Interpretable Model-agnostic Explanations method (LIME, a
popular feature importance metric that focuses on identifying the contribution a feature has on
the target variable for specific observations) while being much faster to compute (0.5 seconds for
sensitivity analysis versus 6 hours for LIME). Third, sensitivity analysis offers two types of model
explanations as the derivatives can be aggregated locally or globally. Finally, sensitivity analysis
can be applied to many different neural network architectures, such as fully connected Neural
Networks (NNs), Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs).
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Preprocessing steps
All of the CrisisWatch documents were carefully preprocessed according to standard NLP practices.
It is important to mention that the preprocessing steps for the BERT Models diverge from the ones
for the dictionary creation. This is due to the fact that BERT models are directly trained on raw texts
and bidirectionally work with sequences. Bidirectional means that the left and the right context of a
sequence/sentence is taken into account. Therefore, the exclusion of stopwords (e.g. the, are, and,
. . . ), lemmatization as well as the removal of punctuation is strongly discouraged as they change
the context of a sentence.

For the creation of the dictionary, the following standard preprocessing steps have been applied.
First, the CrisisWatch reports have been scraped from the ICG Website, and the remaining HTML
characters have been removed. In addition, texts have been lowercased and special characters
(such as punctuation and numbers) have been removed. After tokenizing the texts, the words
were lemmatized and standard stop words were removed. For creating the document term matrix
that serves as the input of the neural network, the most frequent 3,000 words were identified,
additionally, the top 1000 bi-grams were added to that list. In addition, we manually removed
words related to organizations (international organizations, companies, armed groups, . . . ), people
(their name) or location (such as city and country names) to ensure that the dictionary remains
general enough. Although for other settings this step might be optional, for us it was crucial that
the neural network does not learn that a certain country or certain people are associated with
conflict. In contrast, we intend the neural network to pick up other trends and nuances associated
with conflicts, such as the occurrence of protests or the absence of reports on military clashes.

As most algorithms can only work with numerical inputs, the text data has to be transformed
into a structured numerical format. The use of document term matrices is one of the most popular
methods (Khadjeh Nassirtoussi et al. 2014) that transforms documents into word vectors, thereby
assuming independence among words. In a document term matrix, each row corresponds to
a single document while each column corresponds to one word of the overall vocabulary of all
documents. As this leads to an exploding feature space, it is common practice to reduce the
vocabulary size drastically (Pestov 2013).

Instead of using simple word counts, term frequency-inverse document frequency (tf-idf) scores
were calculated in order to weigh the identified words in the document term matrix. Consequently,
each entry in the document term matrix corresponds to the tf-idf score of a word t in document d .
In order to obtain the tf-idf score of a word, its term frequency (how often does word t appear in
document d ) is multiplied by its inverse document frequency (in how many documents does word
t appear). The idea behind tf-idf scoring is to give a higher score to words that only appear in a few
documents (supposedly more important words) compared to words that appear in all documents
(supposedly less important words).

We also want to discuss why we decided to work with a document term matrix instead of
employing a Long Short-Term Memory (LSTM) model that makes use of word dependencies. The
main rational of our approach is to build a model that is complex enough to learn possibly non-
linear patterns in our data while being computationally inexpensive. LSTMs work sequentially with
data (therefore making it difficult to speed up computation time)and struggle, when the sequences
get too long. Therefore, we decided to work with a "simple" deep feed forward neural network as it
is much more efficient with regards to computation time and should in theory, according to the
universal approximation theorem be able to approximate any arbitrarily complex function (see
Hornik, Stinchcombe, and White (1989)). As well, when we look at our results, we can see that our
approach outperforms a BERT model that makes use of those word dependencies. We therefore
conclude that the performance of our "simple" neural network is sufficiently good (even better
than models that make use of word dependencies) and do not think that the application of LSTMs
will boost performance considerably (if at all).
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Comparison Models
As the performance of our dictionary is compared to the performance of general-purpose dictionar-
ies, the sentiment scores are calculated for the Vader and HGI4 Dictionary. For the two sentiment
dictionaries, this score represents how many words with a "positive" or "negative" connotation are
mentioned in the respective document. These scores can be understood as representing the overall
tonality of each report and should not be interpreted as a document’s stance toward a specific
topic.1. Both Vader and HGI4 have found broad applications in various fields and are generally con-
sidered general-purpose sentiment dictionaries. HGI4 consists of classifications of over 3,000 word
strings according to their negative and positive connotation.2 Vader, similarly, is a general-purpose
sentiment dictionary, that combines a weighted word list with "five general rules that embody
grammatical and syntactical conventions for expressing and emphasizing sentiment intensity"
(Hutto and Gilbert 2014, p.225).

The sentiment score of the HGI4 dictionary is calculated using the Python library Pysentiment2
(DeRobertis 2020). The score is calculated as follows:

P ol ar i t y =
P os − Neg

P os + Neg
(1)

Note that P os and Neg refer to simple word counts for positive and negative words. The
sentiment score of the Vader dictionary is calculated using the Python library Nltk (Bird, Klein,
and Loper 2009). It is the normalized sum of valence scores that are calculated applying certain
rules, called heuristics.3 The compound score then is simply: compound = x

x2+α , where α is a
normalization constant that is set to 15. Finally, the different scores serve as the sole input data to
several Random Forest and XGBoost Models predicting fatalities (regression task).

As PETRARCH2 is a system that uses dictionaries to extract conflict events, it does not provide
a score that can be directly applied in a prediction task. Hence, for our CAMEO scale variable, we
assigned each event a score based on a cooperation-conflict scale that has its origin in the article
by Goldstein 1992 but has been adjusted to the CAMEO dictionary. The scale we used was produced
by Philip Schrodt and can be found online at https://parusanalytics.com/eventdata/cameo.dir/
CAMEO.SCALE.txt. The CAMEO score was calculated by assigning the score of each event category
(we used the top level of categories) and aggregating them on the country-month level.

Document Scaling
We also apply two popular text-scaling techniques: Wordscores (Laver, Benoit, and Garry 2003)
and Wordfish (Lo, Proksch, and Slapin 2016). The idea behind text-scaling approaches is similar to
the idea behind dictionary approaches. Documents that use similar language (measured as word
frequencies) should also represent similar concepts. While Wordscores belong to the supervised
machine learning techniques and require reference texts as inputs, Wordfish belongs to the un-
supervised machine learning techniques and infers positions in documents solely on the basis
of word frequencies and how they co-occur across the corpus. We apply both techniques to our
corpus of conflict reports. As the Wordfish approach is an unsupervised method, we directly apply
it to the conflict reports and calculate document scores.4 For the Wordscore approach, we first
define a fraction of the respective documents in each corpus as reference texts and the correspond-

1. See Bestvater and Monroe (2022) for an extensive discussion what sentiment constitutes and how it differs from stance
detection.

2. See e.g. Loughran and McDonald (2011) for a discussion of the Harvard IV-4 dictionary.
3. The reader is referred to the original paper (Hutto and Gilbert 2014) for further information on the valence scores.
4. Wordfish, therefore, is maybe at a disadvantage compared to Wordscore, as it is not explicitly trained on our outcome of

interest. However, the underlying assumption that reports about conflict dynamics should use similar language depending
on the severity of the conflict, should still hold, making the use of Wordfish as one of our benchmark models a sensible
choice.
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ing fatalities as reference scores. Those references are then used to predict the positions of the
remaining texts. As before with the (sentiment) dictionary approach, we determine how closely
those scores are aligned with fatalities and build simple models predicting fatalities.

Transformer Models
As currently transformer models are considered state-of-the-art models in the field of NLP, we
fine-tune a Bidirectional Encoder Representations from Transformers (BERT) model to compare
its performance to our dictionary approach. The success of BERT models is due to a few factors,
including advancements in computing power as well as the transformer architecture that allowed
for the training of massive corpora with over 3 Billion words. These models are trained in a way so
they can retain information about each word’s position and relationship to other words, allowing
them to model language on a higher level of complexity. Additionally, BERT models leverage the
attention algorithm that allows the model to only focus on important parts of a sentence. Further
information and a more technical description of BERT models can be found in Devlin et al. (2018).

Originally, transformer models are designed to solve classification problems. However, as we
build our dictionary on fatalities, it is necessary to rebuild the final layer of the transformer such that
it can solve a regression task. As BERT Models are trained on whole sentences or documents, they
do not require the same preprocessing steps as applied to the text for the dictionary creation. In our
case, only HTML characters and numbers were removed. The minimally preprocessed texts serve
as input data for the transformer model predicting fatalities. As before, the dataset is split into train,
validation, and test set and the models are fine-tuned on a GPU cluster. Employing a GPU cluster
was necessary as the fine-tuning of the transformer model quickly became unfeasible on regular
computers (with 64 GB RAM), underlining the high computational costs of this approach. Due to the
relatively small size of the dataset all layers, except the last one, were frozen, consequently, only
the last layer was fine-tuned. This technique is frequently used in NLP tasks to avoid overfitting and
speed up the training process and should not affect out-of-sample prediction results (Lee, Tang,
and Lin 2019). It is common practice to choose transformer models that have been pre-trained on a
similar task in order to obtain a better performance. Given that we are dealing with documents
related to conflict, instead of the classical BERT model, we chose the ConfliBERT (Hu et al. 2022)
model as it has been pre-trained on multiple conflict-related corpora. Similar to the BERT model,
the architecture has 12 layers, 768 hidden units, 12 attention heads, and 110M parameters in total
and was trained on over 7 billion words (34 GB) from conflict-related reports (organizations and
governments) and news articles.

Results Lasso
The following table shows the results for the weighted feature importance scores for all different
approaches including the scores obtained from creating a dictionary using Lasso regression.

Hyperparameters Evaluation Models
This section shows the hyperparameters optimized for the two evaluation models.

Unweighted Feature Importance Score
This section presents the results of the comparison of the unweighted feature importance score,
implemented as a simple word count adjusted by document length. We calculated this score for
our OCoDi, the HGI4 dictionary, and the Lasso model, unfortunately for the CAMEO and Vader
dictionary, we were not able to obtain such scores. As an event extraction dictionary, PETRARCH
extracts events from sentences and among other things, returns the event type. We used this event
type and mapped it on a CAMEO scale measuring degrees of conflict and cooperation and used
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Table 1. Results of predicting fatalities with different approaches including the Lasso regression model.

Model OCoDi Vader HGI4 Wordfish Wordscore CAMEO Lasso
Random Forest
MSE 1.59 2.61 3,13 4,39 2,20 2.68 1.65
R 2 0.64 0.40 0.29 -0.00 0.50 0.39 0.62
XGBoost
MSE 1.60 2.60 2.99 4.40 2.21 2.65 1.68
R 2 0.63 0.41 0.32 -0.00 0.50 0.39 0.62

ConfliBERT
MSE 1.75
R 2 0.60

Table 2. Hyperparameter constellations for Random Forest and XGBoost.

Model OCoDi Vader HGI4 Wordfish Wordscore CAMEO Lasso
Random Forest
Trees 1100 1400 1300 600 1200 800 600
Depth 7 7 7 7 7 7 7
XGBoost
Boosting Stages 400 400 100 100 100 100 800
LR 0.05 0.05 0.05 0.2 0.1 0.1 0.2
Depth 3 3 6 3 6 3 3
Min. Child 100 100 1 1 100 10 100

the scale directly to predict the natural logarithm of fatalities. For the Vader dictionary, the Nltk
package does only return a compound score as well as probabilities for the respective document to
be positive, negative, or neutral.

Table 3. Model results for the unweighted dictionary scores.

Model OCoDi HGI4 Lasso
Random Forest
MSE 1.62 2.95 1.92
R 2 0.63 0.33 0.56
XGBoost
MSE 1.62 2.98 1.98
R 2 0.63 0.32 0.55

Prediction Clusters
In Figure 1, we have arranged the data frame in a time-series cross-section format, so observations
for the same country appear next to each other in the plot, we can see that a large part of our under-
and over-estimations seem to be driven by a couple of countries.

Figure 1 also shows how many of the large differences between our predictions and the observed
values are driven by clusters of countries that experienced very high numbers of monthly fatalities
(signified by the high positive values). This should not be too discouraging, given that other variables
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Figure 1. Observed vs. difference (clustered by country-month), Random Forest

normally used in conflict prediction models fare reasonably well at identifying ongoing, high-
intensity conflicts.

Data Availability Statement
Replication code and data for this article are available at Häffner et al. (2023) at https://doi.org/10.
7910/DVN/Y5INRM.
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