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A1. Review of empirical political science literature

As we mention in the main text, we conducted a review of subnational empirical research
published in top political science journals since 2010. We utilized a keyword search of the
Web of Science search engine to find a total of 100 peer-reviewed articles that utilized some
form of subnational/geospatial empirical research. We make no claims that this subset of
articles contains the entire population of subnational/geospatial empirical articles within
political science, but we are confident that this provides a representative sample of the
extant literature within the field. Below we enumerate the articles in our sample, and note
which ones include steps taken by researchers to change the support of key variables.

Author & Year DOI Journal CoS by Authors

Gehring (2021) 10.1017/S0003055418000709 APSR

Harris & Posner (2019) 10.1017/S0003055418000709 APSR X

Hankinson (2018) 10.1017/S0003055418000035 APSR

Tajima et al. (2018) 10.1017/S0003055418000138 APSR

Braun (2016) 10.1017/S0003055415000544 APSR

Cederman et al. (2011) 10.1017/S0003055411000207 APSR X

Bohmelt et al. (2020) 10.1111/ajps.12494 AJPS

Nall et al. (2018) 10.1111/ajps.12305 AJPS

Knutsen et al. (2017) 10.1111/ajps.12268 AJPS

Monogan et al. (2017) 10.1111/ajps.12278 AJPS

Stokes (2016) 10.1111/ajps.12220 AJPS X

Nyhan & Montgomery (2015) 10.1111/ajps.12143 AJPS
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Williams & Whitten (2015) 10.1111/ajps.12124 AJPS

Branton et al. (2015) 10.1111/ajps.12159 AJPS X

Wallace et al. (2014) 10.1111/ajps.12060 AJPS

Bhavani et al. (2014) 10.1111/ajps.12045 AJPS X

Mukherjee & Singer (2010) 10.1111/j.1540-5907.2009.00417.x AJPS

Cho & Gimpel (2010) 10.1111/j.1540-5907.2009.00419.x AJPS

Wimpy et al. (2021) 10.1086/710089 JOP

Montgomery & Nyhan (2017) 10.1086/690301 JOP

Bove & Bohmelt (2016) 10.1086/684679 JOP

Nall (2015) 10.1086/679597 JOP X

Benmelech et al. (2015) 10.1086/678765 JOP X

Boehmke et al. (2012) 10.1017/S0022381612000321 JOP X

Bell et al. (2012) 10.1017/S0022381611001642 JOP

Weidmann (2011) 10.1017/S0022381611000831 JOP X

Clemens et al. (2015) 10.1111/lsq.12067 LSQ

Cortina (2020) 10.1177/1065912919854135 PRQ

Briggs (2019) 10.1177/1065912918798489 PRQ

Croicu & Kreutz (2017) 10.1177/1065912916670272 PRQ

Minkoff & Lyonos (2019) 10.1177/1532673X17733799 APR X

Smith & Weinberg (2016) 10.1177/1532673X15602755 APR

Gill (2021) 10.1177/1532440020930197 SPPQ

Darmofal et al. (2019) 10.1177/1532440019851806 SPPQ

Pacheco (2017) 10.1177/1532440017705150 SPPQ

Parinandi (2013) 10.1177/1532440013484477 SPPQ

Boehmke & Skinner (2012) 10.1177/1532440012438890 SPPQ

Carson et al. (2012) 10.1177/1532440012438892 SPPQ

Gilardi & Wasserfallen (2014) 10.1017/S0007123414000246 BJPS

Bell et al. (2013) 10.1017/S0007123413000100 BJPS

Gibler & Braithwaite (2013) 10.1017/S000712341200052X BJPS

Gatesman & Unwin (2021) 10.1017/pan.2020.22 PA

Juhl (2021) 10.1017/pan.2020.23 PA

Betz et al. (2021) 10.1017/pan.2020.26 PA

Saxon (2020) 10.1017/pan.2019.45 PA X

Vande Kamp (2020) 10.1017/pan.2019.35 PA

Juhl (2020) 10.1017/pan.2019.12 PA

Betz et al. (2018) 10.1017/pan.2018.10 PA
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Harbers & Ingram (2017) 10.1017/pan.2017.4 PA

Goplerud (2016) 10.1093/pan/mpv029 PA X

Franzese et al. (2012) 10.1093/pan/mpr049 PA

Steinwand (2011) 10.1093/pan/mpr026 PA

Abramson & Carter (2021) 10.1017/S0020818320000545 IO

Christensen (2019) 10.1017/S0020818318000413 IO

Sommerer & Tallberg (2019) 10.1017/S0020818318000450 IO

Cunningham & Sawyer (2017) 10.1017/S0020818317000200 IO

Branch (2016) 10.1017/S0020818316000199 IO

Steinwand (2015) 10.1017/S0020818314000381 IO

Chaudoin et al. (2015) 10.1017/S0020818314000356 IO

Neumayer et al. (2014) 10.1017/S0020818313000362 IO

Neumayer & Pluemper (2010) 10.1017/S0020818309990191 IO

Brazys & Kotsdam (2020) 10.1093/isq/sqaa072 ISQ

Jones & Zeitz (2019) 10.1093/isq/sqz068 ISQ

Reeder (2018) 10.1093/isq/sqy016 ISQ X

Bohmelt et al. (2017) 10.1093/isq/sqx067 ISQ

Zhukov & Stewart (2013) 10.1111/isqu.12008 ISQ

Barthel & Neumayer (2012) 10.1111/j.1468-2478.2012.00757.x ISQ

Cao (2010) 10.1111/j.1468-2478.2010.00611.x ISQ

Kosec & Mogues (2020) 10.1017/S0043887120000027 WP

Wilfahrt (2018) 10.1017/S0043887117000363 WP X

Baccini et al. (2014) 10.1017/S0043887114000124 WP

Obinger & Schmitt (2011) 10.1017/S0043887111000025 WP

Cammett & Issar (2010) 10.1017/S0043887110000080 WP X

Schvitz et al. (2021) 10.1177/00220027211013563 JCR

Echevarria-Coco et al. (2021) 10.1177/0022002720958470 JCR

Polo (2020) 10.1177/0022002720930811 JCR

Ito & Elliot (2020) 10.1177/0022002719885428 JCR

Koren (2019) 10.1177/0022002719833160 JCR X

Moro & Sberna (2018) 10.1177/0022002717693049 JCR

Bohnet et al. (2018) 10.1177/0022002716665209 JCR

Miller et al. (2018) 10.1177/0022002716649232 JCR

Minhas & Radford (2017) 10.1177/0022002716639100 JCR

Schultz (2017) 10.1177/0022002715620470 JCR

Osorio (2015) 10.1177/0022002715587048 JCR
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Schutte (2015) 10.1177/0022002713520534 JCR

Baccini & Duer (2015) 10.1177/0022002713516844 JCR

Fjelde & Hultman (2014) 10.1177/0022002713492648 JCR X

McDoom (2014) 10.1177/0022002713484282 JCR

Althaus et al. (2012) 10.1177/0022002711422340 JCR

Buhaug et al. (2011) 10.1177/0022002711408011 JCR X

Weidmann & Ward (2010) 10.1177/0022002710371669 JCR

Chang & Manion (2021) 10.1177/0010414021989762 CPS

Spater & Tranvik (2019) 10.1177/0010414019830721 CPS

Lechler & McNamee (2018) 10.1177/0010414018758760 CPS

Ejdemyr et al. (2018) 10.1177/0010414017730079 CPS

De Juan (2017) 10.1177/0010414016688006 CPS X

Maehler & Pierskalla (2015) 10.1177/0010414014545012 CPS X

Ward & Cao (2012) 10.1177/0010414011434007 CPS

Neumayer & Pluemper (2012) 10.1177/0010414011429066 CPS

Elkink (2011) 10.1177/0010414011407474 CPS

A2. Scale and nesting metrics

This section provide details on the nesting and scale metrics used in the main text, as well
as several alternative metrics included in the SUNGEO R package (nesting() function).

Let GS be a set of source polygons, indexed i “ 1, . . . , NS , and GD be a set of destination
polygons, indexed j “ 1, . . . , ND. Let GSXD be the intersection of polygons 1 and 2, in-
dexed iX j “ 1, . . . , NSXD : NSXD ě maxpNS, NDq. Let ai be the area of source polygon i,
and aj be the area of destination polygon j. Let aiXj be the area of iX j : aiXj ď minpai, ajq.
Let 1p¨q be a Boolean operator, equal to 1 if statement “¨” is true, and 0 otherwise.

Each intersection iX j can be mapped to its parent polygons i and j, using a NSXD ˆ 3

matrix of indices MSXD. For illustrative purposes, consider the stylized example below:

MSXD “

iX j i j

1 1 1
2 1 2
3 2 2
4 2 ∅

where NSXD “ 4
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MiXD is the subset of MSXD indexing the NiXD intersections of polygon i. For i “ 1:

M1XD “

iX j i j

1 1 1
2 1 2

where N1XD “ 2

Similarly, MSXj is the subset corresponding to destination polygon j. For j “ 2:

MSX2 “

iX j i j

2 1 2
3 2 2

where NSX2 “ 2

If a polygon (or a part of a polygon) from GS does not overlap with any features from GD,
the corresponding row in MSXD will have an empty value for j (and vice versa):

M2XD “

iX j i j

3 2 2
4 2 ∅

where i X j “ 4 corresponds to a part of source polygon i “ 2 that does not overlap
with any polygons from GD. Note that this intersection is not empty; it just has a “single
parent” and cannot be mapped to any destination features j.

We can now define our nesting and scale metrics.

• Relative nesting (RN ). Captures how closely source and destination boundaries align:

RN “
1

NS

NS
ÿ

i

NiXD
ÿ

iXj

ˆ

aiXj
ai

˙2

(A2.1)

which is the share of source units that cannot be split across multiple destination units.
Values of 0 indicate no nesting (every source unit can be split across multiple desti-
nation units) and values of 1 indicate full nesting (no source unit can be split across
multiple destination units).

• Relative scale (RS). Captures whether a task is one of aggregation or disaggregation:

RS “
1

NSXD

NSXD
ÿ

iXj

1pai ă ajq (A2.2)
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which is the share of source units that are smaller than destination units. Its range is
from 0 to 1, where values of 1 indicate pure aggregation (all source units are smaller
than destination units) and values of 0 indicate no aggregation (all source units are at
least as large as destination units). Values between 0 and 1 indicate a hybrid (i.e. some
source units are smaller, others are larger than target units).

• Relative nesting, symmetric (RN -sym). Alternative measure of RN , ranges from ´1 to 1:

RN -sym “
1

NS

NS
ÿ

i

NiXD
ÿ

iXj

ˆ

aiXj
ai

˙2

´
1

ND

ND
ÿ

j

NSXj
ÿ

iXj

ˆ

aiXj
aj

˙2

(A2.3)

which is the difference between the nesting of source units within destination units,
1{NS

řNS

i

řNiXD

iXj paiXj{aiq
2 (i.e. RN from standpoint of GS), and the nesting of destina-

tion units within source units, 1{ND

řND

j

řNSXj

iXj paiXj{ajq
2 (RN from standpoint of GD).

Values of 1 indicate that source units are perfectly nested within destination units; ´1

indicates that destination units are perfectly nested within source units.

• Relative scale, symmetric (RS-sym). Alternative measure of RS, ranges from ´1 to 1:

RS-sym “
1

NSXD

NSXD
ÿ

iXj

1pai ă ajq ´ 1pai ą ajq (A2.4)

which is a difference between two proportions: 1{NSXD

ř

1 pai ă ajq, or the share of
source units that is smaller than destination units (i.e. RS from standpoint of GS), and
1{NSXD

ř

1 pai ą ajq, the share that is larger (i.e. RS from standpoint of GD). Its range
is from -1 (pure disaggregation, all source units are larger than target units) to 1 (pure
aggregation, all source units are smaller than target units). Values of 0 indicate that all
source units are the same size as target units.

• Relative nesting, conditional (RN -nn). RN for source units that are not fully nested:

RN (nn)
“

1

NS‹

NS‹
ÿ

i

NiXD
ÿ

iXj

ˆ

aiXj
ai

˙2

(A2.5)

where S‹ denotes the set of source units with 1
NiXD

řNiXD

iXj
aiXj

ai
ă 1.
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• Relative scale, conditional (RS-nn). RS for source units that are not fully nested:

RS(nn)
“

1

NS‹XD

NS‹XD
ÿ

iXj

1pai ă ajq (A2.6)

where S‹ denotes the set of source units with 1
NiXD

řNiXD

iXj
aiXj

ai
ă 1.

• Proportion intact (PI). A nesting metric that requires no area calculations at all:

PI “
1

NS

NS
ÿ

i

1

˜

NiXD ´

NiXD
ÿ

iXj

1 pGiXj “ ∅q “ 1

¸

(A2.7)

This measure ranges from 0 to 1, where 1 indicates full nesting (i.e. every source unit is
intact/no splits), and 0 indicates no nesting (i.e. no source unit is intact/all are split).

• Proportion fully nested (PFN ). A stricter version of PI , which also requires that source
units are fully contained within destination units (in PI , source units outside the bound-
aries of the destination layer are considered “intact”; in PFN , they are not).

PFN “
1

NS

NS
ÿ

i

1

˜

1

NiXD

NiXD
ÿ

iXj

aiXj
ai

“ 1

¸

(A2.8)

This measure ranges from 0 to 1, where 1 indicates full nesting (i.e. every source unit
is intact AND is fully contained within a single destination unit), and 0 indicates no
nesting (i.e. no source unit is intact OR none are contained within destination units).

• Relative overlap (RO). Assesses extent of spatial overlap between source and destination
polygons. Let αS be the combined area of all source polygons. Let αD be the combined
area of all destination polygons. Let αSp´Dq be the combined area of all source polygons,
excluding the area covered by destination polygons. Let αDp´Sq be the combined area
of all destination polygons, excluding the area covered by source polygons.

RO “
αSp´Dq
αS

´
αDp´Sq
αD

(A2.9)

this measure is scaled between -1 and 1. Values of 0 indicate perfect overlap (there is
no part of source units that fall outside of destination units, and vice versa). Values
between 0 and 1 indicate a source “underlap” (some parts of source polygons fall out-
side of destination polygons; more precisely, a larger part of source polygon area falls
outside destination polygons than the other way around). Values between -1 and 0
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indicate a destination “underlap” (some parts of destination polygons fall outside of
source polygons; a larger part of destination polygon area falls outside source poly-
gons than the other way around). Values of -1 and 1 indicate no overlap (all source
units fall outside destination units, and vice versa). This is a theoretical limit only; in
the R package, the function returns an error if there is no overlap.

Table A2.2 reports the pairwise correlations between these metrics, for the Monte
Carlo simulations described in the main text. As the table suggests, the correlations are
generally strongly positive, but not always perfect — especially in the case of PI and RO,
which are capturing conceptually different properties of changes of support.

Metric RN RS RN-sym RS-sym RN-nn RS-nn PI PFN RO

RN 1.00 0.97 1.00 0.97 1.00 0.97 0.80 0.77 0.20
RS 0.97 1.00 0.97 1.00 0.97 0.99 0.73 0.69 0.18
RN-sym 1.00 0.97 1.00 0.97 0.99 0.97 0.80 0.77 0.20
RS-sym 0.97 1.00 0.97 1.00 0.97 0.99 0.73 0.69 0.18
RN-nn 1.00 0.97 0.99 0.97 1.00 0.98 0.74 0.71 0.20
RS-nn 0.97 0.99 0.97 0.99 0.98 1.00 0.68 0.64 0.18
PI 0.80 0.73 0.80 0.73 0.74 0.68 1.00 0.99 0.17
PFN 0.77 0.69 0.77 0.69 0.71 0.64 0.99 1.00 0.15
RO 0.20 0.18 0.20 0.18 0.20 0.18 0.17 0.15 1.00

Table A2.2: Correlation between alternative nesting metrics.

A3. The relationship between RN and RS

The strong correlations reported in Table A2.2 raise several important questions about
how these metrics relate to each other. First, are some of these metrics more strongly
predictive of transformation quality than others? Second, are these metrics redundant?
After we condition onRN , for example, doesRS add any explanatory value in accounting
for variation in transformation quality? Third, how frequently do these metrics diverge,
and what are the implications of such divergence for analysis?

Our Monte Carlo simulations confirm that some nesting metrics — particularly RN

and its variants — have particularly strong explanatory power as predictors of transfor-
mation quality. Table A3.3 reports a “horse race” evaluation of the nesting metrics’ abil-
ity to explain transformation quality, as measured by RMSE, Spearman’s correlation and
OLS estimation bias. Specifically, we replicated the semi-parametric regressions in equa-
tion (5), each time with a different nesting metric on the right-hand side, and compared
goodness-of-fit diagnostics across these specifications. Across all three fit diagnostics —
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Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and the sum of
squared residuals (Deviance) — RN consistently outperforms RS. Moreover, some vari-
ants of RN (e.g. RN -sym, RN -nn) offer marginal performance gains over the original.

Diagnostic Metric AIC BIC Deviance

log(NRMSE) RN-sym 418288.80 418461.79 67176.92
RN 418795.50 418968.49 67269.85
RN-nn 419522.91 419695.90 67403.49
RS 425622.19 425795.18 68534.52
RS-sym 425622.19 425795.18 68534.52
RS-nn 425641.08 425814.07 68538.05
PI 438001.14 438174.12 70888.70
PFN 442979.61 443152.60 71858.13
RO 516004.72 516177.71 87700.58

Spearman’s correlation RN-sym -606350.72 -606177.73 4103.34
RS -605773.83 -605600.84 4109.80
RS-sym -605773.83 -605600.84 4109.80
RS-nn -605123.09 -604950.10 4117.11
RN -604566.82 -604393.83 4123.36
RN-nn -604525.32 -604352.33 4123.83
PI -597065.65 -596892.66 4208.62
PFN -596480.28 -596307.29 4215.34
RO -547282.36 -547109.37 4820.89

OLS estimation bias RN-sym 310210.25 310383.24 50021.78
RS-sym 311564.65 311737.64 50206.97
RS 311564.65 311737.64 50206.97
RN 311685.51 311858.50 50223.52
RN-nn 311779.58 311952.56 50236.42
RS-nn 312556.44 312729.43 50343.01
PI 320795.66 320968.65 51487.49
PFN 323451.97 323624.96 51861.98
RO 396262.88 396435.87 63258.93

Table A3.3: Relative performance of nesting metrics in explaining transformation quality.

If RN generally “outperforms” RS as a predictor of transformation quality, then why
should we bother with RS at all? Is there any added value in calculating and reporting
RS scores, once we account for RN? We compared the performance of several nested
models, including:

1. RN : a baseline specification with just RN in the spline function, as in equation (5).
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2. RN`RS: an expanded, additive specification with separate splines forRN andRS.

3. RN ˆ RS: an expanded, interactive specification with separate splines for RN and
RS, and a multiplicative interaction between the two splines.

To assess whether including RS in these specifications improves model fit, we performed
a series of Likelihood Ratio Tests, reported in Tables A3.4-A3.5. The null hypothesis in
all cases is that the more parsimonious model (e.g. RN only) fits the data just as well as
the expanded model (e.g. RN ` RS). The alternative hypothesis is that the expanded
model fits the data significantly better than the restricted model. We were able to reject
the null hypothesis for all of the three diagnostic measures (RMSE, correlation, OLS bias),
in simulations with both intensive and extensive variables. In every instance, the ratio
of the likelihoods is significantly different from 1; adding RS to the baseline specification
results in lower residual deviance, and (generally) lower BIC scores.

Outcome Model BIC Resid. Df Resid. Dev Df Deviance Pr(ąChi)

log(RMSE) RN 156451.40 91665.00 29515.85
RN`RS 156360.09 91662.00 29475.45 3 40.41 ă0.001
RNˆRS 156409.62 91653.00 29458.31 9 17.13 ă0.001

Spearman’s correlation RN -229698.15 91665.00 437.36
RN`RS -230198.60 91662.00 434.82 3 2.54 ă0.001
RNˆRS -230471.67 91653.00 433.04 9 1.78 ă0.001

OLS estimation bias RN 175014.76 91665.00 36140.25
RN`RS 174777.61 91662.00 36033.42 3 106.84 ă0.001
RNˆRS 174342.49 91653.00 35822.60 9 210.82 ă0.001

Table A3.4: Likelihood ratio tests (intensive variable).
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Outcome Model BIC Resid. Df Resid. Dev Df Deviance Pr(ąChi)

log(NRMSE) RN 104818.44 91617.00 16807.33
RN`RS 104794.42 91614.00 16796.64 3 10.69 ă0.001
RNˆRS 104763.94 91605.00 16772.22 9 24.42 ă0.001

Spearman’s correlation RN -150966.90 91617.00 1030.84
RN`RS -151417.88 91614.00 1025.40 3 5.44 ă0.001
RNˆRS -152008.39 91605.00 1017.67 9 7.73 ă0.001

OLS estimation bias RN 78096.19 91617.00 12555.88
RN`RS 77818.22 91614.00 12513.17 3 42.71 ă0.001
RNˆRS 77733.59 91605.00 12487.60 9 25.57 ă0.001

Table A3.5: Likelihood ratio tests (extensive variable).

One of the reasons why RS does not appear redundant in the Likelihood Ratio Tests
may be that RS and RN are capturing conceptually different geometric properties —
(dis)aggregation vs. nesting — and the two scores occasionally numerically diverge.
As we have seen in Table 1 of the main text, it is possible to obtain a (near-)perfect RS
score in the absence of perfect nesting. Such cases, judging by our simulations and real-
world examples, are not uncommon in practice. They can arise due to both measurement
error (e.g. small misalignments due to an imprecise representation of border features)
and structural differences between source and destination units (e.g. as in the grid-to-
constituency example in Table 1).

Figure A3.1 shows histograms of the distributions of RS and RN values across our
Monte Carlo simulations, along with a scatterplot ofRS as a function ofRN . The two dis-
tributions have very different shapes. RS has a bimodal distribution, with peaks around
RS “ 0 and RS “ 1. RN appears more normally distributed, with a single mode around
RN “ 0.5 and almost no values at the extremes of RN “ 0 or RN “ 1. The relationship
between the two measures resembles a logistic curve, in which RS ă RN for values of
RN ă 0.5 and RS ą RN for RN ą 0.5. We can parameterize this relationship as follows,

xRS “
`

1` e6.2´12.75¨RN
˘´1

where ´6.2 and 12.75 are intercept and slope estimates from a logit regression of RS on
RN . This fitted curve appears as a solid black line in the rightmost pane of Figure A3.1.
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Figure A3.1: How the distributions of RS and RN differ from each other.

This analysis suggests that divergence between RN and RS, while systematic, tends
to be limited to a relatively narrow range. The largest absolute differences |RS ´RN | are
below 0.3 in our simulations (0.35 in our analysis of election data), and there are no cases
in which RS ą 0.5 and RN ă 0.5 (or vice versa).

Figure A3.2 takes stock of how such divergences might impact analysis — and whether
some CoS methods outperform others in such instances. The values in the cells represent
average (N)RMSE, correlation and OLS bias in three subsets of simulations:

1. RS ă RN , where RS “ 0 and RN ě 0.16 (90th percentile) (i.e. bottom-left of the
scatterplot in Figure A3.1, where the curve begins to turn upward).

2. RS “ RN , where 0.45 ď RS ď 0.55 and 0.45 ď RN ď 0.55.

3. RS ą RN , where RS “ 1 and RN ď 0.79 (10th percentile) (i.e. top-right of the
scatterplot in Figure A3.1, where the curve begins to flatten).

Figure A3.2 suggests that no CoS method has a clear comparative advantage in cases
where RN and RS diverge. As we have already established, transformation quality gen-
erally improves as RN and RS increase, so the statistics where RS “ 1 ą RN unsurpris-
ingly look more favorable than those where RS “ 0 ă RN . The relative performance
of the CoS methods, moreover, does not radically change across these subsets of simula-
tions. With some minor exceptions (e.g. simple overlays with centroids when RS ă RN ),
no CoS method emerges as a local winner. Methods that fare relatively poorly overall,
like population-weighted interpolation, also perform quite poorly in these more specific
instances of divergence as well.
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(a) Intensive variable (Gaussian) (b) Extensive variable (Poisson)

Figure A3.2: Transformation quality when RN and RS diverge

A4. Overview of change-of-support methods

Simple overlays

We consider two types of overlay methods: polygon-to-polygon and point-to-polygon.
For point coordinates in the latter transformation, we used polygon centroids.
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• Simple overlay (polygons). The source layer GS is a set of polygons, representing admin-
istrative units, constituencies or other discrete areas of interest. The destination layer
GD is a second, different set of polygons. For each destination polygon j P t1, . . . , NSu,
the algorithm identifies the source polygon i P t1, . . . , NSu with which it overlaps. If
i overlaps with multiple destination polygons, we assign it to the destination polygon
with which it shares the largest areal overlap. For each destination unit j, the algorithm
then computes statistics (e.g. sum, mean) for the source polygon iX j assigned to it.

• Simple overlay (centroids). The source layer GS is a set of points, representing the cen-
troids of polygons or other fixed address (e.g. event location). The destination layer GD
is a set of polygons. For each polygon j, the algorithm identifies the set of points that
fall within it, and calculates statistics for these overlapping points iX j.

Simple overlays are the industry standard for the aggregation of event data, which
are typically stored as point locations. Its primary advantages are its speed and ease of
implementation, which requires no re-weighting or geostatistical modeling. Its primary
disadvantage is its one-to-one or many-to-one mapping of source-to-destination units,
which can generate missing values in GD, particularly when GS are points, whenNS ! ND,
or when destination units are smaller in area relative to source units. This is less of a
problem when missing values can be treated as “true zeroes” (e.g. event counts). It is
more of a problem for most other social science applications (e.g. votes, surveys).

Area-weighted interpolation

We consider two variants of areal interpolation: polygon-to-polygon and point-to-polygon.
For point coordinates in the latter transformation, we used polygon centroids.

• Area weights (polygons). The source layer GS and destination layer GD are sets of (differ-
ent) polygons, representing administrative units, constituencies or other discrete areas
of interest. The algorithm intersects the two polygon layers, creating a third polygon
layer GSXD, where each feature i X j P t1, . . . , NSXDu is a part of source polygon i that
falls inside destination polygon j. The algorithm then computes area weights, propor-
tional to the share of j’s area contributed by each source polygon. Each intersection
i X j receives weight w(area)

iXj “
aiXj

aj
, where aiXj is the area of i X j and aj is the area of j.

For each polygon j, the algorithm calculates weighted statistics for overlapping source
features. For intensive variables, these statistics are typically weighted averages of val-
ues in intersections, xj “

ř

iXj w
(area)
iXj xiXj , where xiXj is the value of some variable x in

intersection iX j. For extensive variables, these statistics are typically sums of values in
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all constituent intersections, xj “
ř

iXj xiXj , adjusted so as to satisfy the pycnophylactic
(mass-preserving) property.

• Area weights (centroids). The source layer GS is a set of points, representing the centroids
of polygons or other fixed address (e.g. event location). The destination layer GD is a set
of polygons. This method includes an additional, intermediate step to convert the point
features into polygons, by creating a Voronoi tessellation of the study area. During
the tessellation stage, the algorithm creates NS polygons, such that for any polygon
li corresponding to point i, all points inside li are closer to i than to any other point
´i. This is followed by a polygon-to-polygon interpolation stage, as described in the
previous paragraph.

Areal weighting is the default CoS method built in to many commercial and open-
source Geographic Information Systems. In contrast to simple overlays, interpolation by
design leaves no gaps or missing regions. It is also easy to implement and requires infor-
mation only on the geometries of source and destination units, with no need for ancillary
data. Its point-to-polygon variant is particularly attractive if the boundaries of source
units are unknown. However, this method rests on several important assumptions, which
are fully satisfied in only very rare cases. Most notably, it assumes that the phenomenon
of interest is uniformly distributed in source polygons. The point-to-polygon variant is
also sensitive to assumptions about boundary placement made in the creation of the syn-
thetic tessellated polygons.

Population-weighted interpolation

We consider two variants of population-weighted interpolation: polygon-to-polygon and
point-to-polygon. As above, we used polygon centroids as point coordinates.

• Population weights (polygons). This method requires three spatial data layers. The source
layer GS and destination layer GD are sets of (different) polygons, representing adminis-
trative units, constituencies or other discrete areas of interest. The third, ancillary layer
is a raster of population levels Π, which fully overlaps with the area of GS and GD. The
algorithm intersects the two polygon layers, creating a third polygon layer GSXD, where
each feature i X j P t1, . . . , NSXDu is a part of source polygon i that falls inside desti-
nation polygon j. The algorithm then computes population weights, proportional to
the share of j’s population contributed by each source polygon. Each intersection iX j
receives weight w(pop)

iXj “
piXj

pj
, where piXj is the population count of intersection i X j

and pj is the population of j. For each polygon j, the algorithm calculates weighted
statistics for overlapping source features, as described above.
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• Population weights (centroids). The source layer GS is a set of points, representing the
centroids of polygons or other fixed address (e.g. event location). The destination layer
GD is a set of polygons. The third, ancillary layer is the raster of population levels
Π. As with the second, point-based area-weighting method, this method includes an
intermediate step to convert the point features into tessellated polygons, and calculates
population levels for each intersection between these polygons and GD. This is followed
by a population-weighted polygon-to-polygon interpolation stage, as described in the
previous paragraph.

This is an extension of the area weighting method, which dispenses with the unifor-
mity assumption and seeks to account for variation in the underlying distribution of x.
Although we use the term “population” here, this method is extensible to any set of an-
cillary data that researchers consider to be predictive of this distribution. The primary
disadvantages are data scarcity (e.g. contemporaneous population data are not always
available), the assumption that this ancillary layer is indeed predictive of x, as well as
assumptions made during the tessellation stage in the point-based version.

Thin-plate regression spline methods

We consider two methods that employ thin-plate regression splines: TPRS-Forest estima-
tion and TPRS-Areal Weighting. These methods allow researchers to use external vari-
ables when interpolating between source and designation polygons. In addition, these
methods provide a way to construct uncertainty measures for the designation unit by ex-
ploiting geographic variation in the XY-coordinates of the source polygon units. Finally,
these methods provide a way to interpolate spatial data with non-Gaussian error distri-
butions, such as binary, count, or categorical data. These two methods differ, however, in
how they handle information from the source polygon. TPRS-Forest estimation excludes
random noise fluctuations, or non-systematic variation, when mapping from the source
to designation polygon. TPRS-Areal Weighting, on the other hand, interpolates all infor-
mation, including random noise fluctuations, from the source to designation polygon.

Thin-plate regression splines (TPRS) (Duchon, 1977; Wood, 2003) estimate a nonpara-
metric smooth function fp¨q— in our case, fpLong,Latq— by minimizing

||y ´ f || ` λJmdpfq

where y is a vector of yi’s, f “ |fpx1q, . . . , fpxnq|
1, x is an NSXDˆd matrix of predictors (in

this case, longitude and latitude), || ¨ || is the Euclidean norm, and λ is a smoothing param-
eter governing the model degrees of freedom, which can be selected through generalized
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cross-validation or the Akaike Information Criterion. Jmd is a “wiggliness penalty” for f :

Jmd “

ż

. . .

ż

Rd

ÿ

υS !...υd!“m

m!

υS! . . . υd!

ˆ

δmf

δxυS1 . . . δxυdd

˙

dx1 . . . dxd

where m is the order of differentiation, satisfying 2m ą d. In our two-predictor case, the
wiggliness penalty becomes

J22 “

ż ż
ˆ

δ2f

δLong2

˙2

`

ˆ

δ2f

δLat2

˙2

` 2

ˆ

δ2f

δLong2Lat2

˙2

dLongdLat

The advantage of thin-plate regression splines is that they avoid the knot placement prob-
lems of conventional regression spline modeling, reducing the subjectivity of the model
fitting process. They also nest smooths of lower rank within smooths of higher rank.

• TPRS-Forest Estimation. This process begins by fitting a thin-plate regression spline to
the source polygon and predicting conditional mean and standard error estimates to the
designation polygon units. Next, we fit a random forest model to the source polygon
and predict conditional mean estimates to the designation polygon units.

• TPRS-Areal Weighting. This process begins by intersecting the source and designa-
tion polygon units. Next, we fit a thin-plate regression spline to the source polygon
and predict conditional mean and standard error estimates to the designation poly-
gon units. Third, we conduct simple areal weighting using the TPRS residuals and the
shape boundaries of the source and designation polygon units. Finally, we construct
error bounds by bootstrapping the estimated values: conditional mean, areal weighted
residuals, and standard error.

Kriging methods

We consider two block kriging methods in the main text: ordinary and universal. The
primary difference is that the second requires ancillary data, while the first does not.

• Ordinary Kriging. The source layer GS is a set of points, representing (in our case) the
centroids of polygons. However, the points can represent any other fixed address (e.g.
sampling or event location). The destination layer GD is a set of polygons. At the point
level, ordinary kriging interpolates a value Zpx0q of random field Zpxq at unobserved
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location x0, using data from observed location xi. The kriging estimator is:

Ẑpx0q “

n
ÿ

i“1

wipx0qZpxiq

where wipx0q, i “ 1, . . . , n is a spatial weight. These weights are based on a variogram
model, which describes the degree to which nearby locations have similar values:

γ̂pdq “
1

2npdq

ÿ

diq“d

pZpxiq ´ Zpxqqq
2

where ˆγpdq is estimated semivariance, npdq is number of point pairs pxi, xqq separated by
distance d, and Zpxiq is value of a variable at location xi. As locations become farther
apart, they should become more dissimilar and have higher semivariance γpdq. We
select a variogram model appropriate to the data by minimizing the sum of squared
residuals from the sample. To interpolate at point x0 based on points x1, . . . , xNS

, the
weights w1, . . . wNS

must be found, by solving the system of linear equations:

»

—

—

—

—

–

γpd11q γpd12q ¨ ¨ ¨ γpd1NS
q 1

...
... . . . ...
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where γpdijq is the semivariance for the distance between points xi and xj , and λ is
the trend parameter. Ordinary kriging assumes an unknown constant trend: λpxq “ λ.
Point-level interpolation by ordinary kriging is given by:

Ẑpx0q “

¨

˚

˚

˝
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...
wNS

˛

‹

‹

‚

1¨

˚

˚

˝
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q

˛

‹

‹

‚

Ordinary kriging error is:

var
´

Ẑpx0q ´ Zpx0q

¯

“
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A17



This approach can be extended to yield predictions for areal units, via block kriging
(Cressie, 1993; Chiles and Delfiner, 2009). Let B be an area (“block”) that forms the
spatial support of ZpBq. These blocks can be regularly-shaped grid cells, or irregular
polygons. In our case, we can specify a separate block Bj for each destination polygon
in GD. The block kriging predictor is a weighted average of point-level measurements

ẐpBjq “

n
ÿ

i“1

wipBjqZpxiq

This approach is equivalent to predicting multiple points in region Bj , and averaging
those values over Bj (Young et al., 2009). Using the predicted values of this random
field, the algorithm computes statistics (e.g. means, sums) for each destination polygon
j, preserving the pycnophylactic property for extensive variables as appropriate.

• Universal Kriging. This method requires three or more spatial data layers. As above,
the source layer GS is a set of points (e.g. centroids) and destination layer GD is a set
of polygons. The third, ancillary layer is a raster of population levels Π, which fully
overlaps with the bounding box of GS and GD. The algorithm interpolates a value Zpx0q

of random field Zpxq at unobserved location x0, using data from observed location xi

and population values observed at x0 and xi. We then extend this approach to estimate
block averages for each polygon in GD.

Kriging is widely used in natural and environmental sciences as a solution to the
change-of-support problem (Gotway and Young, 2007). Unlike the interpolation and
overlay methods, this is a model-based approach, which can ascertain the uncertainty
of estimates. However, kriging is highly sensitive to variogram model selection, and
some of its assumptions (particularly regarding the smoothness of interpolated values
over space) can be problematic for social science.

A5. Analysis of Swedish electoral data

The current section replicates the main text’s CoS analysis of electoral data from the U.S.
state of Georgia, with analogous data from Sweden’s 2010 Riksdag (unicameral legisla-
ture) elections. Figure A5.3 shows the spatial data layers used in this analysis, which
correspond to those in Figure 1 (precincts, constituencies, 0.5˝ hexagonal grid cells).1

1The precincts boundaries are from data.val.se/val/val2010/statistik. The constituency boundaries
are from Kollman et al. (2017).
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Table A5.6 reports relative scale and nesting coefficients for these polygons (counter-
part to Table 1). Notably, as Table A5.6b shows, while precincts should be fully nested
within constituencies “in real life,” this is not technically the case in the geospatial data
(RN “ 0.90). The nesting coefficient for precincts-constituencies is about the same as it is
for precincts-grid, although RS is larger for the former pair. This surprisingly low RN is
likely due to measurement error, the differential precision of the two geospatial boundary
datasets, and other discrepancies (e.g. coastal features, bodies of water).

Figure A5.4 illustrates several examples of transformed values of Top-2 Competitive-
ness alongside true values, for (a) precinct-to-constituency and (b) constituency-to-grid
CoS. Figure A5.5 reports fit diagnostics for CoS transformations of Swedish election re-
sults. The results here are consistent with those for Georgia (Figure 3).

Figure A5.3: Spatial data layers (Sweden)

(a) Precincts (b) Constituencies (c) .5˝ grid (d) a ` b (e) c ` b

Table A5.6: Relative scale and nesting of polygons in Figure A5.3.

(a) Relative nesting (RN )

Source Destination

(a) (b) (c)

(a) Precincts – 0.90 0.90
(b) Constituencies 0.02 – 0.19
(c) .5˝ grid 0.27 0.66 –

(b) Relative scale (RS)

Source Destination

(a) (b) (c)

(a) Precincts – 1.00 0.94
(b) Constituencies 0.00 – 0.01
(c) .5˝ grid 0.09 0.99 –

A19



Figure A5.4: Output from change-of-support operations (Sweden).
É

: source features
are polygons.

Ä

: source features are polygon centroids.

(a) Precinct-to-constituency

True values Overlay
É

Overlay
Ä

Area W
É

Area W
Ä

Pop W
É

Pop W
Ä

TPRS TPRS (res.) TPRS AW Ord Krige Univ Krige Rasterize

(b) Constituency-to-grid

True values Overlay
É

Overlay
Ä

Area W
É

Area W
Ä

Pop W
É

Pop W
Ä

TPRS TPRS (res.) TPRS AW Ord Krige Univ Krige Rasterize
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(a) Relative nesting (b) Relative scale

Figure A5.5: Relative nesting, scale, and transformations of election data (Sweden)
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A6. Direct vs. indirect transformations of intensive variables

The conceptual distinction between intensive and extensive variables can obscure the fact
that intensive variables are often composites of multiple extensive variables. While some
intensive variables, like air temperature, can be directly observed “in the wild,” others
are functions of extensive variables divided or normalized by other extensive variables,
like volume, area or population count. For example, in order to establish a party’s vote
share in an election (an intensive variable), one must first observe the total number of
valid votes cast (an extensive variable) along with the number of valid votes the party
received (another extensive variable), and divide the latter by the former. To take another
example, Top-2 Competitiveness — the variable we used in our electoral data analysis —
can be calculated from several combinations of components:

Top-2 Competitiveness “ 1´winning party vote share margin

“
valid votes´winning party vote count margin

valid votes

“
valid votes´ pvotes for winner´ votes for runner-upq

valid votes

of which only “winning party vote share margin” is an intensive variable, albeit one
which is itself a function of multiple constitutive extensive variables. Indeed, some ex-
tensive variables are also composites: “vote count margin” is the difference between the
vote counts of the winner and runner-up.

What is the appropriate way to handle CoS operations for composite intensive vari-
ables? The choice boils down to the following:

1. Direct transformation: perform CoS operations directly on the intensive variable,
rather than its extensive components. In our example, this means treating competi-
tiveness as a single, self-contained variable, and attempting to calculate its average
values in destination units.

2. Indirect transformation: perform CoS operations on a variable’s extensive compo-
nents, and use the transformed values of these individual components to reconstruct
the intensive variable within destination units. The transformed values for all ex-
tensive variables must satisfy the pycnophylactic (mass-preserving) property. In our
case, this means calculating sums of valid votes in each destination unit, identifying
winners and runners-up in destination units by ranking the parties by aggregate
number of votes they each received, and then using these components to calculate
competitiveness scores within destination units.
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The choice between these two approaches depends in part on data availability. Direct
transformation is suitable for a “data-poor” scenario, where the researcher only has ac-
cess to a composite measure and not the underlying variables used to construct it. Indirect
transformation, which we adopted in the main text, is better-suited for a “data-rich” sce-
nario, where the researcher has access to the full complement of component variables. Yet
data availability is not the only consideration that is relevant here.

As Table A6.7 shows, the comparative advantages of direct vs. indirect transforma-
tions depend on the relative nesting and scale of source and destination units. When RS
and RN are high, as in the case of precinct-to-constituency transformations in Georgia (a
to b), the indirect approach outperforms the direct one. Errors are generally smaller, and
correlations slightly higher, when using multiple CoS operations on individual extensive
components rather than a single CoS operation on the composite measure. When RS and
RN are lower, as in virtually all other cases in Table A6.7, transforming the single com-
posite measure yielded more reliable results than transforming individual components.

Diagnostic Source Destination RS RN Direct Indirect

RMSE a. Precincts b. Constituencies 1.00 0.98 1.20 1.17
a. Precincts c. Grid cells 1.00 0.92 1.21 1.18
b. Constituencies a. Precincts 0.00 0.01 1.32 1.49
b. Constituencies c. Grid cells 0.12 0.29 1.25 1.37
c. Grid cells a. Precincts 0.00 0.05 1.31 3.45
c. Grid cells b. Constituencies 0.89 0.54 1.19 1.24

Spearman’s correlation a. Precincts b. Constituencies 1.00 0.98 0.72 0.73
a. Precincts c. Grid cells 1.00 0.92 0.85 0.78
b. Constituencies a. Precincts 0.00 0.01 0.45 0.08
b. Constituencies c. Grid cells 0.12 0.29 0.53 0.35
c. Grid cells a. Precincts 0.00 0.05 0.69 0.45
c. Grid cells b. Constituencies 0.89 0.54 0.74 0.60

OLS estimation bias a. Precincts b. Constituencies 1.00 0.98 0.98 -1.37
a. Precincts c. Grid cells 1.00 0.92 0.32 -0.22
b. Constituencies a. Precincts 0.00 0.01 0.43 -2.04
b. Constituencies c. Grid cells 0.12 0.29 1.31 -1.68
c. Grid cells a. Precincts 0.00 0.05 -0.58 -1.41
c. Grid cells b. Constituencies 0.89 0.54 1.43 -7.73

Table A6.7: Transformation quality when interpolating component intensive variables
directly (“Direct”) vs. reconstructing them from extensive components (“Indirect”).

This analysis suggests that an indirect strategy of reconstructing secondary statistics
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from transformed constituent variables pays the most dividends in cases of aggregation
across nested units. When units are less nested, the indirect approach can actually back-
fire — the reconstructed composite becomes less accurate because, at lower values of RN
andRS, the transformations of each component themselves become less accurate. In such
cases, the researcher may be better off transforming the composite measure directly.

A7. Monte Carlo study design

At each iteration, our simulations executed the following routine:

1. Draw a set of (random) source (GS) and destination (GD) polygons. Let NS be the
number of source polygons, and ND be the number of destination polygons. Create
a bounding box B defined by coordinate set txmin, xmax, ymin, ymaxu. Within B, sample
a random set ofNS points. CreateNS tessellated polygons such that for any polygon
j P t1, . . . , NSu corresponding to point i P t1, . . . , NSu, all points inside j are closer
to i than to any other point ´i. Repeat procedure for the ND destination polygons.

2. Randomly allocate X values (e.g. votes, margins) across GS and GD.

• For intensive variables (scale-independent, like population density or vote shares),
we simulated values from a Gaussian Random Field (GRF). For each unit in the
intersection GSXGD, draw a value of x from a mean zero GRF tXnunPG, simulated
with the sequential simulation algorithm (Goovaerts, 1997). We model spatial au-
tocorrelation in this field with a variogram, which describes the degree to which
nearby locations have similar values. The semivariance γpdq is formally defined
as the squared difference in values between locations:

γ̂pdq “
1

2npdq

ÿ

dij“d

pX pciq ´X pcjqq
2 (A7.10)

where npdq is the number of point pairs separated by distance d, and Xpciq is the
value of variable xpcq at location ci. The variogram can be used for spatial pre-
diction by fitting a parametric model to the variogram, specifying the model type
(e.g. exponential, spherical, Matern), partial sill (magnitude of variation), range
(maximum distance d), and nugget variance (micro-variability, measurement er-
ror). The range parameter here governs the degree of spatial correlation (because
npdq is increasing in d, more observations influence each other as range increases).

We fit two variogram models:
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(a) Spatially autocorrelated data. Matern covariance semi-variogram model, with
range of 2000, partial sill of 1, nugget variance of 0.

(b) Spatially random data. Matern covariance semi-variogram model, with range
of 1, partial sill of 1, nugget variance of 0.

The sequential simulation algorithm follows a random path through locations
c1, . . . , cn. At each location ci (e.g. centroid of each intersection GS X GD), it com-
putes the conditional distribution of Xpciq given the data and previously simu-
lated values. It draws a value from this distribution, and assigns it to ci. It then
proceeds to the next unvisited location, until all n locations have assigned values.

Figure A7.6 illustrates two realizations of the GRF, simulated using the (a) auto-
correlated and (b) spatially random variogram models.

Figure A7.6: Two examples of Gaussian Random Fields used in simulations

(a) Spatially autocorrelated (b) Spatially random

• For extensive variables (scale-dependent, like population counts or event counts),
we simulated values from a Poisson point process (PPP). For each unit in the in-
tersection GS X GD, count the number of events x from a Poisson point process
(PPP) model. Let C denote a bounded spatial region, let ApCq represent the area
of C, let XpCq be the number of events realized in C, and let λ be the intensity
parameter. The probability that exactly k events occur in region C is

P pXpSq “ kq “
pλA pCqqk e´λApCq

k!
@ApCq ą 0, k “ 0, 1, 2, . . . (A7.11)

We fit two PPP models:

(a) Spatially autocorrelated data. Inhomogeneous Poisson process, where λplong, latq
is a function of spatial coordinates (assumes intensity is variable over C). We
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used a spherical functional form, where intensity is highest in the center, and
lower on the periphery:

λplong, latq “ λmax ´ λ0

b

plong´ long0q
2 ` plat´ lat0q

2 (A7.12)

where λmax “ 100 and λ0 “ 10, and plong0, lat0q is a central coordinate pair,
whose exact location in C varies randomly across simulations.

(b) Spatially random data. Homogeneous Poisson process, where λ is a positive
constant (assumes constant intensity over C). We set λ “ λmax “ 100.

Figure A7.7 illustrates two realization of the PPP, simulated using the (a) autocor-
related/inhomogeneous and (b) spatially random/homogeneous PPP models.

Figure A7.7: Two examples of Poisson Point Processes used in simulations

(a) Inhomogeneous PPP (b) Homogeneous PPP

By way of comparison, Figure A7.8 shows the geographic distribution of electoral
competitiveness (A7.8a) and political violence (A7.8b) in India.2 While real-world
data do not neatly align with a particular known distribution (e.g., Gaussian, Pois-
son), the types of clustering and heterogeneities seen here bear some resemblance
to those in the spatially-autocorrelated GRF (Figure A7.6a) and inhomogeneous
PPP (Figure A7.7a). For example, the heterogeneous pattern in Figure A7.7a is
similar to the differential point densities in the north of India in Figure A7.8b,
around Jammu and Kashmir.

2For this illustration, we used CLEA data from the 1996 Indian general election (Kollman et al., 2022)
and xSub multi-source event data on political violence (Zhukov, Davenport and Kostyuk, 2019).
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Figure A7.8: Geographic distribution of electoral and violence data in India

(a) Electoral competitiveness (b) Political violence

After xi values are drawn for each of the sub-units in intersection GS XGD, calculate
synthetic variable yi “ α ` βxi ` εi, with parameters α “ 1, β “ 2.5 and ε „ Np0, 1q.

Calculate aggregated x and y values for each set of polygons:

• Aggregate over GD to get “true values” of x, y in GS : (xGS, yGS)

• Aggregate over GS to get “true values” of x, y in GD: (xGD, yGD)

• Repeat for two types of aggregated variables: intensive (aggregates are means),
and extensive (aggregates are sums). Aggregated values for extensive variables
must satisfy the pycnophylactic (mass-preserving) property.

3. Change the geographic support of X from GS to GD, compare true values of x in GD
to these spatially-transformed values of x. Let K be a set of CoS algorithms (e.g.
areal interpolation, kriging, etc.). Each k P t1, . . . , Ku specifies a mapping/trans-
formation between geometries GS and GD Let xGD be the “true” value of x in desti-
nation polygons GD Let yxGD

pkq
“ fkpxGSq be the estimated value of xGD, calculated

using CoS algorithm k For each k, calculate

• Root mean squared error (RMSE):
b

ř

j
1
ND
pxjGD ´zxjGDq2, for intensive variables.

• Normalized RMSE (NRMSE):
b

ř

j
1

NGD
pxjGD´{xjGDq

2

maxpxGDq´minpxGDq
, for (scale-dependent) extensive

variables.
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• Spearman’s rank correlation coefficient:
řND

i pRipxGDq´R̄pxGDqqpRipzxGDq´R̄pzxGDqq
b

řND
i pRipxGDq´R̄pxGDqq

2

b

řND
i pRipzxGDq´R̄pzxGDqq

2
,

where Rip¨q is the rank of observation i, and R̄p¨q is the sample mean rank.

• OLS estimation bias: difference between “true” value β “ 2.5 and estimate of β̂
from regression of y on transformed values of x: yjGD “ α ` βzxjGD ` ε.

We ran this simulation for allNS P r10, . . . , 200s andND P r10, . . . , 200s, totalling 1912 “

36481 potential CoS operations, from aggregation (NS “ 200, ND “ 10) to disaggregation
(NS “ 10, ND “ 200). We repeated this process 100 times, with different random seeds.

A8. Additional Monte Carlo results

The main text reports Monte Carlo results only for the RN coefficient. Figures A8.9 and
A8.10 show an analogous set of results for the RS coefficient.

(a) Extensive variable (Poisson) (b) Intensive variable (Gaussian)

Figure A8.9: Relative scale and transformations of synthetic data
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(a) Extensive variable (Poisson) (b) Intensive variable (Gaussian)

Figure A8.10: Transformation quality at different percentiles of relative scale

A9. Sensitivity analyses with multiple CoS methods

One of our central recommendations calls for researchers to perform sensitivity analyses
using alternative CoS methods. While using multiple CoS methods avoids reliance on a
single potentially idiosyncratic algorithm, this pluralism is not without pitfalls of its own.
Different CoS methods may produce divergent results, and adjudicating between these
results is not always straightforward. Direct validation is impossible without ground
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truth data, as we cannot know which set of estimates is closest to true values. The exis-
tence of divergent estimates, with no clear hierarchy among them, creates temptations to
“cherry pick.” Yet the opposite approach — treating all results, including deviant ones,
as equally valid — can be just as misleading.

We propose a middle path, in which researchers report the results of multiple CoS
methods, along with a measure of how divergent each set of results is from the others.
Where traditional cross-validation is not possible, we recommend using outlier detection
tests to establish which CoS methods produce similar results, and which ones are deviant.
The deviance in this case reflects not how distant a result is from the “truth,” but how
distant it is from results obtained through other methods. In the example below, we use
Rosner (1983)’s generalized extreme Studentized deviate test to identify outliers; yet the
same logic can be extended to other outlier tests (e.g. χ2, Dixon, Grubbs).

Let κ denote the number of CoS methods under consideration, indexed by k “ t1, . . . , κu.
Each of these methods yields an estimate, x̂k, which can represent the sample mean of a
spatially-transformed variable, a regression coefficient estimate from transformed data,
or any other quantity of interest. We will assume that at least κ´ tκ{2u of these estimates
come from the same Gaussian distribution, while up to tκ{2u estimates may come from a
different distribution (where tκ{2u is the largest integer less than or equal to κ{2).

Let x̂pjq be the j-th most extreme value of x̂, such that x̂p1q is the value with the farthest
distance from the sample mean x̄, x̂p2q is the second-farthest from the mean, and so on.
Let x̂pjq be the set of estimates at least as extreme as x̂pjq. Let x̄pjq and spjq be the mean and
standard deviation, respectively, of the κ ´ j estimates that remain after removing the j
most extreme values. For each j “ 0, . . . , tκ{2u´ 1, we will compare the test statistic

Rj`1 “
|x̂pjq ´ x̄pjq|

spjq

against its corresponding critical value

λj`1 “
tp,κ´j´2pκ´ j ´ 1q

a

pκ´ j ´ 2` tp,κ´j´2qpκ´ jq

where tp,κ´j´2 is the p-th quantile of Student’s t-distribution with κ ´ j ´ 2 degrees of
freedom, p “ 1 ´ α{2

κ´j
, and Type I error level α “ .05. If Rj ą λj then the j most extreme

values are outliers. Measure k is an outlier if it is among these j values, x̂k P x̂pjq.
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Let ωk denote the proportion of tests in which measure k is flagged as an outlier:

ωk “
1

tK{2u

tK{2u
ÿ

j

1 pRj ą λjq ¨ 1
`

x̂k P x̂
pjq
˘

Table A9.8 reports ωk values for the CoS methods used in our Monte Carlo simulations.
The quantity of interest here is the sample mean of the transformed value of variableX , as
generated by each algorithm. The table suggests that simple overlay methods produce the
most divergent results of all methods considered, with one algorithm (overlay-centroids)
being flagged as an outlier in 86 percent of all tests. Whether this method should therefore
be excluded from analysis is at the discretion of the researcher, although the high value
of ωk certainly suggests that relying exclusively on simple overlays could be problematic.

Method ωk

Area Weights (polygons) 0.05
TPRS-Forest 0.05
Area Weights (centroids) 0.06
Ordinary Kriging 0.06
TPRS-Forest (w/ resid) 0.06
Rasterization 0.06
Universal Kriging 0.06
TPRS-Area Weights 0.06
Pop Weights (polygons) 0.07
Pop Weights (centroids) 0.07
Overlay (centroids) 0.78
Overlay (polygons) 0.78

Table A9.8: Rosner’s outlier tests (X̂ estimates in Monte Carlo simulations).

Several caveats are in order. Most emphatically, no set of results should be excluded
from analysis solely on the basis of an outlier detection test. In the absence of ground
truth data, for all we know, the outlier result may be the only “correct” one, while all the
others are truly “wrong.” By the same token, just because a result is not an outlier does
not mean it is necessarily “correct.” For instance, rasterization has the lowest ωk in Table
A9.8, but its performance across most cross-validation exercises was middling at best.

An outlier detection test is not a substitute for cross-validation. Outlier tests can tell
us how close a series of results are to each other, but not how close they are to the (un-
observed) truth. Our recommendation, therefore, is that researchers use ωk values in
the spirit of transparency and discovery, rather than as a discrete numerical threshold or
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screening device. At a minimum, we recommend that researchers report ωk values along-
side their main results, to place their findings in context. If the output of a CoS method is
frequently flagged as an outlier, further investigation may be warranted into why these
results are so deviant. A researcher can then look “under the hood” of the offending algo-
rithm and see whether a well-motivated justification exists for keeping or removing the
method from the ensemble. Similarly, researchers whose analysis relies on one primary
CoS method can use ωk to reassure readers that their results are not anomalous.

A10. R package code examples

The SUNGEO R package provides tools to calculate nesting metrics and implement some of
the CoS methods described here. The package can be installed and loaded as follows:

# Install package

> install.packages("SUNGEO", dependencies = TRUE)

# Load package:

> library(SUNGEO)

Let’s begin by loading some spatial data for illustrative purposes: polygons representing
German legislative districts and hexagonal grid cells:

# Load data

> data(clea_deu2009)

> data(hex_05_deu)

# Preview

> plot(clea_deu2009["geometry"])

> plot(hex_05_deu["geometry"],add=TRUE ,border="grey")
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The grid cells appear generally smaller than legislative districts, and not nested. We can
use the nesting() function to calculate scale and nesting metrics for the two sets of poly-
gons. Let’s calculate nesting metrics for a change of support from district to grid:

# Calculate all nesting metrics for a district -to-grid CoS

> nest_1 <- SUNGEO :: nesting(

+ poly_from = clea_deu2009,

+ poly_to = hex_05_deu

+ )

> str(nest_1)

List of 12

$ rs : num 0.0252

$ rn : num 0.16

$ rs_sym : num -0.95

$ rn_sym : num -0.511

$ rs_nn : num 0.0252

$ rn_nn : num 0.16

$ p_intact : num 0

$ full_nest: num 0

$ ro : num -0.175

$ gmi : num 0.84

In this scenario, RS “ 0.025, RN “ 0.16, indicating disaggregation across non-nested
units. Now let’s check the opposite direction:

# Calculate all nesting metrics for a grid -to-district CoS

> nest_2 <- SUNGEO :: nesting(

+ poly_from = hex_05_deu ,

+ poly_to = clea_deu2009

+ )

> str(nest_2)

List of 12

$ rs : num 0.976

$ rn : num 0.67

$ rs_sym : num 0.953

$ rn_sym : num 0.511

$ rs_nn : num 0.97

$ rn_nn : num 0.528
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$ p_intact : num 0.588

$ full_nest: num 0.302

$ ro : num 0.175

$ gmi : num 0.33

Here, RS “ 0.98, RN “ 0.67, indicating aggregation and more (but not perfect) nesting.
To save computational time, we can modify the metrix option to extract specific metrics
(e.g. just RN ) rather the full battery.

# Calculate just RN

> nest_3 <- SUNGEO :: nesting(

+ poly_from = hex_05_deu ,

+ poly_to = clea_deu2009,

+ metrix = "rn"

+ )

> nest_3

$rn

[1] 0.6702956

To identify which source units remain intact and which are split (among other quantities),
we can use the option by unit=TRUE to obtain the unit-level components.

# Disaggregate nesting metrics by unit (where feasible)

> nest_4 <- SUNGEO :: nesting(

+ poly_from = hex_05_deu ,

+ poly_to = clea_deu2009,

+ by_unit = TRUE

+ )

nest_4$by_unit

> nest_4$by_unit

index rs rn rs_alt rn_alt rs_nn rn_nn p_intact

1: 1 1 3.19e-06 0.9740827 0.00178652 1 3.19e-06 1

2: 2 1 4.91e-02 0.9493340 0.22154270 1 4.91e-02 1

3: 3 1 8.18e-02 0.9493340 0.28602730 1 8.18e-02 1

4: 4 1 4.88e-03 0.9493340 0.06983717 1 4.87e-03 1

5: 5 1 4.15e-03 0.9493340 0.06443348 1 4.15e-03 1

---
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253: 253 1 1.93e-01 0.9322391 0.43939827 1 1.93e-01 1

254: 254 1 3.43e-01 0.9322391 0.58569486 1 3.43e-01 1

255: 255 1 2.63e-01 0.9019284 0.51319413 1 2.63e-01 1

256: 256 1 2.43e-01 0.9019284 0.49270627 1 2.43e-01 1

257: 257 1 1.01e-01 0.9019284 0.31718422 1 1.01e-01 1

full_nest gmi

1: 0 0.9999968

2: 0 0.9509188

3: 0 0.9181884

4: 0 0.9951228

5: 0 0.9958483

---

253: 0 0.8069292

254: 0 0.6569615

255: 0 0.7366318

256: 0 0.7572405

257: 0 0.8993942

# Visualize rn_i on a map

> hex_05_deu$rn_i <- nest_4$by_unit[,rn]

> plot(hex_05_deu["rn_i"])

The SUNGEO package also has routines for batch geocoding of addresses (geocode osm(),

geocode osm batch()), overlays (point2poly simp()), interpolation (poly2poly ap()), and
other CoS methods. Please see the package help files for additional information.
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