Supplementary Materials
Cross-lingual classification of political texts using

multilingual sentence embeddings

Hauke Licht*

May 11, 2022

Contents

A Input alignment through machine translation: a running example

B Multilingual sentence embedding models
B.1 The Language-Agnostic Sentence Embedding Representation model . . .
B.2 Knowledge-distilled models

B.3 Practical considerations

C Datasets
C.1 The Comparative Manifestos Project corpus
C.2 Manifesto full-text translations provided by Diipont and Rachuj (2022)
C.3 Immigration issue codings provided by Lehmann and Zobel (2018)

D Classifier details
D.1 Training data and cross-validation fold sampling
D.2 Classifier training and evaluation

D.3 Setup of the cross-lingual classification experiment

E Additional results
E.1 Analysis 1: Comparative reliability

F References

12
12
13
18

19
19
21
24

25
25

28

*University of Cologne, Cologne Center for Comparative Politics. Contact: hauke.licht@wiso.

uni-koeln.de

mailto:hauke.licht@wiso.uni-koeln.de
mailto:hauke.licht@wiso.uni-koeln.de

A Input alignment through machine translation: a

running example

The fundamental challenge in cross-lingual quantitative text analysis is language-independent
inference of latent concepts from multilingual corpora. The two sentences listed in Exam-
ple S.1 illustrate this challenge: Both are statements about unemployment, and in both,
the author is pledging to lower unemployment. Consequently, as shown in Example S.2,

the bag-of-words representations of these sentences exhibit no vocabulary overlap.

Example S.1. Sentences in multilingual example corpus.

Language Text

doc; English ‘We will fight unemployment.

doc, German ‘Wir werden die Arbeitslosigkeit reduzieren.

Example S.2. Bag-of-words representations of sentences in Example S.1 after text pre-
processing (lowercasing and punctation removal).

we will fight unemployment wir werden die arbeitslosigkeit reduzieren

docy 1 1 1 1 0 0 0 0 0
doca O 0 0 0 1 1 1 1

Note: All tokens have been lowercased.

Full-text machine translation provides a remedy to this problem. This is shown Ex-
ample S.3. When full-text translated documents are pre-processed and tokenized into
n-gram tokens, this results in monolingual bag-of-words representations of originally mul-
tilingual documents (cf. Example S.4). Compared to the bag-of-words representations of
untranslated sentences (Example S.2), these representations encode the semantic similar-

ity between our two example sentences.

Example S.3. Sentences in Example S.1 after translating non-English texts into English.

D Original text Transfer Text (in English)

doc; ‘We will fight unemployment. asis ‘We will fight unemployment.
translate

docy ‘Wir werden die Arbeitslosigkeit reduzieren. ‘We will reduce unemployment.

Example S.4. Bag-of-words representations of sentences Example S.1 after applying full-text
translation approach.

we will fight unemployment reduce

docy 1 1 1 1 0
docy’ 1 1 0 1

Note: All tokens have been lowercased.

With token translation, texts are first tokenized in their original language, and only
the tokens in the resulting language-specific bag-of-words are translated. This procedure
is illustrated in Example S.5. As shown in Example S.6, token translation enables repre-
senting documents as bag-of-words in the target language. And again, this representation
encodes well the semantic similarity between our two example sentences.

However, translating words or phrases outside the textual contexts in which they are
used can result in translations errors. For instance, such a translation error occurs in
Example S.5 in case of the German word ‘werden’: Read in context, it should translate
to ‘will,” not ‘become.” Comparing Examples S.3 and S.6 shows that this error would not

have been committed with full-text translation.

Example S.5. Applying token translation approach to non-English sentence in Example S.1.
For source tokens, see columns 5-9 of Example S.2.

docy: ‘Wir werden die Abeitslosigkeit reduzieren.’

Source token: ‘wir’ ‘werden’ ‘die’ ‘arbeitslosigkeit’ ‘reduzieren’

¢)

English translation: we ‘become’ ‘the’ ‘unemployment’ ‘reduce’

Note: All tokens have been lowercased.

Example S.6. Bag-of-words representations of sentences in Example S.1 after applying token-
translation approach.

we will fight unemployment become the reduce

docy 1 1 1 1 0 0 0
docy” 1 0 0 1

Note: All tokens have been lowercased.

B Multilingual sentence embedding models

In section 2.2 of the main paper, I have provided a high-level introduction to the intuition
behind multilingual sentence embedding (MSE). In section 3.3, I have briefly described
the pre-trained multilingual embedding models used in my study. Below, I describe in
greater detail the neural network architectures and training strategies used to obtain

these models and provide Python code examples that show how these models can be
used for off-the-shelf MSE.

B.1 The Language-Agnostic Sentence Embedding

Representation model

The Language-Agnostic Sentence Embedding Representations (LASER) model proposed
by Artetxe and Schwenk (2019) is an encoder—decoder architecture for learning multilin-
gual sentence representations. Provided with parallel sentences, that is, versions of oth-
erwise identical texts in two different languages (also called bitexts), this model is trained
for sequence-to-sequence modeling. Put simply, it learns to translate (cf. Schwenk and
Douze, 2017). A visual depiction of the LASER model architecture is shown in Figure
S.1.

- - - T T " F"—-—" -—_ —"——"—"—""—"—"—"—""""—""7""" \ s T T T T T " " === N
[ENCODER sentemb | -------o-ooo- beeos [DECODER !
I max pooling : i : Vi Y2 <fs> I
! [BILSTM J“__,{ BILSTM]‘__, ! ! : 4 3 4 I
T [B E=D
| t t o ' |
i [msm J5] sism [! :F"i’[LFTFM { 'S;M . B;M) !
t 1 | H I
i [BPE emb] [BPE emb] Lo i [se"‘tlBPE| "“] [se:'|B:E | ""’] [‘e:'|BPE| '*’d] !
l\ xt Xz <[s> /: LI .I\---J--<.5.> N Py /:
S S o

Figure S.1. LASER model architecture (Artetxe and Schwenk, 2019, Figure 1)

The task of the LASER encoder is to generate a vector representation (“encoding”) for
a sentence in its source language (x1.,). The decoder is tasked to reconstruct the sentence
in its other language version—the output or target sequence (yi.,)—as accurately as
possible.

Predicting tokens in the output sequence allows computing the cross-entropy loss,
which is used to jointly optimize the encoder and decoder. Once training is completed,
the decoder is discarded, and the encoder can be used for MSE.

Artetxe and Schwenk (ibid.) pre-train their LASER model on 6 large parallel corpora
(cf. their Appendix A). This results in the language support reported in Table S.1.

Table S.1. Language support of the pre-trained LASER model provided by Vaginay (2020).
Columns 2-3 report ISO 369 language codes. Source: https://github.com/facebookresearch/
LASER

Name Name Name

Afrikaans afr af French fre fr Marathi mar mr
Albanian alb sq Galician glg gl Norwegian (Bokmal) nob mnb
Ambharic amh am Georgian geo ka Occitan oci oc
Arabic ara ar German ger de Persian (Farsi) peo
Armenian arm hy Greek ell el Polish pol pl
Aymara aym ay Hausa hau ha Portuguese por pt
Azerbaijani aze az Hebrew heb he Romanian ron ro
Basque bag eu Hindi hin hi Russian rus ru
Belarusian bel be Hungarian hun hu Serbian SIrp sr
Bengali ben bn Icelandic ice is Sindhi snd sd
Berber languages ber Ido ido io Sinhala sin si
Bosnian bos bs Indonesian ind id Slovak slo sk
Breton bre br Interlingua ina ia Slovenian slv sl
Bulgarian bul bg Interlingue ile ie Somali som so
Burmese bur my Irish gle ga Spanish spa es
Catalan cat ca Italian ita it Swahili swa sw
Central/Kadazan Dusun dtp Japanese jpn ja Swedish swe sV
Central Khmer khm km Kabyle kab Tagalog tgl tl
Chavacano cbk Kazakh kaz kk Tajik tgk tg
Chinese chi zh Korean kor ko Tamil tam ta
Coastal Kadazan kzj Kurdish kur ku Tatar tat tt
Cornish cor kw Latvian lav 1lv Telugu tel te
Croatian hrv. hr Latin lat la Thai tha th
Czech cze cs Lingua Franca Nova 1fn Turkish tur tr
Danish dan da Lithuanian lit 1t Uighur uig ug
Dutch nld nl Low German/Saxon nds Ukrainian ukr uk
Eastern Mari mhr Macedonian mac mk Urdu urd ur
English eng en Malagasy mlg mg Uzbek uzb uz
Esperanto epo eo Malay may ms Vietnamese vie vi
Estonian est et Malayalam mal ml Wu Chinese wuu
Finnish fin fi Maldivian (Divehi) = div dv Yue Chinese yue

https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER

Sentence embedding using a pre-trained LASER encoder

Sentences can be embedded using the pre-trained LASER encoder made available through
the laserembeddings® Python package (Vaginay, 2020). The laserembeddings package
makes only minor adaptations to the original implementation during text pre-processing.?
Vaginay (ibid.) shows that these adaptations are inconsequential for sentence embedding
in the languages studied in this paper.?

Listing B.1. Shell code for setting up the LASER model made available by the
laserembeddings Python package.

pip3 install laserembeddings > /dev/null

python3 -m laserembeddings download-models

As shown in Listing B.1, the setup involves installing the package* and downloading
the pre-trained model. As shown in Listing B.2, after importing the Laser class from the
laserembeddings module (line 2), it can be instantiated (as model in line 5) to load the
pre-trained LASER encoder. The embed_sentences method can then be used to embed
texts (see line 11). Note that one also needs to indicate the language(s) of the input
sentence(s). However, this information is only required for correct pre-processing; the
LASER encoder itself has not received input language information during pre-training,

nor does it require this information at inference/prediction time.

Listing B.2. Python code for sentence embedding using the laserembeddings package.

from laserembeddings import Laser

Laser ()

= ["Hello world!", "Hallo Welt!"]
= [”eng" udeun]

embeddings = laser.embed_sentences(texts, lang = langs)

L https://github.com /yannvgn/laserembeddings

2 see Vaginay (2020): “Differences with the original implementation”

3 see Vaginay (ibid.): “Comparison with LASER”

4 for details see https://github.com/yannvgn /laserembeddings#tinstallation

https://github.com/yannvgn/laserembeddings
https://github.com/yannvgn/laserembeddings#what-are-the-differences-with-the-original-implementation
https://github.com/yannvgn/laserembeddings/blob/master/tests/report/comparison-with-LASER.md
https://github.com/yannvgn/laserembeddings#installation

B.2 Knowledge-distilled models

Reimers and Gurevych (2020) propose to extend existing (multilingual) sentence embed-
ding models to new languages by a “knowledge distillation” procedure: a pre-trained
sentence embedding model (the “teacher”) teaches a MSE model (the “student”) how to
represent sentences in different languages. This is achieved by optimizing the alignment
between the teacher’s and the student’s sentence embeddings. More concretely, given
are (i) the “teacher” model M capable of sentence embedding in one or more source
languages s and (ii) a corpus C of parallel sentences mapping sentences in the source lan-
scc- A MSE model (the “student,” M)

is then trained jointly with the teacher to maximize alignment (a) between the teacher

guage(s) to multiple target languages (t), {(s;,)}

and student models’ source sentences embeddings and (b) between the source sentence
embeddings of the teacher model and the target sentences embedding of the student mod-
els. This is achieved with stochastic gradient descent methods by minimizing the mean

squared loss for parallel sentences in a mini batch B:

;5) [(M(Sj) - M(Sj))2 + (M(s;) = M(tj))2]

jeB
A visual depiction of the knowledge distillation architecture is shown in Figure S.2.

Teacher EN sentence vector

Teacher

— 0.8-0.20.3
Hello World Model
Parallel Data (EN-DE) MSE-Loss
Student EN sentence vector

Hallo Welt
L~ 0.7-0.10.3 MSE-Loss
Student
all 1

Model 0.9-0.20.4

Student DE sentence vector

Figure S.2. Neural network architecture for learning multilingual sentence embedding models
through knowledge distillation (ibid., Figure 1)

Reimers and Gurevych (ibid.) emphasize that knowledge-distilled MSE models exhibit
two desirable properties: First, the embedding space is aligned across languages. Hence,
the embeddings of identical sentences in different languages are close to one another.
Second, the vector space properties of the teacher model are transferred to the student
model and hence maintained when embedding sentences in new target languages. This
second property comes in particularly handy when using a sentence embedding models
pre-trained with a paraphrasing objective as teacher model: The resulting knowledge-
distilled multilingual embedding models perform well in paraphrasing, unlike LASER,

which is optimized for exact translation.

Pre-trained knowledge-distilled models

In their paper, Reimers and Gurevych (2020) rely on the English sentence-BERT model
(Reimers and Gurevych, 2019) as teacher and use different MSE models as students.

Knowledge-distilled XLM-R Among their student models is the XLM-RoBERTa
(XLM-R) model. XLM-R is a transformer-based multilingual masked language model
proposed by Conneau et al. (2020) that is trained with the (self-supervised) multilingual
masked language modeling objective proposed by Lample and Conneau (2019). To pro-
duce a knowledge-distilled version of XLM-R, Reimers (2021) uses a RoBERTa sentence
embedding model® pre-trained on English paraphrasing data and parallel data cover-
ing the languages and corpora reported in Table S.2. Reimers (ibid.) makes this model

publicly available for download via the sentence-transformers Python package.b

Knowledge-distilled mUSE In addition, Reimers (ibid.) also makes available a sen-
tence embedding model that was distilled using the multilingual Universal Sentence En-
coder (mUSE, Yang et al., 2020) as a teacher.” mUSE is designed for obtaining “universal”
sentence embeddings (i.e., embeddings that enable good performance in a wide range of
tasks Cer et al., 2018) and relies on multi-task training of a dual encoder architecture
to achieve this (Chidambaram et al., 2019). Yang et al. (2020) train mUSE to bitexts
covering 16 languages (ibid., Table 1) and show that the MSEs it obtains indeed make
for very good features in a wide range of natural language understanding tasks. Reimers
(2021) extends this model to new languages using the parallel corpora reported in Table
S.2.

Applying knowledge distillation to the original mUSE model using 8 parallel corpora
and English as source language (see Table S.2), Reimers (2021) has created a knowledge-
distilled mUSE model that covers the 51 languages reported in Table S.3 and is publicly
available for download via the sentence-transformers Python package (see Listing
B.3).

Sentence embedding using knowledge-distilled models

Listing B.4 shows how multiple sentences can be embedded using the knowledge-distilled
mUSE model. First, one needs to import the SentenceTransformer class (line 2 of
Listing B.4) and call it to create an instance of the knowledge-distilled mUSE model, here
named model (line 5). This will automatically download the pre-trained model. Calling

SentenceTransformer with "paraphrase-xlm-r-multilingual-v1" instead will load

5 paraphrase-distilroberta-base-vil
6 paraphrase-xlm-r-multilingual-vl
7 distiluse-base-multilingual-cased-v2

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/examples/training/multilingual/README.html
https://www.sbert.net/examples/training/multilingual/README.html

Table S.2. Parallel corpora and target languages used to train the knowledge-distilled models.
Please refer to Reimers and Gurevych (2020) for references of these corpora.

Corpus Target languages

Europarl (en — .) bg, cs, da, de, el, es, et, fi, fr, hu, it, 1t, 1v, nl, pl, pt, ro, sk,
sl, sv

GlobalVoices (en — .) ar, bg, ca, cs, da, de, el, es, fa, fr, he, hi, hu, id, it, ko, mk, my,
nl, pl, pt, ro, ru, sq, sr, sv, tr, ur

JW300 (en — .) ar, bg, cs, da, de, el, es, et, fa, fi, fr, gu, he, hi, hr, hu, hy, id,

it, ja, ka, ko, 1t, 1v, mk, mn, mr, my, nl, pl, pt, ro, ru, sk, sl, sq,
sv, th, tr, uk, ur, vi

News-Commentary (en —) ar, cs, de, es, fr, it, ja, nl, pt, ru

OpenSubtitles (en — .) ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, he, hi, hr, hu, hy,
id, it, ja, ka, ko, 1t, 1v, mk, ms, nl, pl, pt, ro, ru, sk, sl, sq, sr,
sv, th, tr, uk, ur, vi, zh_cn

Tatoeba (en — .) ara, bul, cat, ces, cmn, dan, deu, ell, est, fin, fra, glg, guj, heb,
hin, hrv, hun, hye, ind, ita, jpn, kat, kor, kur, 1it, 1lvs, mar, mkd,
mon, mya, nld, nob, pes, pol, por, ron, rus, slk, slv, spa, sqi, srp,
swe, tha, tur, ukr, urd, vie, zsm

TED2020 (en — .) ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr-ca, fr, gl, gu, he, hi,
hr, hu, hy, id, it, ja, ka, ko, ku, 1t, 1v, mk, mn, mr, ms, my, nb, nl,
pl, pt-br, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn,
zh-tw

WikiMatrix (en — .) ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, he, hi, hr, hu, id,
it, ja, ka, ko, 1t, mk, mr, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, tr,
uk, vi, zh

Table S.3. Language support of the knowledge-distilled models (Reimers, 2021).

Language Codes Language Codes Language Codes
Albanian sq, sqi Georgian ka, kat Mongolian mn, mon
Arabic ar, ara German de, deu Norwegian Bokmal nb, nob
Armenian hy, hye Greek el, ell Persian fa, pes
Bulgarian bg, bul Gujarati gu, guj Polish pl, pol
Burmese my, mya Hebrew he, heb Portuguese por, pt, pt-br
Catalan ca, cat Hindi hi, hin Romanian ro, ron
Chinese (Cantonese) zh, zh_cn, zh-cn ~ Hungarian hu, hun Russian ru, rus
Chinese (Mandarin) cmn Indonesian id, ind Serbian sr, srp
Chinese (Taiwanese) zh-tw Italian it, ita Slovak sk, slk
Croatian hr, hrv Japanese ja, jpn Slovenian sl, slv
Czech cs, ces Korean ko, kor Spanish es, spa
Dansk da, dan Kurdish ku, kur Swedish SV, swe
Dutch nl, nld Latvian lv, 1vs Thai th, tha
Estonian est, et Lithuanian lit, 1t Turkish tr, tur
Finnish fi, fin Macedonian mk, mkd Ukrainian uk, ukr
French fr, fr-ca, fra Malay ms, zsm Urdu ur, urd
Galician gl, glg Marathi mr, mar Vietnamese vi, vie

and instantiate the knowledge-distilled XLM-R model. Finally, the encode method of

the SentenceTransformer instance can be used to embed texts (line 10).

Listing B.3. Shell code to install the sentence-transformers Python package.

pip3 install sentence-transformers==0.4.1 > /dev/null

Listing B.4. Sentence embedding using the sentence-transformers Python package.

from sentence_transformers import SentenceTransformer

SentenceTransformer ("distiluse-base-multilingual-cased-v2")

= ["Hello world!", "Hallo Welt!"]

embeddings = model.encode(texts)

B.3 Practical considerations

How long does it take to embed sentences with these models?

To get an idea of how fast MSE is compared to machine translation, I have sampled
750 sentences per language from the Diipont and Rachuj (2022) datasets, embedded and
translated them, and recorded the time elapsed for embedding/translating 750 sentences.
Note that I have run this experiment using a GPU on Google Colab.

For LASER, the median time elapsed while embedding 750 sentences is only 2.5
seconds and the first and third quartile values are 2 and 3, respectively. For the mUSE
and XLM-R, these values are 4.5, 3.75, and 5.

In contrast, the median time elapsed while translating 750 sentences with the open-
source M2M machine translation model is 416 seconds and the first and third quartile
values are 289.25 and 477, respectively. Thus, one can embed 92.44 sentences with the
mUSE or XLM-R models for every sentence translated with M2M.

How long is “sentence-like?”

The neural network architectures underpinning the MSE models discussed above have a
maximum number of tokens they can ingest: The implementation of LASER by Vaginay
(2020). And the knowledge-distilled models provided by Reimers (2021) 128 tokens.

10

One token does not correspond to a word, however, because the tokenizers of these
models are “subword” tokenizers trained on the corpora used for pre-training. To get an
idea of how many words a text can count to allow embedding without truncation, I have
again taken the sample of 750 sentences per language stemming from the Diipont and
Rachuj (2022) datasets, tokenized them with the given models’ tokenizers, and computed
the token-to-word ratio for each. Note that I have run this experiment using a GPU on
Google Colab.

Figure S.3 reports these numbers. Note that I only report numbers for LASER and
mUSE, because mUSE and XLM-R models have been trained on the same data and hence
their tokenizers behave identically.

For LASER’s tokenizer, the median token-to-word ration is 1.67 and the first and
third quartile values are 1.47 and 1.95, respectively. For the tokenizer of mUSE and
XLM-R, these values are 1.5, 1.36, and 1.74.

cat =
dan =
deu =
fin =
fra =
glg
ita =
nid =
nob =
por =
spa =

swe =

T
2 4 6 8

tokens per word

MSE model: LASER mUSE and XLMR

Figure S.3. Token-to-words ratio when tokenizing sentences sampled from the Diipont and
Rachuj (ibid.) datasetswith pre-trained multlingual sentence embedding (MSE) models.

11

C Datasets

In my analyses I combine two data sources with primary data recorded in the Comparative
Manifestos Project (CMP) corpus (Volkens et al., 2020). First, a dataset compiled by
Diipont and Rachuj (2022) that provides full-text translations of the sentences of a subset
of manifestos in the CMP corpus that covers twelve different European languages. Second,
a dataset compiled by Lehmann and Zobel (2018) that records immigration/integration
issue codings obtained for a sample of manifesto quasi-sentences in the original CMP
corpus that covers eight different European languages. I describe these data sources

below.

C.1 The Comparative Manifestos Project corpus

The Comparative Manifestos Project (CMP) corpus (Volkens et al., 2020) is a collection
of election manifestos of political parties from developed and developing democracies that
have been annotated by country experts in their original languages. Version 2020a of the
CMP corpus comprises a total of 2576 party manifestos, 1427 of which are annotated
at the quasi-sentence level. Quasi-sentences are sentence sub-units ‘[containing] exactly
one statement or “message”’ that map one-to-one or many-to-one to sentences (Werner
et al., 2015, p. 6).

Data cleaning

I have not pre-processed the text of quasi-sentences in any way. The only change I have
made to the data is that I have harmonized quasi-sentence level codings to comply with
the fourth version of the coding scheme.® Harmonization of CMP codes was required
because the CMP coding scheme has been repeatedly updated. I have selected the fourth
version as the target scheme because it is backward compatible.

After harmonization, I have removed all quasi-sentences for which (a) the harmonized
CMP code was 000 (“uncoded”), missing (NA), or indicated heading text (“H”); or (b)
the quasi-sentence text was missing (NA), an empty string, or consisted only of space
characters. This was necessary because codings to which exclusion criterion (a) applies
are invalid, and computing feature representations of texts to which exclusion criterion

(b) applies are impossible.

8 T have relied on functions provided in the manifestoR package to do so (Lewandowski et al., 2020):
I have first called recode_cee_codes on version-dependent CMP codes and then recode_v5_to_v4 on
the result of this call.

12

Table S.4. Mapping of CMP codes to left-right—neutral recategorization by topic categories.
Note that CMP codes have been harmonized to comfort with the fourth version of the CMP
coding scheme.

Position Topic CMP codes (harmonized)
left External Relations (extrel) 104
Freedom and Democracy (freedem) 201, 203
Political System (polsys) 305
Economy (econ) 401, 402, 407, 414
Welfare and Quality of Life (welqual) 505
Fabric of Society (fabsoc) 601, 603, 605, 606
right External Relations (extrel) 103, 105, 106, 107
Freedom and Democracy (freedem) 202
Economy (econ) 403, 404, 406, 412, 413
Welfare and Quality of Life (welqual) 504, 506
Social Groups (socgrp) 701
neutral External Relations (extrel) 101, 102, 108, 109, 110
Freedom and Democracy (freedem) 204
Political System (polsys) 301, 302, 303, 304
Economy (econ) 405, 408, 409, 410, 411, 415, 416
Welfare and Quality of Life (welqual) 501, 502, 503, 507
Fabric of Society (fabsoc) 602, 604, 607, 608
Social Groups (socgrp) 702, 703, 704, 705, 706
uncoded uncoded (uncoded) 000

Outcome variables

I have conducted the first two analyses presented in the main paper with these data
focusing on two outcome variables: (i) a 7-category topic indicator and (ii) a 3-category
position indicator. Table S.4 reports the mapping of outcome labels to harmonized CMP
codes. Note that I have always included the “uncoded” category as a valid label during

classifier training.

C.2 Manifesto full-text translations provided by Diipont and
Rachuj (2022)

To compare supervised learning from multilingual sentence embeddings to supervised
learning from bag-of-words representations of machine-translated full texts in the first
two analyses of the main paper, I rely on manifesto full-text translations obtained by Nils
Diipont and Marting Rachuj (ibid.). Diipont and Rachuj (ibid.) study policy diffusion
in a cross-lingual setting. They propose operationalizing their quantity of interest as
the degree of textual similarity between any given pair party manifestos. To enable
cross-lingual measurement, they compare manifestos’ bag-of-words representations in a
common target language—English in their case. To validate this approach, they compare
measurements of textual similarity obtained from full-text translations to that of their
measurement strategy.

Diipont and Rachuj (ibid.) have sampled several manifestos from 19 different coun-

13

Table S.5. Manifesto with and without annotations in Dipont and Rachuj’s replication data
by language.

Annotated
Language yes no
Catalan 1 1
Danish 10 25
Dutch 14 25
Finnish 4 12
French 8 22
Galician 2 0
German 18 26
Italian 4 16
Norwegian 5 14
Portuguese 5 8
Spanish 12 4
Swedish 5 19

tries,” obtained the full texts of these manifestos, segmented full texts into sentences,
and submitted the resulting sentence-level data to the Google Cloud Translation API for
machine translation into English. It are these sentence-level full-text translations I use
in my study.

While their data is ideal for validating cross-lingual quantitative text analysis meth-
ods, Diipont and Rachuj’s data collection strategy results in limitations regarding the
usability of their data for text classification purposes. These limitations necessitate the

following four corpus subsetting and text cleaning steps.

Discarding sentences stemming from unannotated manifestos First, Diipont
and Rachuj have sampled from all manifestos for which full texts were available in their
country-specific subset of the CMP corpus (2018a version). As a result, there are anno-
tations available only for a subset of the manifestos Diipont and Rachuj have sampled
(see Table S.5). The absence of annotations means that there are no labels to train a
supervised text classifier. Hence, I had to discarded these unannotated manifestos from

my analyses.

Mapping quasi-sentences to sentences Second, Diipont and Rachuj build their
dataset from full texts and used automated sentence segmentation to arrive at a sentence-
level corpus. However, annotations in the CMP corpus are available only at the level of
quasi-sentences. Generally speaking, quasi-sentences map many-to-one to sentences. For
any given sentence, this implies that for any outcome scheme of interest (e.g., the 7-

category topic scheme), the set of codings at the sentences level may comprise more than

9 Australia, Canada, Ireland, New Zealand, United Kingdom, United States, Denmark, Finland,
Norway, Sweden, Austria, Belgium, France, Germany, Italy, Netherlands, Switzerland, Portugal, and
Spain.

14

05 $

o o
w IN
1 1

o
N
1

<,

Proportion of sentenes unmatched

Manifesto

Metric: -+ actual <> conservative

Figure S.4. Proportions of sentences in annotated manifestos that could not be matched
to any quasi-sentence.Point shaped distinguish between the “actual” proportions (unmatched
over all sentences)and a “conservative” metric that only looks at the proportion of unmatched
sentences between the first and last matched sentence in a manifesto (e.g., to exclude often
unannotated preamble text).

Table S.6. Distribution of sentences in terms of their numbers of matched of quasi-sentencens
(N QSS) .

NQSs N Prop.
1 63942 0.83
2 8708 0.11
3 2010 0.03
4 915 0.01
5 472 0.01
6 274 0.00
7 174 0.00
8 136 0.00
9 96 0.00

10 or more 341 0.00

one unique label. And because a sentence may comprise more than one quasi-sentences,
its quasi-sentence level labels may disagree with one another.

To use Diipont and Rachuj’s data despite this issue, I have matched quasi-sentences
to texts represented in Diipont and Rachuj’s corpus. I have developed a text-matching
algorithm to this end that iterates over quasi-sentences in the CMP corpus and tries to
match them to sentences in Diipont and Rachuj corpus of annotated manifestos. Applied
to all annotated manifestos, this procedure resulted in large proportions of sentences—
quasi-sentence matches in many manifestos. In fact, Figure S.4 shows that in only 9
manifestos 10 percent or more could not been matched. I have discarded these manifestos

from my analyses.

15

Table S.7. Distribution of unambiguous topic and position codings (column panels) in quasi-
sentences matched to sentences by numbers of matched quasi-sentences (Nqss).

Unambiguous “topic” codings Unambiguous “position” codings
Naqss 0 1 2 3 4 5 0 1 2 3 4
1 934 63008 0 0 0 0 1017 62925 0 0 0
2 70 7294 1344 0 0 0 79 7375 1254 0 0
3 10 1324 572 104 0 0 16 1385 555 54 0
4 7 520 270 105 13 O 8 540 299 68 0
5 1 211 160 88 11 1 1 231 191 48 1
6 2 128 93 36 14 1 2 141 100 31 0

Identifying unambiguously coded sentences When looking at the distribution of
numbers of matched quasi-sentences per sentence across sentences with at least one match
(Table S.6), we see that the overwhelming number of sentences (96.9%) are matched
to only one, two or three sentences. This is good news given that for these sentences
identifying an unambiguous topic or position coding should prove not too difficult. In fact,
as Table S.7 shows, in the set of sentences matched to up to six quasi-sentences (the 99%
percentile), there are 72485 sentences with unambiguous topic (CMP domain) codings
and are 72597 sentences with unambiguous position codings. These are the sentences
I can base my comparative classification experiments on because any disambiguation
rule applied to sentences matched to quasi-sentences with more than one coding at the

sentence level would be arbitrary and introduce (additional) noise in labels.

Position coding Topic coding

= 30000
= 20000
= 10000

=0

= 2000

= 1000

=0

= 300
= 200
= 100
=0
100
=75
< = 50
= 25
=0

= 30
= 20
= 10
=0

= 20
= 15
© = 10
=5
=0

T T T T T T T
0 100 200 300 0 100 200 300

Number of words

Figure S.5. Distribution of numbers of words in sentences by numbers of matched quasi-
sentences and outcome variable.

16

Table S.8. Cross-tabulation of sentences by whether or not they are unambiguously position
and/or topic coded.

Unambiguously topic coded

Unambiguously position coded no yes
no 4723 630
yes 716 70999

Table S.9. Distribution of sentence level outcome lables across languages in data retained from
(Diipont and Rachuj, 2022).

Topic categories Position categories

extrel freedem polsys econ welqual fabsoc socgrp left neutral right uncoded
Catalan 65 244 134 465 642 96 118 135 736 893 1
Danish 80 42 81 269 640 65 149 203 495 628 46
Dutch 1005 597 1002 2346 2401 2444 939 3727 4892 2115 37
Finnish 277 187 258 441 749 558 254 726 1126 872 30
French 300 380 1106 1181 1059 551 480 1431 2255 1371 1
Galician 75 51 248 160 209 77 95 74 641 200 16
German 1698 1815 2416 5313 6289 2725 2082 5346 10298 6694 125
Italian 86 41 59 103 399 77 62 112 432 283 0
Norwegian 952 539 596 2078 3908 1295 613 1496 5030 3455 6
Portuguese 123 144 331 527 688 110 162 334 1111 640 12
Spanish 642 942 1614 3611 3410 549 952 1054 7065 3601 92
Swedish 44 68 129 165 472 165 119 383 419 360 0

Additional data subsetting decisions However, Figure S.5 shows that the longer
the sentence, the more quasi-sentences tend to be matched to it. Manual inspection of
a sample of sentences that have more than 71 words!® showed that these long sentences
are often enumerations of multiple separate policy statements (hence multiple quasi-
sentences). Such long sentences present problems to the sentence embedding models
used in my analyses because of their limits to the maximum number of tokens in the
input sentence. If not stated otherwise, I have thus discarded sentences with more than
71 words from the sentences matched to 1-6 quasi-sentences with a single unambiguous
coding. Applying this cut-off reduces the number of sentences with unambiguous topic
coding from 72485 to 71576 and from 72597 to 71661 in sentences with unambiguous
position coding.

A final decision was to keep only the 92.13% of sentences that are unambiguously
coded on both outcome variable of interest (see Table S.8). This allows using the same
cross-validation folds for classifier training across outcomes, which, in turn, allows direct
comparison of classifier performances between tasks. Table S.9 reports the distribution

of labels across languages in the set of retained sentences.

10 T have selected this cutoff because it is the 90%-percentile value of numbers of words in sentences that
are matched to three quasi-sentences (the 95%-percentile value of numbers of matched quasi-sentences)
with an unambiguous position or domain coding.

17

Table S.10. Number of labeled quasi-sentences and label class proportions by language in
Lehmann and Zobel (ibid.) dataset.

Immigration/Integration issue

Language N “Yes” “No”
Danish 6239 0.09 0.91
Dutch 30931 0.04 0.96
English 30080 0.01 0.99
Finnish 7888 0.03 0.97
German 66135 0.05 0.95
Norwegian 33544 0.04 0.96
Spanish 40074 0.02 0.98
Swedish 7956 0.05 0.95

C.3 Immigration issue codings provided by Lehmann and
Zobel (2018)

Lehmann and Zobel (ibid.) have crowd-sourced immigration/integration issue codings
for a sample of 223 manifestos from 14 different countries Lehmann and Zobel (ibid.).
Their data covers manifestos written in eight different languages and is freely available
for download.!!

To match the immigration/integration codings in their data, I have adapted an R
script written by the authors.!? To create the binary outcome indicator, I rely on variables
selection, gs_answer_1r, topic, and gs_answer_2q in their dataset and have coded
all quasi-sentences as immigration/integration instances (“positive” label class) if (i) the
gold-standard coding is “immigration” or “integration” , or (ii) if the (majority) crowd
coding is “immigration” or “integration.” All other quasi sentences have been assigned
to the “negative” label class. Table S.10 reports the number of quasi-sentences and label

distributions by language.

1 https://manifesto-project.wzb.eu/down /datasets/pimpo
12 https:/ /manifesto-project.wzb.eu/down /datasets/pimpo/create_ PImPo_ with_ verbatim.r

18

https://manifesto-project.wzb.eu/down/datasets/pimpo
https://manifesto-project.wzb.eu/down/datasets/pimpo/create_PImPo_with_verbatim.r

Table S.11. Numbers of training samples by language and training split used in Analaysis 1.

Train—val split

Language Ntotal % % % % %

Catalan 1765 2.5 2.5 2.5 2.5 2.5
Danish 1372 1.9 1.9 1.9 1.9 1.9
Dutch 10771 15.2 152 152 152 15.2
Finnish 2754 3.9 3.9 3.9 3.9 3.9
French 5058 7.1 7.1 7.1 7.1 7.1
Galician 931 1.3 1.3 1.3 1.3 1.3
German 22463 316 316 316 31.6 31.6
Italian 827 1.2 1.2 1.2 1.2 1.2

Norwegian 9987 14.1 141 141 141 141
Portuguese 2097 3.0 3.0 3.0 3.0 3.0
Spanish 11812 16.6 16.6 16.6 16.6 16.6
Swedish 1162 1.6 1.6 1.6 1.6 1.6

D Classifier details

D.1 Training data and cross-validation fold sampling

While the training data used differ across my analyses, in each analysis, I have first
sampled N, (quasi-)sentences into the training split. Held-out (quasi-)sentences served

as validation samples. Training data sampling strategies vary across analyses, however.

Analyses 1

The first analysis of my study is based on the sentence-level dataset constructed from
machine-translated manifesto full texts provided by Diipont and Rachuj (2022). The
resulting corpus records 70999 sentences. I have randomly sample these sentences five
times into 50:50 training and validation data splits. Training datasets thus record 35496
sentences.

I have sampled 50% of sentences from each language into a training data split. Table
S.11 reports the composition of the training data split.

In these training data splits, I have randomly assigned samples five times into five
(80:20%) train—test splits to create cross validation (CV) folds. Lists recording assign-

ments of sentences into data splits respectively CV folds are available on request.

Analysis 2

Like the first analysis, the second analysis of my study is based on the sentence-level
dataset constructed from machine-translated manifesto full texts provided by Diipont
and Rachuj (ibid.). To estimate classifiers out-of-sample performance as a function of the
amount of labeled data available at training time, I have sampled five times 5%, 10%,

..., 45% of sentences from each language into five different training data splits. Note for

19

Table S.12. Composition of down-sampled training data split obtained from Lehmann and
Zobel (ibid.) data.

Immigration/Integration issue

Language “Yes” “No”
Danish 352 352
Dutch 829 829
English 258 258
Finnish 162 162
German 1980 1980
Norwegian 797 797
Spanish 579 579
Swedish 240 240

reference that the classifiers in the first analysis have been trained on 50% of the entire
corpus. Consequently, the five training datasets representing 5% of labeled sentences in
the Diipont and Rachuj (2022) dataset record 3549, those representing 10% 7099, and so
on up to 31948 labeled sentences.

To ensure comparability between models trained using different amounts of labeled
data, the training data splits have been compiled incrementally by adding labeled sen-
tences in 5 percentage point steps (instead of independently sampling the respective
percentage of labeled sentences). As a consequence of this sampling strategy, all samples
in the 5% training split are contained in the larger training data splits, etc. I have applied

the same logic to construct cross-validation folds.

Analysis 3

The data collected by Lehmann and Zobel (2018) is very imbalanced in the binary im-
migration/integration issue indicator: 8666 immigration/integration issue instances are

outnumbered by more than 214 thousand “negative” instances.

Baseline classifier Hence, when training the baseline classifier reported first in section
4.3 of the main paper, I have down-sampled the training data so that positive and negative
labels are balanced. Specifically, I have stratified the data by language and sampled 60%
of immigration /integration issue instances and an equal amount of negative instances into
the training data split. The exact numbers of training samples by language are reported
in Table S.12.

In this training data split, I have randomly assigned samples five times into five
(80:20%) train—test splits to create cross-validation (CV) folds. Lists recording assign-

ments of quasi-sentences into data splits respectively CV folds are available on request.

Cross-lingual transfer classifiers In the cross-lingual transfer experiment, in needed

to avoid language-imbalance in the training data to ensure that performance differences in

20

classifying held-out sentences can be attributed to the particular combination of languages
used for training.

Hence, I have first determined the language with the least number of positive labels:
Finnish with 270 positive labels. I have then sampled for each language the same amount
of training data: 216 positive and 432 negative samples. (I have doubled the number of
negative samples to ensure that there was not too little training data.) Because I have
always trained on samples from six different language, the (language-balanced) training

datasets thus always comprised 3888 quasi-sentences.

D.2 Classifier training and evaluation

Supervised learning from multilingual sentence embeddings

Supervised learning from MSEs can be implemented as follows: First, texts written in
different languages are projected into a joint vector space using a pre-trained MSE model.
Second, texts’ language-independent representations in this space are used as features to
train a supervised machine learning algorithm to obtain a cross-lingual text classifier.
Specifically, given a multilingual corpus C of s = 1,..., n sentences (or similar
sentence-like text sequences), a label y, €) for each sentence, and a pre-trained MSE

model M, supervised learning from MSEs is a three-step procedure:

1. MSE

Sentences written in different languages are projected into a joint, language-
independent vector space using M. This produces one vector e, € R? per sentence

(“sentence embedding”).

2. Constructing the feature matrix

The sentence embeddings obtained in step (1) are stacked up row-wise in an
“embeddings matrix” {el}, ., = Eynxq, With rows recording sentence embeddings

and columns embedding dimensions.

3. Supervised learning

The columns of the embedding matrix obtained in step (2) are used as features

to train a supervised classifier using labels (y;)s—1,.. » as outputs.

Embedding To embed the texts of (quasi-)sentences in training and validation data

splits, I have used the LASER encoder, the knowledge-distilled mUSE model and the
knowledge-distilled XLM-R model as described in listings B.4, B.2, respectivelyB.2 (see

section B). Since all three models return one vector per input text, this resulted in

21

three matrices with dimensions Ny, X [and nyy X [, where [= 1024 for the LASER,
[= 512 for the knowledge-distilled mUSE model, and [= 768 for the knowledge-distilled
XLM-R model. (Quasi-)Sentences’ representations in the embedding space were then
used as features to train supervised learning algorithms. Note that for topic or position
classification, I have always included the ‘uncoded’ category as an additional outcome
label.

Classifier training I have trained L2-regularized generalized linear models (GLM)
to the training data splits in all analyses. My algorithm choice is motivated by both
practical and methodological considerations: A linear classifier is conceptually simple,
most readers in the political and communication sciences should be familiar with GLMs,
and there exists a fast R implementation of the GLM (glmnet) that has been developed
by professional statisticians. From a methodological point of view, L1-regularization was
unlikely to yield good results as embeddings are distributed representations since it allows
regression parameters to be zero.

The strength of L2-regularization of the GLM is governed by the hyper-parameter A,
with higher values indicating more regularization. I have identified optimal A values using
5-times repeated 5-fold cross-validation (5x5 CV) in the training data (hyper-parameter
tuning). As candidate values of A I have examined a grid of 8 values including 0 (i.e., no
regularization) and 7 values of 1/10* with = € {1, 1.33, 1.66, ..., 3}.

The “best” model among classifiers evaluated during CV was determined based on
the cross-CV average of the cross-class mean F1 score, and the hyperparameter values
of this model were used to train the algorithm to all (quasi-)sentences in the training
data split. The resulting classifier was then evaluated on held-out validation samples to

compute estimates of out-of-sample predictive performance.

Supervised learning from bag-of-words representations of

machine-translated texts

In the first two analyses, I have used the sentence-level dataset of machine-translated
manifestos described in section C.2 to compare supervised learning from MSEs to the
current state-of-the-art in political text classification: supervised learning from bag-of-
words representations of machine-translated full texts. To implement supervised learning
from translated texts’ bag-of-words (BoW) representations, I have relied on sentences’
machine-translated English versions. Specifically, I have relied on the original sentence-
level translations Diipont and Rachuj have obtained using Google Tranlsate. In addition,
I have translated the same sentences into English using the open-source M2M model (Fan
et al., 2021).

In the third analysis, I have then relied only on M2M for translation because the

22

Table S.13. Default text pre-processing steps applied to manifesto sentences’ English transla-
tions.

Step Description

tokenizing texts are tokenized using ICU-based word boundary splitting (see
http://userguide.icu-project.org/boundaryanalysis)

punctuation removed punctation is removed using the unicode P class

numbers removed standalone numbers are removed

symbols removed punctation is removed using the unicode S class

separators removed separators are removed using the unicode Z and C classes

hyphens splited hypens are splitted

Table S.14. Additional text pre-processing steps applied to manifesto sentences’ English
translations as part of cross-validation.

Variant Description

stemming, stop word removal, unigrams only

stemming, unigrams only, (.01, .9) document frequency based-trimming
stemming, uni-, bi- and trigrams, (.01, .9) document frequency based-trimming
stemming, stop word removal, uni-, bi- and trigrams, (.01, .9) document
frequency based-trimming

=W N =

dataset compiled by Lehmann and Zobel (2018) is based on the original CMP quasi-

sentence level data and thus records no machine translations.

Text preprocessing To obtain BoW representations from machine-translated texts, I
have first always applied the tokenization and pre-processing steps listed in Table S.13 to
texts in the training data split. Because BoW classifiers’ performance can depend on how
texts are pre-processed, I have also varied the pre-processing steps (“variants”) listed in
Table S.14 as part of the cross-validation procedure. That is, the variants listed in Table
S.14 have been treated as hyper-parameter choices while “default” pre-processing steps
have been applied invariantly. In addition, I have used the resulting BoW representations
always once as-is (i.e., count-vectorized) and once after transforming them by applying
tf-idf reweighting. For each task (topic and position classification), this resulted in a

total of eight feature representations.

Classifier training

Using these data, For each task, I have then selected the “best” performing combination
of learning algorithm and BoW feature representation based on classifiers’ average cross-
class F'1 scores in 5xb CV. Note that I have used the same CV folds as when training the

embedding-based classifiers.

23

D.3 Setup of the cross-lingual classification experiment

As described above, for each of the eight languages in the Lehmann and Zobel (2018)
dataset, I have first created five 80:20 training—validation splits with 648 quasi-sentences
in the training data split of each language. Combining six languages’ training data splits,
[have then trained one MSE-based classifiers (relying on the pre-trained XLM-R model)
and one MT-based classifier (using M2M for translation). Because I have sample five
different training data splits for each language, training two classifiers per training data
set results in a total of 10 classifiers per source language set.

Next, I have evaluated these classifiers on all languages’ corresponding validation
datasets, bootstrapping 50 F'1 scores per language. For each evaluation, these F'1 score
estimates stem from out-of-language classification for two languages and from within-
language classification for the other six languages.

I repeat this procedure for all 28 possible combinations of source languages (i.e., source
language sets) and the five training—validation splits I obtaind by combining languages
respective training and validation data splits. This results in the 56000 bootstrapped F1
estimates (1120 evaluations) per task I summarize in Figure 4 in the main paper.

Moreover, I have use these data to quantifying the “reliability cost” of cross-lingual
transfer for each approach and target language by subtracting the mean F'1 score achieved
in within-language evaluation from that achieved in out-of-language evaluation. Negative
signs on these estimates indicate that cross-lingual transfer results, on average, in less
reliable classification compared to the within-language classification benchmark and their

magnitude quantifies by how much.

24

Table S.15. Average class-wise F1 of classifiers presented in Figure 2 in the main paper.

class commercial free LASER mUSE XLM-R
(Google) (M2M)

Topic classification

econ 0.62 0.61 0.61 0.62 0.64
extrel 0.60 0.59 0.62 0.61 0.65
fabsoc 0.53 0.52 0.50 0.53 0.55
freedem 0.49 0.48 0.48 0.49 0.52
polsys 0.46 0.46 0.45 0.46 0.48
socgrp 0.41 0.40 0.37 0.40 0.42
welqual 0.62 0.61 0.62 0.63 0.65
Position classification
left 0.52 0.51 0.47 0.48 0.49
neutral 0.67 0.67 0.70 0.71 0.72
right 0.59 0.59 0.54 0.57 0.59

E Additional results

E.1 Analysis 1: Comparative reliability

Figure S.6 reports the cross-class mean F1 scores of classifiers presented in section 4.1
of the main paper. Table S.15 reports their class-wise F1 scores. Figure S.7 reports
their language-specific (cross-class mean) F1 scores. Figure S.8 reports the distribution

of differences in the XLM-R and Google MT-based classifiers’ F1 scores by language.

Position classification Topic classification
commercial (Google) = —— —_— ——
free (M2M) = —O0— B ———
LASER = —— ——
mUSE = —0— ——
XLMR = —— ——
T T T T T T
0.52 0.56 0.60 0.52 0.56 0.60
Metric: F1 @ Precision Recall

Figure S.6. Cross-class mean F1, precision, and recall of classifiers presented in Figure 2 in
the main paper. Data plotted summarizes 50 bootstrapped cross-class mean estimates (exclud-
ing the uncoded category) for five classifiers per task and approach. Points are averages of
bootstrapped estimates and vertical lines span the 95% most frequent values.

25

Position classification

Topic classification

catalan =

danish =

dutch =

finnish =

french =

galician =

german =

italian =

norwegian =

portuguese =

spanish =

swedish =

—o—
—¢=’—__~__
—_—
—
==
.#

—q—¢q’:

———

Figure S.7. Cross-class mean F1 by language of classifiers presented in Figure 2 in the main
paper. Data plotted summarizes 50 bootstrapped cross-class mean F1 scores (excluding the
uncoded category) for five classifiers per task, approach, and language. Points are averages of

Metric: ® commercial (Google) @

0.4 0.5 0.6

LASER ® mUSE @ XLMR

bootstrapped estimates and vertical lines span the 95% most frequent values.

Position classification Topic classification
swedish = I: 1 @
1 1
spanish = —— —+——
1 1
- _— -_—
portuguese 1 T
norwegian = + | —_—
[} [}
italian = T L 1 L
german = : —— : —e—
galician = . i -9
[} 1
french = —r.— _’_
finnish = —I.— I—.—
[} [}
dutch = —+—— | —y——
[} [}
- — e L g
danish T T
catalan = . 1 —I_._
1 1
T L] T T T L] T T
8.05 0.00 0.05 0.10 8.05 0.00 0.05 0.10

Flxim-r = Flcoogle MT

Figure S.8. Differences in language-specific cross-class mean F1 scores of XLM-R and Google
MT-based classifiers presented in Figure 2 in the main paper. Data plotted summarizes dif-
ferences in 50 bootstrapped cross-class mean F1 scores (excluding the uncoded category) for
five classifiers per task, approach, and language. Points are average averages of differences in
bootstrapped estimates and vertical lines span the 95% most frequent values.

27

F References

Artetxe, M. and H. Schwenk (2019). “Massively Multilingual Sentence Embeddings for
Zero-Shot Cross-Lingual Transfer and Beyond”. In: Transactions of the Association
for Computational Linguistics 7, pp. 597-610.

Cer, D., Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, B. Strope, and R. Kurzweil (2018). “Universal Sentence
Encoder for English”. In: 2018 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations. Association for Computational Linguistics,
pp. 169-174.

Chidambaram, M., Y. Yang, D. Cer, S. Yuan, Y. Sung, B. Strope, and R. Kurzweil
(2019). “Learning Cross-Lingual Sentence Representations via a Multi-Task Dual-
Encoder Model”. In: Proceedings of the 4th Workshop on Representation Learning for
NLP (RepL4NLP-2019). Association for Computational Linguistics, pp. 250-259.

Conneau, A., K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzman,. Grave,
M. Ott, L. Zettlemoyer, and V. Stoyanov (2020). “Unsupervised Cross-lingual Rep-
resentation Learning at Scale”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8440-8451.

Diipont, N. and M. Rachuj (2022). “The Ties That Bind: Text Similarities and Condi-
tional Diffusion among Parties”. In: British Journal of Political Science 52.2, pp. 613~
630.

Fan, A., S. Bhosale, H. Schwenk, Z. Ma, A. El-Kishky, S. Goyal, M. Baines, O. Celebi, G.
Wenzek, and V. Chaudhary (2021). “Beyond English-Centric Multilingual Machine
Translation”. In: Journal of Machine Learning Research 22.107, pp. 1-48.

Lample, G. and A. Conneau (2019). “Cross-Lingual Language Model Pretraining”.

Lehmann, P. and M. Zobel (2018). “Positions and Saliency of Immigration in Party
Manifestos: A Novel Dataset Using Crowd Coding”. In: Furopean Journal of Political
Research 57.4, pp. 1056-1083.

Lewandowski, J., N. Merz, S. Regel, P. Lehmann, and P. Muscat (2020). manifestoR:
Access and Process Data and Documents of the Manifesto Project.

Reimers, N. (2021). Sentence-Transformers (Version 0.4.1).

Reimers, N. and I. Gurevych (2019). “Sentence-BERT: Sentence Embeddings Using Siamese
BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, pp. 3982-3992.

— (2020). “Making Monolingual Sentence Embeddings Multilingual Using Knowledge
Distillation”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing. Empirical Methods in Natural Language Processing (EMNLP),
pp- 4512-4525.

28

Schwenk, H. and M. Douze (2017). “Learning Joint Multilingual Sentence Representa-
tions with Neural Machine Translation”. In: Proceedings of the 2nd Workshop on
Representation Learning for NLP, pp. 157-167.

Vaginay, Y. (2020). Laserembeddings (Version 1.1.0).

Volkens, A., T. Burst, W. Krause, P. Lehmann, T. MatthieSS, N. Merz, S. Regel, B.
WeSSels, L. Zehnter, and W. B.F. S. (WZB) (2020). Manifesto Project Dataset. Ver-
sion 2020a.

Werner, A., O. Lacewell, and A. Volkens (2015). Manifesto Coding Instructions: 5th Fully
Revised Edition.

Yang, Y., D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. H. Abrego, S. Yuan, C.
Tar, Y.-H. Sung, B. Strope, and R. Kurzweil (2020). “Multilingual Universal Sentence
Encoder for Semantic Retrieval”. In: Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics: System Demonstrations, pp. 87-94.

29

	Input alignment through machine translation: a running example
	Multilingual sentence embedding models
	The Language-Agnostic Sentence Embedding Representation model
	Knowledge-distilled models
	Practical considerations

	Datasets
	The Comparative Manifestos Project corpus
	Manifesto full-text translations provided by
	Immigration issue codings provided by

	Classifier details
	Training data and cross-validation fold sampling
	Classifier training and evaluation
	Setup of the cross-lingual classification experiment

	Additional results
	Analysis 1: Comparative reliability

	References

