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Appendix A: Alternative Options for Addressing Bias
We do not claim to be the first to identify this particular form of bias or attempt to correct it. Concern
over bias stemming from multiple graders assessing di�erent students has forced assessors to
adopt various solutions that each display some weaknesses. In this Appendix, we examine several
alternative solutions and discuss why we prefer the method presented in this paper.

Perhaps the most straightforward solution is to have one grader assess the entire course. How-
ever, in the large survey courses common to both public and private universities, the resources
necessary to deal with multiple assessments can escalate quickly. Assessment can demand a trade-
o� from resources expended on pedagogy, decreasing lectures’ caliber, and lessening education
quality overall. Moreover, a single individual responsible for all grading may find it challenging
to conduct the assessments in a reasonable amount of time, such that the returned assignments
serve as a learning tool for students while the material remains fresh. In general, we find that in
large courses, a single-grader regime is both practically infeasible and may even be pedagogically
undesirable.

Instructors can also mitigate bias by reducing assignment subjectivity - that is, by constraining
the opportunities for the graders to assess identical students or responses di�erently. For instance,
one might design an assignment where all questions are closed-ended, with one specific correct
answer (e.g., multiple-choice questions, or “fill-in-the-blank” questions). This practice eliminates
graders’ capacity to see similar answers di�erently; graders can adjudicate di�erences that some-
how arise by reference to an answer key. However, there exists a wide range of “knowledge or skills
that may not be easily or plausibly assessed” by using only multiple-choice questions (Braun 1988,
p. 1). This is particularly true for large survey courses, where instructors likely want to see students
engage with the material in various fashions, not merely through rote memorization.

Given the practical and pedagogical benefits of having multiple graders assessing more sub-
jective responses, instructors are limited to shi�ing to reducing the bias we describe in the article
rather than eliminating it. One commonly applied solution is to structure the assessment process
in such a way that each grader is only responsible for grading a portion of the overall assignment,
and each part of the assignment is assessed by only one grader. 17 If we assume that a single grader
is internally consistent in assessing questions (an assumption held throughout this paper), then
this solution would seem to reduce the potential for bias due to grader subjectivity.

However, there are both practical and theoretical concerns with this solution. Practically, one
might be concerned about three di�erent issues of increasing severity. First, the instructor has to
construct each assignment to equalize grader di�iculty across sections. This concern is fundamen-
tally a matter of fairness across graders, which is perhaps a secondary concern in assessment, but
not entirely trivial.

Second, logistics for assessors become more di�icult under this assessment scheme. Because
each student’s assignment is graded in part by n assessors, every assignment must be exchanged
at least n-1 times. Assignment swapping increases both the probability of adverse outcomes
(misplaced exams, exposure of students’ private data if exchanges are anything other than face-to-
face, etc.) and the time between the completion of the assignment and its assessment and return.
Timely remediation of mistakes is essential for many learning outcomes, particularly in subjects
that build on a shared understanding of basic principles.

The final practical concern involves this remediation more directly. Students who question their
assessment and investigate how they can improve must pursue multiple sources for information
and feedback. Time-consuming assignment remediation places unnecessary barriers to learning
and can be a source of frustration. It can also break the natural relationship between student and

17. Consider as an example, an exam comprised of three essay questions, where all students have their first essay as-
sessed by Grader 1, all of the second essays are evaluated by Grader 2, and Grader 3 handles each of the final papers.
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Table A1. Example of Potential Unfairness Produced when Instruments are Divided by Graders

Section 1 (Rank) Section 2 (Rank) Section 3 (Rank) Final Score (Rank)
Student A 10 (1) 10 (1) 1 (3) 21 (3)

Student B 9 (2) 7 (2) 6 (2) 22 (2)

Student C 7 (3) 6 (3) 10 (1) 23 (1)

instructor, placing intermediaries at the forefront of one of the core aspects of instruction.
These practical concerns are real, but they could be addressed and overcome if they were the

only issues confronting this approach. However, this method also surreptitiously creates a di�erent
form of bias. While eliminating the bias stemming from di�erential item functioning, this method
concentrates the bias stemming from di�erences in grader reliability. Intuitively, this method makes
the section graded by the highest variance assessor more determinative of the overall grade than it
otherwise might be.

Consider a simple example where three graders each assess one part of a 30-point exam, with
each part worth 10 points. If two graders perceive the “actual” range of viable grades to be between
6-10, but the third grader utilizes the whole range, there are a host of outcomes that will seem (and
arguably be) unfair. Table A1 proposes one such distribution, where the third assessor uses the full
scale, but the other two graders use the truncated scale.

Here, a student who excelled in two of the three sections (student A) receives the lowest score in
the class because they were “unlucky” to have done the poorest in the section of the exam graded
by the assessor with the largest range. Similarly, a student who did poorly in two of the three
sections still achieves the highest overall grade in the class by excelling in the one section with
the highest variance. While this outcomemay reflect the underlying overall ability of the students,
it can just as likely be an artifact of a multi-grader setup. The method we propose in this paper
addresses not only the severity of the grader, but also their natural variance, attempting to bring
both in line in order to achieve fair results for all students.
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Appendix B: Additional Results and Robustness Checks
This appendix provides robustness checks for our analyses. First, we show that our proposed
solution is robust to the choice of error metric, replacing mean absolute error (MAE) with root mean
square error (RMSE) as a measure of grade bias. We then show that our method reduces bias across
a range of possible assignment and grading situations, including a second exam (the final paper
from the class), the aggregate final grade in the course, and the assigned letter grade in a class with
a designated grading curve/distribution. In each case, the method requires only a small number of
bridging observations to dramatically decrease bias in the assessment of interest.

We also create “simulated” classrooms with fewer graders than in our observed classroom. We
show that even in this case, there are gains to be made by applying the Bayesian Aldrich-McKelvey
(BAM) algorithm, and that these gains are contingent on the relationship between graders.

Finally, we attempt to contextualize the e�icacy of the algorithm by varying the types of inputs
it receives. We test whether being able to bridge only on specific types of grades (low scores,
high scores, extreme scores) can improve our performance. In general, we find little di�erence in
performance across these regimes, though again all three potential worlds see vast improvement
from a grading scheme that uses no bridges.

RMSE vs. MAE in the Midterm Exam
In the main body of the paper, we show that our bridging method dramatically reduces MAE in the
assessment of the midterm exam (see Figure 3 in the Results section). In this part of the appendix,
we show that the same bridging method also reduces RMSE.
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Figure A1. RMSE for estimates of student placement (rank) on midterm exam, across number of bridged
exams. The horizontal dotted line reflects the bias associated with the traditional method of grading exams
in our data.

Figure A1 replicates the graph produced in Figure 3, with RMSE replacing MAE as the metric of
error. As a measure of error, RMSE is more responsive to very large errors, and it may be that in
our practical situation, this is the type of error that is most desirable to avoid. In particular, large
errors in rank are likely to have large grading consequences where continuous ranks are converted
into discrete letter grades. As was mentioned in the main body of the paper, the RMSE for students
without bridging was calculated to be 27.3, a substantial error in a class of 135, roughly equivalent
to 20% of the entire distribution and likely reflective of large numbers of students being assigned
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the wrong letter grade. As we see in Figure A1, our bridging method vastly reduces this error, and
again within a very limited number of bridging observations. Most importantly, we reduce likely
error such that students should expect to be assigned proper letter grades in courses where grade
ranges encompass more than 10% of the distribution.18

Numerical Score on the Midterm Exam
Regardless of how we measure error, then, our approach captures a more accurate assessment
of the students’ relative positions on the assignment. Conversely, one might be more concerned
with merely getting the “correct” numerical assessment, on a common scale across students. This
is, of course, an underlying input to appropriately ranking the student, but it presents another
strength of our approach. Not only do we accurately rank students, but we more faithfully capture
the distance between students at an absolute level.
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Figure A2. MAE for estimates of student score (out of 45) on midterm exam, across number of bridged exams.
The horizontal dotted line reflects the bias associated with the traditional method of grading exams in our
data.

To test whether we also show improvements in this vein, we use an identical process as de-
scribed in the main text of the article, but with the intention of measuring how far the estimated
numerical grade from our bridged model is from the average of the three numerical grades given
by the three graders. In Figure A2, we visualize the results in our traditional violin plots. Again, we
see clear and near immediate improvement. In the traditional grading regime, the average error
between a student’s assigned grade and the grade averaged across the three graders was nearly
4.5 points, or 10% of the grade range (4.46 points, out of a maximum score of 45 points).

When we use the bridging method, this average error decreases dramatically. The median
improvement a�er only 2-3 bridges is nearly 30%, with the potential for much larger improvements
depending on the luck of the draw, particularly if we further increase the number of bridges. The
bridging method helps to decrease error in raw scores, as well as ranks.

18. That is, when the suggested distribution looks something like: 15% of the class gets A’s, 20% get A-/B+, 30% get a B,
etc.
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Other Assessment Types - Paper with Letter Grade
Our analysis in the main paper focused on one assessment - the midterm exam of the course. In
this subsection of the appendix, and those following, we show that this choice does not drive our
results. Rather, regardless of the instruments we use, or the way we think about assessment in the
aggregate, the bridging process helps to reduce grading bias.

In addition to the midterm, students also completed a paper of between 5-7 pages, where they
were asked to assess a particular scenario using information gleaned from the course. Each paper
was graded by all three graders, with the graders assigning the paper a letter grade that could
contain a plus or a minus.19 One might be concerned that assignments of this type - naturally more
subjective, but also with a more discrete grade distribution - would trouble our approach, but we
show this not to be the case.

Once again, we take as a baseline “correct” grade the average of the numerical equivalents for
each of the letter grades given a paper by the graders.20 We run simulations of the type described
above in both the main portion of the paper and the previous subsections of this Appendix, and
measure how each run of a specific number of bridged observations improves assessment by
reducing the bias produced by grader assignment. Because the ranks here are naturally chunky (all
students are ultimately given one of six or seven letter grades and thus there are large numbers of
ties), we focus on the di�erence in score from the “correct” average. These results, in our traditional
violin plots, are in Figure A3.
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Figure A3. MAE estimates of paper score (out of 4.0), across number of bridged exams. The horizontal dotted
line reflects the bias associated with the traditional method of grading exams in our data.

As one can see, MAE for the traditional method of grading is about 0.183 points, or more than
half a step in the grading scale. Adding only 3-4 bridging observations drops our expected error
approximately 25%, and below where we would expect to make many errors in grade assignment. It
should be noted that because of the limited scale of grades we worked with in the paper assessment,
the performance is slightly more noisy than for other graded items, though again the decreased

19. The possible choices for grades then, were A (4.0), A- (3.67), B+ (3.33), B (3), B- (2.67), C+ (2.33), C (2), C- (1.67), D+
(1.33), D (1), D- (0.67), and F (0). However, no one who completed the paper on time received a grade lower than a C+, so
the realized range was more limited. For the purposes of this exercise, we focus only on students who completed the paper
on time.

20. Note that this average score, in itself, might not always easily translate back into a letter grade.
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bias is large and substantively meaningful.

Other Assessment Types - Aggregation
An instructor might ultimately be most concerned not with any single assignment, but with the final
assessment and ranking of students.21 In this final subsection, we show the cumulative reduction
in bias at the final aggregation phase. As a reminder, this still requires that you have students whose
entire work product has been graded by multiple graders, and thus does not “save” any work in
that fashion.

For this exercise, we consider the MAE of the final grade (theoretically on a 0-100 scale, but
practically in the range from 63-99) as calculated at the assessor level. Thus, we calculate a final
grade for each student from each assessor as the result of all the inputs to a final grade from that
assessor. We then use these final grades in the same fashion as the exam scores in the main analysis
and the above subsection. Figure A4 displays the results. Here, the bridging method eventually
reduces bias, but the number of bridges required to do so is somewhat larger and the amount of
bias reduction is small relative to earlier gains. This occurs for a simple reason. As we show below,
the three graders in this class were much closer to each other in terms of assessment strictness for
the final exam, which in turn reduces the amount of bias there is to correct via the algorithm. As the
final exam accounted for a disproportionate share of the overall grade, this reduction in possible
bias correction bled through to the final grade. Still, there is some value added to bias correction
in this case, and it may be worthwhile to pursue in classes when you have potential for a greater
number of bridges.
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Figure A4. MAE estimates of student course grade (out of 100), across number of bridged evaluations. The
horizontal dotted line reflects the bias associated with the traditional method of grading exams in our data.

Finally, we extend this analysis to look at the final raw grade letters (i.e. A, B, C, etc.) that
students would receive under alternate assessment schemes. In Figure A5, we show that using the
bridging method on a final letter grade reduces bias by approximately 25% in a limited number
of bridges. This is equivalent to 12.5 students (in a class of 135) receiving a proper letter grade

21. In general, we are not of this opinion, particularly as properly assessing student performance on individual assign-
ments allows instructors to target properly students in need of additional attention in a timely fashion, but this may vary
by educational situation.

Kates et al. | Political Analysis A6



0.30

0.35

0.40

0.45

1 2 3 4 5 6 7 8 9 10
Number of Bridged Observations

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Mean Absolute Error, by Number of Bridges

Figure A5. MAE estimates of student course letter (out of 4.0), across number of bridged evaluations. The
horizontal dotted line reflects the bias associated with the traditional method of grading exams in our data.

a full step above/below their incorrect grade (i.e. an “A” when a “B” was given) or 37.5 students
moving a small step in the correct direction (receiving a “B+” a�er being given a “B.”). While we
ultimately suggest applying the method to each individual instrument of assessment (which would
have long-term improvement in the overall score as well), there are important gains to be had
simply by applying it for one final grade.

E�icacy of the Approach over Multiple Assessments
Student assessment can and should be a dynamic process, where assessors can learn from past
outcomes as naturally as students do. Many of the biases we attempt to identify and correct for
using our approach can also be proactively reduced if assessors are a) informed of the discrepancies
between their levels of strictness and variance, and then b) use that information to adjust their
own behavior. In the course that served as the source of data for this paper, all three graders were
well-informed of the grades their assigned students had received from the other two graders, and
could easily gauge their relative position on the laxity and variance scales. Ultimately, this led
to a reduction in the bias from even traditional grading methods over time, and a concomitant
reduction in the e�icacy of our method in the final stages of assessment.

The students’ final exam was identical in style to the midterm that served as the first assessment
for the students, but was worth 75 total points. While the average error (in points) for the traditional
method on the midterm was nearly 10% of the grade (4̃.5 out of 45 possible points), the MAE for
the traditional grading format on the final exam was just more than a third of that, at 2.84, or
3.7%. At that level, there is very little room for reduction in bias, even as we extend the number of
observations, as well as very little substantive reason to do so.

And in fact, Figure A6 shows how our approach only slightly outperforms the traditional grading
method in assigning student ranks, and even that improvement is conditional on getting a not
unlucky draw of bridges.

We display these results as a reminder that adopters should recognize the benefits and lim-
itations of our approach. Our approach adjusts mechanically for bias that can, at least in some
instances, be eliminated with increased information and dedicated e�orts by assessors. However,
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Figure A6. MAE estimates of student rank on final exam (out of 135), across number of bridged evaluations.
The horizontal dotted line reflects the bias associated with the traditional method of grading exams in our
data.

that information (and specifically, information about the relative laxity of assessors) itself must
come from somewhere, and we would suggest that adopting a bridging technique for at least the
first or first few assessments may allow assessors to recognize their di�erences and adjust their
behaviors.

Classroom with Fewer Graders
The course from which our main data is gathered has a constant structure: 3 main graders, with
approximately 45-50 students assigned to each. Thus, our analysis of the real-life ramifications of
grading bias is somewhat restricted for some variables we believe may matter. One such measure
is the number of graders in the classroom. We cannot reasonably add graders to our real-life data
retroactively, and so are limited in that direction. However, we can artificially construct classes with
fewer graders, and see how well our proposed solution performs. In this subsection of Appendix
B, we do so for the three possible combinations of two graders, and verify that the algorithm
succeeds in reducing grading bias in each of those scenarios. We then more systematically explore
the performance of our proposed solution under varying number of graders and students in the
simulations presented in Appendix C.

For this exercise, we construct a “course” by eliminating one grader, as well as the students for
which that grader was the primary grader. We do this once for each of the three graders, leaving
us with three di�erent courses of similar sizes. In each of these artificial courses, we conduct the
same analysis as we do in the main paper, selecting some number g students to serve as bridges
in each of 100 iterations. We compare the ranks of each student in the bridged simulation to the
student’s “correct” rank, were their grades averaged across each of the graders, and calculate the
Mean Average Error across students.

Figure A7 reflects our findings. In all three cases, we see improvement on grading bias in
most cases, and in two of the three artificial classes the improvement is substantial. The patterns
in improvement across the three classes (all comprised of two of the same three individuals) is
illuminating, however.

It is a fact of the course that one of the graders was far “harsher” than the other two. This grader
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Figure A7. MAE estimates of student rank on midterm exam (out of 135), across number of bridged evalua-
tions. Each violin plot represents a “class” combining two of the three graders for the real-life course. Each
horizontal dotted line reflects the bias associated with the traditional method of grading exams in that “class."

(Grader 3 in the groups imagined in Figure A7) consistently gave students lower marks than the
other graders - which marks, if not adjusted, would have penalized students assigned to Grader 3.
Thus, in the two courses where Grader 3 was one of the assessors, there is a much higher chance of
grading bias of the type we describe in this paper. BUT, it is also the case that Grader 3’s rank order
of students had a higher correspondence to the rank orders of each of the other graders than their
rank orders had with each other. Thus, a�er we apply the bridging technique, and the shi� from
Grader 3 is accounted for, the classes with this grader are less subject to bias than the class without
this grader. Bridging can greatly reduce bias related to shi�ed perceptions of the same underlying
performance, but it cannot “fix” when graders fundamentally disagree on the relative performance
of a student.

Varying the Attributes of Students Used as Bridges
Finally, we use the data gathered from the live course to judge whether it makes a di�erencewhich
observations serve as a bridge. One might think that a particular type of observation or mix of
observations would provide us with better bias reduction. In this subsection of Appendix B, we
look at three specific possibilities. In the first, we use only scores from the bottom third of the
distribution to serve as bridges. In the second, only those scores in the highest third. In the final
exercise, we evenly divide the bridges over extreme scores, taking N /2 scores from the highest
third and the same number from the lowest third to serve as our N bridges.22

In each of these regimes, we conduct the same analysis we have conducted throughout this
paper, varying the number of bridges over 100 simulations where we select di�erent possible
combinations of bridges that follow our regime rules.

Figure A8 visualizes the results of this process. Each regime is represented by a di�erent color,
and each violin plot represents the distribution of Mean Average Error of student ranks for a partic-
ular regime under a particular number of bridges. In all cases, the default grading scheme has an
MAE of 22.5, so every possibility is an improvement. However, there is no regime that outperforms

22. Note that this means we only analyze this regime under an even number of bridges.
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Figure A8. MAE estimates of student rank on midterm exam (out of 135), across number of bridged evalu-
ations. Each violin plot represents a regime where the bridged observations are either all from the lowest
third of the distribution, all from the highest third of the distribution, or split evenly between the highest and
lowest thirds. The MAE for an unbridged process is approximately 22.5.

the others consistently and to a significant extent.
This makes sense. The assumptions of the model roughly require graders to have the same

stretch and shi� parameters for students throughout the entire range of the underlying latent
skill trait. We should then, in theory, extract the same amount of knowledge about the grader’s
perceptions from units at any part of that range. Generally, this is what we do observe. There
is some slight evidence that inputting only bridges from the very highest third of the range may
decrease bias a bit more, but not to anything approaching a significant degree, and not something
we would expect to be repeated in other classes.

Rather, it is likely evidence of a peculiarity in this specific grading situation, where graders are
more consistent at the highest ends of the spectrum than at the lowest. This may accord with our
natural expectation that most graders are very consistent in rewarding good work, but have varying
beliefs about how harshly to punish particularly poor work.

Note also that it is not entirely clear how one might leverage di�erential success across regimes,
even if it did exist. Doing so would require identifying prior to bridging those observations that
would qualify as low, high, or extreme observations. Professors might be able to use pre-class GPAs
or the results of a short assessment meant to group students by skill, but there would be no way to
ensure that these proxies would reliably identify the best students to serve as potential bridges.
Our case (where we know beforehand that the observation is of a specific quality) is the best case
scenario, and still we find no reliable benefit to choosing bridges in this manner.
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Appendix C: Simulation Evidence
Varying Parameters
In this appendix, we apply simulation methods to bolster our argument regarding the bias-reduction
qualities of bridging, and evaluate the robustness of its gains. We simulate 27 di�erent datasets
reflecting various degrees and forms of grader error. Each dataset presumes 3 graders and takes as
its latent trait inputs the distribution of the average final exam grades of our course, which had a
mean of 55 and a standard deviation of approximately 10 over 142 observations.

In each simulated dataset, grader reliability (the stretch parameter) is held constant (βi = 1),
allowed to vary (βi ∼ U[0.8, 1]) or allowed to vary greatly (βi ∼ U[0.5, 1]). The grader shi�
parameters are similarly held constant or allowed to vary (αi = 0, αi ∼ N(0, 3) or αi ∼ N(0, 7)).
Finally, grade-level error is allowed to vary over wider ranges or held constant at zero (µi j = 0,
µi j ∼ N(0, 0.5) or µi j ∼ N(0, 2)). For each simulated dataset, we evaluate to what extent five
bridging observations can reduce overall grading bias for the final exam.

Figure A9 presents the MAE estimates for bridged (black box-and-whiskers) and non-bridged
(red box-and-whiskers) rank placements across the di�erent datasets. Rows represent di�erent
levels of variation in grader strictness (αi ), while columns represent di�erent levels of variation
in grader reliability (βi ). Within each cell, rows represent di�erent levels of grade error (µi j ). The
plotted results are in a traditional box-and-whisker format, displaying the simulations with the
lowest error, the 25th, 50th, and 75th percentile simulation, and the simulation with the highest
error.

Figure A9. MAE Simulations: Final Grade
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In the limiting case of no grader distortion (where β = 1, α = 0, and µ = 0), grading without
bridging outperforms the bridging exercise. In this simulation, all three graders give each exam
the same grade, so it does not matter which grader a student is assigned. Their latent skill will be
directly translated into their grade. As soon as any error is introduced, however, bridging provides
immediate and large benefits.

In the presence of any variation in grader reliability or strictness, bridging provides sizeable (two
or three fold) reductions in MAE. Figure A10 presents the RMSE estimates, producing qualitatively
similar results. When graders are most di�erent (when βs are drawn from a wider range, and αs
can be larger - when we move to the right in columns and down in rows), the gains are starkest and
even the worst possible draw of simulations vastly outperforms doing nothing in terms of grading
fairness.

Figure A10. RMSE Simulations: Final Grade
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ment method.
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Comparison Over Size of Classes and Numbers of Graders
In Appendix B, we analyzed our real-life data in “simulated” classrooms where only two graders
actually had students. We found that the proposed solution still reaped large benefits in bias
reduction, but our findings were naturally limited by the course structure itself. In this subsection
of Appendix C, we further push on how the e�icacy of our proposed solution is conditioned by the
number of graders, the number of students in the class, and the type of graders/world that the
class takes place in.

Specifically, we create a simulation environment where we iteratively test how increasing either
the number of graders, the number of students per grader, or the reliability and strictness of the
graders a�ects the gains from bridging across students, for a particular number of bridges (in all of
these cases, we use only 3 bridged observations). We let the number of graders vary from 2 to 5,
and the number of students per grader vary between 12, 30, and 60 students per grader.

This gives us 12 possible combinations of graders and students, with the smallest (2 graders
and 12 students per grader) approximating a co-taught seminar course and the largest (5 graders
with 60 students per grader) more closely approximating an introductory level core course that
draws hundreds of students each semester. In each of these 12 worlds, we vary whether the graders
come from a distribution with low variation in grader reliability and strictness, or one with relatively
high variation in the same.23 Ultimately, then, we construct 24 di�erent simulated environments
(4 possible numbers of graders X 3 di�erent numbers of students per grader X 2 di�erent grader
distributions).

From previous results, we expect improvement in grading bias to be conditioned strongly by
the variability of graders - that as this variability increases, bias is likely to increase in the unbridged
scenario, but be relatively well accounted for when we apply our bridging solution. This subsection
is mainly focused on interpreting what happens at di�erent levels of graders and students.

Each simulated environment is reconstructed 100 times, with graders and their attributes
redrawn from the appropriate distribution and a new set of the appropriate number of “true”
latent grades drawn from a distribution Gr ade i ∼ N(50, 10). Students with these latent skills
are randomly assigned equally to graders, and the grades given by each grader to all students are
calculated using the attributes as drawn from the distribution. In this way, we have grades for all
students from all graders, but each student is assigned to one primary grader.

The success of the algorithm is judged by comparing the mean average error and root mean
square error of the “single TA” form of grading to that of the bridged scenario (again, using 3 bridges).
The baseline against which we judge both is the average grade of the student from all possible
graders.

In Figure A11, we display the results of this exercise. The graph is separated into two rows, where
each row corresponds to one of the states of the world. In the upper row, graders are selected from
distributions with low variability for both the α and β parameters - these graders are very similar
to each other, and we would expect less grading bias of the type we are attempting to reduce. In
the lower row, there is higher variability, and we expect that a traditional regime with no bridging
could experience quite a bit of bias. As we move across rows, we are adding graders, from a course
with two graders on the far le�, to a course with five distinct graders on the far right. Finally, within
each plot, there are three di�erent levels for the numbers of students each grader is assigned. For
each combination of world (high vs. low) and number of graders (2, 3, 4, or 5), there are results for
simulations where each grader was assigned 12 students, 30 students, or 60 students. In the bottom
right panel, for illustration, the top result corresponds to a course of 300 students (60 students for

23. We construct these possible combinations from the same distributions as in the simulation above. Thus, graders in a
“Low Variability” world have stretch parameters β drawn from a distribution of βi ∼ U[0.8, 1], and shi� parameter α from
the distribution αi ∼ N(0, 3) . Graders in a “High Variability” world have stretch parameters β drawn from a distribution of
βi ∼ U[0.5, 1], and shi� parameter α from the distribution αi ∼ N(0, 7) .
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each of 5 graders) under conditions likely to produce much di�erent graders. Black box plots reflect
the distribution of MAEs pulled from each simulated combination when 3 bridges are used; red box
plots reflect the distribution of MAEs when we do not utilize bridges.
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Figure A11. MAE estimates of ranked placement across simulated data sets. Black whiskers represent esti-
mates from the BAM model with three bridges. Red whiskers represent estimates from the typical (assigned
grader) assessment method.

These 24 simulations allow us to say something about the conditions under which our proposed
solution is likely to be more or less likely to reduce bias. When we compare across rows, we note
first that there is less baseline in the low variability world. This is as we expect. The type of bias we
are attempting to address stems from this variability - from graders that have di�erent baselines,
and di�erent functions mapping increases in perceived skill to additional reward. As we move to
the right, holding variability and the number of students per grader constant, there is a slight but
distinguishable increase in baseline error, and a larger, but still relatively small increase in bias as
we increase the number of students per grader, but leave the other two variables constant.

What does vary considerably across simulations is how successful our solution is at reducing that
bias. In the low variability world (top row), we see some improvement in nearly every combination of
grader number and number of students per grader. But this improvement is small, with reductions
greater than 10-15% realized only when there are many students for each grader. In the high
variability world, the story is much di�erent. Our approach yields large reductions in bias that
increase in both the number of graders and the number of students assigned to each grader. In
many of the classes with 30 or more students per grader, or 3 or more graders, we reduce the bias
by nearly 50%.

It is di�icult to know in which setting (high vs. low variability) a specific real-life course takes
place. The types of questions and expected responses on a particular assessment can a�ect this to
a great degree, as can the experience and similarities of the graders. However, these simulations
suggest it is largely true that regardless of setting, there is at least some benefit to bridging, and
very large benefits in many instances.
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Comparison with Alternative Models
We can also compare the performance of the BAM model with alternative approaches to modelling
di�erential item functioning. Following Marquardt and Pemstein (2018), we focus on ordinal IRT
models incorporating DIF via grader-specific ordinal thresholds for mapping latent ability into
scores.

Table A2. Comparison of Approaches

Approach Scale Grader-specific variation
BAM Linear Intercepts and reliability

Intercept DIF Ordinal Intercepts and precision
Threshold DIF Ordinal Thresholds and precision

More precisely, let ˜Gr ade i j denote the grader i’s perception of the true grade (γj ) and let e i j
denote the error of the grader’s perception: ˜Gr ade i j = γj + e i j . Assuming grader error follows
a common distribution with variance σ , the cumulative distribution function of the error term
is F ( e i jσ ). The grader can assign any k ∈ {1, ..,K } ordinal grades. Then, the probability that the
grader assigns some gradeGr ade i j =k given thresholds γk is:

P r ob (Gr ade i j = k ) = P r ob ( ˜Gr ade i j > γk−1 ∧ ˜Gr ade i j ≤ γk )

= F (
γk − γj
σ
) − F (

γk−1 − γj
σ

)

= F (κk − γj τ) − F (κk−1 − γj τ),

where τ = 1
σ is the grader’s precision and κk = γk τ are estimated thresholds.

Intercept DIF: In the first IRT model, we assume grader-specific intercepts (κi ) and grader-specific
precision (βi ). This model is similar to BAM but assumes an ordinal scale:

P r ob (Gr ade i j = k ) = φ (τk − κi − γj βi ) − φ (τk−1 − κi − γj βi )
βi ∼ N(1, 1)
κi ∼ N(0, .5)

In the simulation procedure to follow, we examine a “threshold-DIF” IRT model that allows for
variation in grader-specific thresholds (κi ,k ) and grader-specific precision (τi ).

P r ob (Gr ade i j = k ) = φ (κi ,k − γj τi ) − φ (κi ,k−1 − γj τi )
κi ,k ∼ N(κk , 3)
κk ∼ N(0, 10)
τi ∼ N(1, 1)
γj ∼ N(0, 1)

Grader thresholds are hierarchically clustered about global thresholds (κk ) with a standard
deviation of 3. The global thresholds are normally distributed about zero with a standard deviation
of 10. Grader precision is normally distributed around one with a standard deviation of one and
restricted to positive values. Finally, latent ability follows a standard normal distribution.

Simulation Procedure: We use the three-grader average of the midterm as the baseline (γj ). Next,
we apply the normal distribution’s quantile function to the average midterm grade to estimate
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the (global) thresholds, κk . We then generate nine simulation datasets corresponding to all the
combinations of three forms of grader precision and three forms of grader DIF:
• Variability in precision across three graders:

1. No variability: τ = τi = 1;
2. Medium variability: τi ∼ N(1, .5);
3. High variability: τi ∼ N(1, 1).

• Variability in DIF across three graders:
1. No variability: all graders use the same thresholds, κk ;
2. Medium variability: κi ,k ∼ N(κk , 3);
3. High variability: κi ,k ∼ N(κk , 7).

Simulation Results: Across 20 iterations of this simulation procedure, we randomly select five
exams to treat as bridging observations with the remaining exams assigned to a single grader.
Figure A12 illustrates the mean absolute error of the simulated midterm score across the three
levels of grader precision (rows) and three forms of DIF (columns). We find that both of the two
bridging approaches improve upon the traditional method in the presence of moderate or severe
DIF. In these circumstances, the IRT model produces both smaller and less variable error than
the the Bayesian Aldrich-McKelvey model. In the extreme scenario in which graders agree on the
underlying thresholds, the Bayesian Aldrich-McKelvey model performs slightly better than the IRT
model.

Figure A12. MAE of Simulated Midterm Grades, assuming IRT Data Generating Process
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Appendix D: Description of Communication Package
We have identified explaining the method to students as one of the big challenges of our approach.
Therefore, we have created a communication package that is intended to help instructors explain
the bridging process. The package consists of two elements:
• A set of slides
• A visualization tool

The primary intended audience of these elements are the students in classes that intend to use
bridging to reduce bias in grading. The set of slides explain the potential problem with multiple
graders and how the bridging process can help mediate it from a student’s perspective. We have
kept the slides simple so they can function as a baseline explanation for a variety of classes and
instructors. We encourage instructors that intend to use our method to customize the slides to suit
their needs.

The visualization tool is included in our R package.24 The package provides tool to visualize
how the bridging method can reduce bias. The visualization is meant to give students another way
of understanding the method and its benefits.

24. https://github.com/sidakyntiso/bridgr.git

Kates et al. | Political Analysis A17


