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A Variables from the 2012 Cooperative Campaign Analysis

Project and VOTER Study Group

The 2012 Cooperative Campaign Analysis Project (Jackman et al., 2012) includes three survey

waves (a pre-election baseline, mid-election, and post-election) of 43,998 respondents conducted

between December 2011 and December 2012. The economic, social, immigration, and environment

scores are estimated using an ordinal IRT model (Imai, Lo and Olmsted, 2016). The remaining scores

(religiosity, racial resentment, political knowledge, political interest, ideological inconsistency, and

the death penalty issue scores) are estimated using simple summated rating scales.

Our measure of ideological inconsistency is adopted from Federico and Hunt (2013) and

combines three standardized indices: the standard deviation of the issue responses (all responses

are coded in the same ideological direction), the proportion of issue responses that are ideologically

consistent with respondent party a�liation (including leaners), and the average distance between

the issue responses and self-placement on the liberal-conservative scale. We use sixteen issue

responses to items concerning abortion, a�rmative action, climate change, the death penalty,

global warming, government regulation of the market, health care, immigration, same-sex marriage,

and taxes. We substitute party identi�cation for party and group thermometers, neither of which

were included in the 2012 CCAP. We code this index as missing for true independents and use

the other two indices to compute their overall scale score. The indices are averaged and split into

deciles to form a reliable scale (Cronbach’s α = 0.81) of ideological inconsistency.

Demographic variables
Quarter of interview wave
Region ID region
Age birthyr
Female gender
Race ID race
Education educ
Household income pp_faminc
Marital status marstat
Children pp_child18
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Personally LGBT pp_closegay4
Religiosity pp_pew_churatd, pp_pew_prayer,

pp_pew_religimp
Religious ID pp_religpew
Gun ownership pp_gunown
Union member pp_labunmemb
Health plan type pp_healthdk_0
Racial resentment pp_raceresent_1, pp_raceresent_2,

pp_raceresent_3, pp_raceresent_4

Political variables
Political knowledge pp_pk_HMajL, pp_pk_HMinL,

pp_pk_SCJ, pp_pk_SMajL,
pp_pk_SMinL, pp_pk_Speaker,
pp_pk_VP, pp_pk_house,
pp_pk_ideo, pp_pk_senate

Political interest pp_polinterest, pp_newsint2
Party ID pp_pid7
Ideological ID pp_ideo5
Ideological inconsistency sd.issues, party.consistent,

libcon.distance
Economic issue score pp_govt_reg, pp_healthreformbill,

pp_taxwealth, pp_univhealthcov
Social issue score pp_abortidentity, pp_abortview3,

pp_gaymar2
Immigration issue score pp_immi_contribution,

pp_immi_makedi�cult,
pp_immi_naturalize

Environment issue score pp_envpoll2, pp_envser2, pp_envwarm
Death penalty issue score pp_deathpenalty, pp_deathpenfreq
A�rmative action issue score pp_a�rmact_gen
Trade issue score pp_tradepolicy
Egotropic economic evaluations pp_pers�nretro
Sociotropic economic evaluations pp_econtrend
Right/wrong track assessment pp_track

Issue salience variables
Salience Iraq pp_imiss_a
Salience economy pp_imiss_b
Salience immigration pp_imiss_c
Salience environment pp_imiss_d
Salience terrorism pp_imiss_f
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Salience gay rights pp_imiss_g
Salience education pp_imiss_h
Salience health care pp_imiss_j
Salience Social Security pp_imiss_m
Salience de�cit pp_imiss_p
Salience Afghanistan pp_imiss_q
Salience taxes pp_imiss_r
Salience Medicare pp_imiss_s
Salience abortion pp_imiss_t

The Democracy Fund’s VOTER Study Group (Democracy Fund Voter Study Group, 2020) is a

long-term panel that includes annual surveys between 2016 and 2019. 4,715 respondents from the

2012 CCAP are also panelists in the VOTER Study Group, allowing us to analyze their political

attitudes and choices in subsequent election cycles.

2019 VOTER Survey
2020 presidential vote intention vote2020_2019
Feeling thermometer (Democratic Party) Democrats_2019
Feeling thermometer (Republican Party) Republicans_2019

2016 VOTER Survey
2016 presidential vote presvote16post_2016
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B Component methods and ensemble weights

The learning ensemble includes eight component methods: an additive probit regression model

and the seven methods described in Table A.1. The estimated parameters of the probit regression

model are presented in Table A.2. We compare the performance of the learning ensemble against

a separate spline-based Generalized Additive Model (GAM), estimated and tuned using the mgcv

and caret packages in R.1

Table A.1: Component methods included in the learning ensemble.

Method Short Description and Citations
k-Nearest Neighbor
Classi�er

Classi�es observations based on the majority response class of
its closest k neighbors using Euclidian distance in the feature
space (Hastie, Tibshirani and Friedman, 2009, pp. 463-468). We
use the knn implementation in base R to estimate a k-nearest
neighbor classi�er.

Group-lasso interaction
network

Uses the `1 (lasso) penalty to perform regularization and iden-
tify meaningful pairwise interactions between predictor vari-
ables (Lim and Hastie, 2015). We use the glinternet implemen-
tation in R to estimate a group-lasso interaction network (Lim
and Hastie, 2018).

Support Vector Machine
(SVM) with a radial basis
function kernel

Uses a kernel function (often a nonlinear function such as a
polynomial or radial basis function) to measure interobser-
vation similarity and de�ne a �exible classi�cation bound-
ary between response classes. The separating boundry seeks
to maximize the distance between itself and some subset of
observations—the support vectors—closest to it. A tuning pa-
rameter (Cost) controls model complexity and the proportion
of observations used as support vectors (Vapnik, 2000). We use
the svmRadial implementation in R to estimate a support vec-
tor machines (with a radial basis function kernel) (Karatzoglou
et al., 2004).

Continued on next page

1We use ten-fold cross-validation of AUC-ROC values to determine the optimal parameters of the feature selection
parameter select (FALSE) and the smoothing method parameter method (GCV.Cp).
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TABLE A.1 – continued from previous page
Method Short Description and Citations

Neural Network (model
averaged feedforward
with single hidden layer)

Models the relationship between the predictor and response
variables with a layer of hidden units. The hidden units are
weighted sums of some or all of the predictor variables, typ-
ically transformed with a nonlinear function such as the sig-
moid. The output values from the hidden units are then com-
bined to form the model predictions (Bishop, 1995). We use
the avNNet implementation in R to estimate model averaged
neural networks (Venables and Ripley, 2002).

Random Forests Fits a series of decision trees (splitting based on gini impurity)
to bootstrapped samples of the original data, whose predictions
are then averaged. To reduce correlation between the trees,
random forests only consider a random subset m of the P
predictor variables before each split in the tree-growing process
(Breiman, 2001). We use the ranger implementation in R to
estimate random forests (Wright and Ziegler, 2017).

Extremely Randomized
Trees

Extends the random forest approach by randomizing both
the subset of variables and the cut-points along the variables
when determining the candidate splits at each stage of the
tree-growing process (Geurts, Ernst and Wehenkel, 2006). We
use the ranger implementation in R to estimate extremely
randomized trees (Wright and Ziegler, 2017).

Stochastic Gradient
Boosting

Like random forests, grows and aggregates a series of B base
decision trees (f̂ 1, f̂ 2, . . . , f̂B). However, boosting sequentially
�ts decision trees to the model residuals, giving greater weight
to previously misclassi�ed observations. At each iteration, the
procedure updates its predictions with those from the new
tree using a shrinkage parameter (λ) that controls the learning
rate: f̂ b(X) ← f̂ b−1(X) + λf̂ b(X), where 0 < λ < 1. In
stochastic boosting, only a random proportion (usually 0.5) of
the observations are �t at each iteration to reduce variance
and improve computational e�ciency (Freund and Schapire,
1997; Friedman, 2001). We use the xgbTree implementation in
R to perform boosting (Chen and Guestrin, 2016).
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Table A.2: Probit regression model of swing voting from the 2012 Cooperative Campaign
Analysis Project

Swing voter [0,1]
Quarter −0.08 (0.02)
Region (Northeast) 0.14 (0.06)
Region (South) 0.03 (0.05)
Region (West) 0.05 (0.06)
Age −0.10 (0.03)
Female −0.07 (0.02)
Race (Hispanic/Latino) 0.24 (0.10)
Race (Other) 0.24 (0.11)
Race (White) 0.20 (0.08)
Education 0.00 (0.02)
Household income −0.13 (0.03)
Married 0.04 (0.02)
Children -0.01 (0.02)
LGBT −0.06 (0.03)
Religiosity 0.02 (0.03)
Religion (Evangelical Protestant) −0.02 (0.06)
Religion (Jewish) −0.12 (0.15)
Religion (Mainline Protestant) 0.05 (0.06)
Religion (Mormon) −0.07 (0.15)
Religion (Other) −0.08 (0.09)
Religion (Secular) −0.05 (0.07)
Own gun 0.00 (0.02)
Union member 0.03 (0.02)
Has health insurance −0.01 (0.02)
Political knowledge −0.21 (0.03)
Political interest −0.01 (0.02)
Partisanship (Weak Democrat) 0.67 (0.07)
Partisanship (Lean Democrat) 0.63 (0.09)
Partisanship (Independent) 0.94 (0.08)
Partisanship (Lean Republican) 0.66 (0.10)
Partisanship (Weak Republican) 0.76 (0.09)
Partisanship (Strong Republican) 0.23 (0.10)
Partisanship (DK/Not sure) 0.61 (0.19)
Ideological identi�cation (Somewhat liberal) 0.03 (0.13)
Ideological identi�cation (Moderate) 0.25 (0.12)
Ideological identi�cation (Somewhat conservative) 0.05 (0.13)
Ideological identi�cation (Very conservative) −0.06 (0.15)
Ideological identi�cation (DK/Not sure) 0.37 (0.15)

Continued on next page
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TABLE A.2 – continued from previous page

Swing voter [0,1]
Ideological inconsistency 0.34 (0.03)
Economic preferences 0.03 (0.03)
Social preferences 0.05 (0.03)
Immigration preferences 0.02 (0.03)
Environmental preferences −0.04 (0.03)
Death penalty preferences −0.06 (0.02)
A�rmative action preferences 0.02 (0.03)
Trade preferences 0.05 (0.02)
Racial resentment −0.01 (0.03)
Sociotropic economic evaluations 0.09 (0.03)
Egotropic economic evaluations −0.07 (0.02)
Right/wrong track evaluations 0.14 (0.03)
Salience Iraq −0.03 (0.03)
Salience economy 0.05 (0.02)
Salience immigration −0.01 (0.03)
Salience environment 0.03 (0.03)
Salience terrorism −0.01 (0.03)
Salience gay rights 0.01 (0.03)
Salience education 0.05 (0.02)
Salience health care −0.06 (0.02)
Salience Social Security 0.03 (0.03)
Salience de�cit 0.04 (0.03)
Salience Afghanistan 0.05 (0.03)
Salience taxes −0.02 (0.02)
Salience Medicare −0.05 (0.03)
Salience abortion −0.01 (0.02)
Constant −2.20 (0.15)
Observations 8,395
Log Likelihood −2,564.19

Observations from training set. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

The learning ensemble is constructed by combining weighted predictions from each of the

eight component methods following the approach developed in Grimmer, Messing and Westwood

(2017). Formally, let i index the observations (i = 1, . . . ,n) and m index the component methods

(m = 1, . . . ,M ). We �rst randomly divide the N observations into D (d = 1, . . . ,D) folds, and

generate predictions for observations in each fold d by �tting the M methods on observations in

the remaining D − 1 folds. This produces an N ×M matrix of out-of-sample predictions (Ŷim)
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for each observation across the component methods. We then estimate the component weights

(wm) by �tting the constrained regression problem:

Yi =
M∑

m=1

wmŶim + εi (1)

where Yi is the observed response by respondent i and εi is a stochastic error term, with the

constraints that
∑M

m=1wm = 1 and wm ≥ 0. Finally, we �t each of the component methods to the

complete dataset and weight the predictions using the M -length vector of estimated component

weights ŵ.2 The weighted combination of predictions comprise the ensemble estimates: w = 0.32

for extremely randomized trees, w = 0.27 for the boosted trees, w = 0.23 for the group-lasso

interaction network, and w = 0.17 for the support vector machine classi�er.

2We add a standard down-sampling step when estimating the ensemble weights to address class imbalance in
the swing voter measure (Kuhn and Johnson, 2013, pp. 427-429). Otherwise, the ŵ would overweight methods that
correctly predict the 87% of observations who are not classi�ed as swing voters.
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C Model results using alternate operationalizations of swing

voters

In addition to the operationalization of the swing voter measure presented in the main text, we

train three other learning ensembles that replace the response variable with the following measures

(all of the predictor variables remain identical):

1. Floating voters: respondents who switched between major parties in their �nal 2008 and
2012 presidential vote choices (e.g., Key, 1966; Smidt, 2017).

2. Undecided voters: respondents who reported being undecided in the mid-election survey
(e.g., Weghorst and Lindberg, 2013).

3. Swing voters (Shaw’s (2008) operationalization): respondents who either (1) do not cast
consistent partisan votes or (2) abstain at any point over three election cycles (e.g., Shaw,
2008). We use 2008, 2012 (mid-election survey), and 2012 (post-election survey) as our three
time periods.

Table A.3 presents the Pearson correlations between the four sets of model predictions on

the validation set. All of the correlations are at least 0.8 (and all of those involving the original

measure presented in the main text are at least 0.9), suggesting that all four learning ensembles

are tapping into a similar swing voter disposition.

Table A.3: Correlations between Model Predictions with Di�erent Operationalizations of
the Response Variable

Original Floating Undecided Shaw’s Operationalization
Original 1.00
Floating 0.90 1.00

Undecided 0.91 0.80 1.00
Shaw’s Operationalization 0.94 0.86 0.86 1.00
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D Model performance metrics for Figure 2

Table A.4 shows the four principal �t metrics obtained when substituting external indicators of

swing voting as the response variable, using observations in the out-of-sample validation set (as

in Figure 2 in the main text).

Table A.4: Ensemble and GAM �t metrics for external indicators of swing voting using
out-of-sample (validation) data.

AUC-ROC BSS
Ensemble GAM Ensemble GAM

Split-ticket voter (actual) 0.78 0.73 0.09 0.05
Split-ticket voter (self-ID) 0.70 0.69 0.11 0.11
Ambivalent (pre-election) 0.66 0.65 0.07 0.06
Ambivalent (mid-election) 0.75 0.72 0.14 0.09
Switched House vote (2010-2012) 0.79 0.76 0.10 0.07
Switched House vote (2012) 0.76 0.72 0.08 0.05
Undecided about House vote 0.77 0.77 0.14 0.14
GOP support score IQR range (2012) 0.87 0.78 0.41 0.24
Switched presidential vote (2012-2016) 0.76 0.73 0.10 0.06
Switched presidential vote (2016-2020) 0.75 0.69 0.07 0.03
GOP support score IQR range (2020) 0.87 0.82 0.42 0.30
Party feeling thermometer di�erence ≤ 15 (2019) 0.75 0.73 0.09 0.06

CE loss MCC
Ensemble GAM Ensemble GAM

Split-ticket voter (actual) 0.25 0.27 0.04 0.00
Split-ticket voter (self-ID) 0.62 0.63 0.28 0.26
Ambivalent (pre-election) 0.61 0.62 0.19 0.14
Ambivalent (mid-election) 0.43 0.45 0.24 0.09
Switched House vote (2010-2012) 0.24 0.26 0.06 0.04
Switched House vote (2012) 0.24 0.25 -0.01 0.00
Undecided about House vote 0.40 0.40 0.19 0.17
GOP support score IQR range (2012) 0.47 0.57 0.59 0.44
Switched presidential vote (2012-2016) 0.29 0.30 0.11 0.00
Switched presidential vote (2016-2020) 0.27 0.29 0.00 0.00
GOP support score IQR range (2020) 0.46 0.53 0.59 0.48
Party feeling thermometer di�erence ≤ 15 (2019) 0.28 0.29 0.00 0.00

Note: Predictions calibrated using Platt scaling (Platt, 2000).
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Figure A.1 reproduces Figure 2 in the main text, but instead shows the di�erence in proportions

between the ensemble and (baseline) GAM prediction deciles for each external indicator. Hence,

positive (negative) values indicate higher proportions among observations in the corresponding

decile when binning the ensemble (GAM) predictions.
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Figure A.1: Di�erence in predictive performance of ensemble and (baseline) GAM scores
on additional indicators of swing voter propensity using out-of-sample (validation) data.
Ambivalence de�ned as placing the candidates within one point of each other on a
�ve-point favorability scale. Republican presidential support scores are calculated by
estimating separate ensemble models of 2012 presidential vote choice and 2020 presiden-
tial vote intention.
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E Republican presidential support scores from the 2012 Co-

operative Campaign Analysis Project and the 2019 wave

of the VOTER Study Group

The Republican presidential support scores presented in the main text (speci�cally Figure 2)

measure the propensity of the 2012 CCAP respondents to support Mitt Romney over Barack

Obama in the 2012 presidential election; and of the 2019 VOTER Study Group respondents to

support Donald Trump over the Democratic nominee in the 2020 presidential election. We estimate

these scores using the same learning ensemble method used to predict swing voters, but replacing

the response variable with 2012 presidential vote choice/2020 presidential vote intention.

For the 2012 Republican presidential support model, the learning ensemble selects four com-

ponent methods (with weights in parentheses): gradient boosted trees (w = 0.48), extremely

randomized trees (w = 0.21), the SVM classi�er (w = 0.26), and the random forest (w = 0.05).

The ensemble achieves a correct classi�cation rate of 97.1% and an AUC �t statistic of 0.996.

For the 2020 Republican presidential support model, the learning ensemble selects six com-

ponent methods (with weights in parentheses): the model averaged neural network (w = 0.40),

group-lasso interaction network (w = 0.21), the random forest (w = 0.15), the additive probit

regression model (w = 0.14), the SVM classi�er (w = 0.07), and k-nearest neighbor classi�er

(w = 0.03). The ensemble achieves a correct classi�cation rate of 94.1% and an AUC �t statistic of

0.987.

Based on this performance, we believe the predicted probabilities from the model serve as

valid measure of respondent propensities to support the Republican presidential candidate in the

2012 and 2020 elections.
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F Permutation tests of feature importance

Below we further detail the (unconditional) permutation approach for estimating the feature im-

portance values presented in the main text. Following Breiman (2001), we calculate the importance

of each predictor variable Xj by randomly shu�ing its values and generating predictions from the

learning ensemble while leaving the remainder of the dataset (X−j) unchanged. The di�erence in

predictive accuracy as measured by four �t statistics (AUC-ROC, Brier skill score, cross-entropy

loss, and the Matthews correlation coe�cient; as recommended by Cook 2007) between the two

sets of predictions—those from the original (unpermuted) and permuted datasets—serve as our

measure of importance for feature Xj . The feature importance values Ψj presented in the main

text and below are the mean di�erence in �t metric when generating predictions from Xj and

X−j across 500 permutation trials.

The results shown in the main text (speci�cally, Figure 3) truncate the number of variables for

space purposes. The results for all predictor variables are shown in Figures A.2–A.5. Note that

these results are obtained using an unconditional permutation scheme. To address the problem of

spurious relationships among correlated predictors, Strobl et al. (2008); Debeer and Strobl (2020)

develop a conditional permutation method for random forests in which each feature is randomly

shu�ed conditionally on values of the correlated predictor variable(s).3 That is, permutation occurs

within bins de�ned by unique values of the correlated variable(s).

Below we develop a generalized version of their conditional permutation scheme and apply

it to our learning ensemble. First, for each feature Xj , we identify correlated variables using the

maximal information coe�cient (MIC) (Reshef et al., 2011; Albanese et al., 2018). The MIC is a

nonparametric statistic that captures a wider range of linear and nonlinear relationships between

variables than the traditional Pearson’s correlation coe�cient.4

Second, in cases where a featureXj is correlated with multiple variables, we use cluster analysis
3See Chan and Ratkovic (2020) for another exposition of the problem posed by feature dependencies when

estimating variable importance.
4MIC values are bounded between 0 and 1, with larger values indicating stronger associations between variables.

We determine correlated predictors for each feature Xj as those with MIC values greater than 0.1. We note that 69 of
the 990 pairwise relationships between the 45 predictor variables meet this criterion.

13



to de�ne the conditional bins within which values of Xj will be randomly shu�ed. Speci�cally,

we apply the k-medoids (or partitioning around medoids [PAM]) clustering algorithm to the

correlated predictors and use average silhouette width to determine the appropriate number of

clusters (Rousseeuw, 1987; Kaufman and Rousseeuw, 1990). We then randomly permute values of

Xj conditional on the cluster assignments (i.e., among observations in each cluster separately). For

instance, political knowledge is correlated with political interest and household income. Cluster

analysis identi�es groupings of observations with similar covariate pro�les on these two features.

Then, to assess the e�ect of political knowledge, we randomly permute its values among observa-

tions in each of these clusters and calculate the feature importance measure Ψj as before. This

serves to preserve correlational structure in the original data and provide a more partial estimate

of variable importance (Debeer and Strobl, 2020).

The feature importance values from the conditional permutation tests are shown in Figures A.6–

A.9. Overall, the conditional and unconditional Ψj estimates are correlated at r = 0.99 (using the

AUC-ROC metric), r = 0.96 (Brier skill score), r = 0.99 (cross-entropy loss), and r = 0.95 (the

Matthews correlation coe�cient). Among partisan groups, these correlations are 0.97, 0.97, 0.97,

and 0.98 among Democrats (for AUC-ROC, Brier skill score, cross-entropy loss, and the Matthews

correlation coe�cient, respectively). For Republicans, the correlations are 0.99, 0.97, 0.99, and

0.98. For Independents/una�liated, the correlations are 0.97, 0.94, 0.91, and 0.94.
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Cross−entropy loss Matthews correlation
coefficient (MCC)

AUC−ROC Brier skill score (BSS)
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Figure A.2: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (all respondents).
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Figure A.3: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Democrats).

16



Cross−entropy loss Matthews correlation
coefficient (MCC)

AUC−ROC Brier skill score (BSS)

0.00 0.00 0.01 0.02 0.02 0.00 0.05 0.10

0.00 0.01 0.02 0.03 0.00 0.02 0.04 0.06 0.08
salience.economy

unionmember
salience.terrorism

owngun
salience.afghanistan

LGBT
affirmativeaction.attitudes

salience.deficit
salience.gayrights

salience.socialsecurity
salience.iraq

politicalinterest
salience.taxes

salience.education
salience.healthcare

religiosity
householdincome

havehealthinsurance
deathpenalty.attitudes

regionID
salience.abortion

immigration.attitudes
economic.sociotropic

trade.attitudes
salience.medicare

education
salience.environment

married
economic.egotropic

salience.immigration
racialresentment

female
children

rightwrongtrack
religiousID

quarter
social.attitudes

politicalknowledge
age

raceID
environment.attitudes

ideologicalselfID
economic.attitudes

ideological.inconsistency
partyID/partisanstrength

salience.economy
unionmember

salience.terrorism
owngun

salience.afghanistan
LGBT

affirmativeaction.attitudes
salience.deficit

salience.gayrights
salience.socialsecurity

salience.iraq
politicalinterest
salience.taxes

salience.education
salience.healthcare

religiosity
householdincome

havehealthinsurance
deathpenalty.attitudes

regionID
salience.abortion

immigration.attitudes
economic.sociotropic

trade.attitudes
salience.medicare

education
salience.environment

married
economic.egotropic

salience.immigration
racialresentment

female
children

rightwrongtrack
religiousID

quarter
social.attitudes

politicalknowledge
age

raceID
environment.attitudes

ideologicalselfID
economic.attitudes

ideological.inconsistency
partyID/partisanstrength

Average reduction in fit metric after permutation

Republicans
Unconditional permutation

Figure A.4: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Republicans).
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Figure A.5: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Independents/Not Sure).
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Figure A.6: Feature importance estimates from the learning ensemble using conditional
permutation tests (all respondents).
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Figure A.7: Feature importance estimates from the learning ensemble using conditional
permutation tests (Democrats).
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Figure A.8: Feature importance estimates from the learning ensemble using conditional
permutation tests (Republicans).
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Figure A.9: Feature importance estimates from the learning ensemble using conditional
permutation tests (Independents/Not Sure).
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G Feature interactions in the learning ensemble

To identify which predictor variables have the largest interactive e�ects in the learning ensemble,

below we use two techniques developed in Friedman and Popescu (2008) using observations from

the expanded test set.

The �rst approach—known as Friedman’s H-statistic—works by decomposing the total in-

�uence of each variable into its direct and indirect (i.e., conditional) components via the partial

dependence function. The partial dependence of a prediction function f(x) on one or more predic-

tor variables xS provides an estimate of their e�ect by marginalizing over the empirical distribution

of complementary predictor variables x−S . That is,

fS(xS) = Ex−S
[f(xS,x−S)]

=

∫
f(xS,x−S)dP(x−S)

(2)

The partial dependence function fS(xS) in Equation 2 is usually approximated by using the

Monte Carlo method to sample over observations i in 1, . . . ,N :

f̂S(xS) =
1

N

N∑
i=1

f(xS,x−S) (3)

For a given predictor variable xj , Friedman’sH-statistic (H2
j ) calculates the di�erence between

(1) the observed prediction function; and (2) an additive version of the prediction function that

assumes the e�ects of xj and x−j are entirely independent of each other and hence can be expressed

as the sum of their respective partial dependence functions:

f(x) = fj(xj) + f−j(x−j) (4)

Friedman’s H-statistic expresses this di�erence as a proportion of the total variance in the
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prediction function, again using Monte Carlo simulation:

H2
j =

∑N
i=1

[
f(x(i))− f̂j(x(i)j )− f̂−j(x−j

(i))
]2

∑N
i=1 f

2(x(i))
(5)

We estimate Friedman’s H-statistic for each of the 45 predictor variables in the learning

ensemble using the iml package in R (Molnar, Bischl and Casalicchio, 2018) on observations in

the out-of-sample validation set (N = 4, 519). The results, shown in Figure A.10, indicate that a

large percentage of the total e�ects of party identi�cation (34%), ideological inconsistency (20%),

economic issue attitudes (17%), and right/wrong track evaluations (16%) are interactive in nature.

Table A.5 lists the two-way interactions with the largest Friedman’s H-statistic values for all

voters and partisan groups separately. One conditional relationship that looks especially promis-

ing is between ideological inconsistency and right/wrong track evaluations among Democrats.

Running an additive linear regression model (with an interaction term between these two features)

for out-of-sample Democratic voters yields a signi�cant coe�cient, with the results shown in

Figure A.11.

The second approach we use to identify meaningful interactive relationships is to �t prediction

rule ensembles (also from Friedman and Popescu [2008]) to our estimated swing voter propensity

scores. Prediction rule ensembles (also referred to as the RuleFit algorithm) �rst grow 500 boosted

decision trees �t to an outcome (i.e., the swing voter predictions) and generate a large number

of interpretable IF/THEN rules based on the conditional paths from the root nodes of each tree.

A lasso penalty (determined by cross-validation) is then used to reduce the number of rules to

prevent over�tting and estimate coe�cients for the remaining rules.

We estimate separate prediction rule ensembles for all voters and partisan groups in the

validation set using default values from the pre package in R (Fokkema, 2020). The most important

rules identi�ed are shown in Table A.6. The rules provide several promising candidates for future

research, including the role of environmental attitudes among Republicans and the in�uence of

religiosity among non-Black Democrats.
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Table A.5: Pairwise Interaction Strength for Ensemble Swing Voter Predictions

Interaction pair Friedman’s H-statistic
All voters
Region : Religious identi�cation 0.51
Death penalty issue attitudes : Religious identi�cation 0.36
Female : Region 0.35
Social issue attitudes : Economic issue attitudes 0.34
Salience terrorism : Economic issue attitudes 0.30
Environmental issue attitudes : Economic issue attitudes 0.27
Salience environment : Region 0.26
Married : Household income 0.26
Racial resentment : Economic issue attitudes 0.25
Economic issue attitudes : Right/wrong track evaluations 0.25
Salience immigration : Economic issue attitudes 0.24

Democratic voters
Political knowledge : Right/wrong track evaluations 0.16
A�rmative action issue attitudes : Ideological identi�cation 0.15
Racial resentment : Right/wrong track evaluations 0.15
Ideological inconsistency : Right/wrong track evaluations 0.13
Economic issue attitudes : Ideological identi�cation 0.12

Republican voters
Gun ownership : Right/wrong track evaluations 0.23
Immigration issue attitudes : Right/wrong track evaluations 0.21
Quarter : ideological identi�cation 0.15
Salience terrorism : Ideological identi�cation 0.14
Religious identi�cation : Ideological identi�cation 0.13

Independent/DK voters
Social issue attitudes : Economic issue attitudes 0.34
Racial resentment : Economic issue attitudes 0.30
Salience environment : Ideological identi�cation 0.26
Environmental issue attitudes : Economic issue attitudes 0.25
Salience terrorism : Economic issue attitudes 0.24
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Figure A.10: Friedman’s H-statistic Values for Predictor Variables in the Learning En-
semble
Higher values indicate that a larger proportion of the variable’s in�uence is conditional on other variables
in the model.
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Table A.6: Interactions Identi�ed by the Prediction Rule Ensembles

Rule Coe�cient
All voters
Party identi�cation∈ {Strong Democrat, Lean Democrat, Lean Republican}

& Race ∈ {Black}
-0.47

Ideological inconsistency > -0.77 & Household income ≤ $20k &
Right/wrong track evaluations ∈ {Wrong track}

0.41

Right/wrong track evaluations ∈ {Right track, Not sure} & Economic issue
attitudes ≤ -0.61

-0.39

Political knowledge ≤ 0.34 & Right/wrong track evaluations ∈ {Right
track, Not sure} & Party identi�cation ∈ {Strong Democrat, Weak
Democrat, Lean Democrat}

-0.37

Ideological inconsistency ≤ -0.06 & Ideological inconsistency > -0.77 &
Trade issue attitudes ∈ {Not sure, Oppose increased trade}

0.37

Democratic voters
Right/wrong track evaluations ∈ {Right track, Not sure} & Age > 34 &

Salience environment ∈ {Very important, Somewhat important}
-0.61

Right/wrong track evaluations ∈ {Wrong track} & Political knowledge ≤
0.34 & Salience terrorism ∈ {Very important}

0.49

Right/wrong track evaluations ∈ {Right track, Not sure} & Party identi�-
cation ∈ {Strong Democrat, Lean Democrat} & Age > 44

-0.35

Economic issue attitudes ≤ 0.05 & Sociotropic economic evaluations ∈
{Same, Worse} & Party identi�cation ∈ {Weak Democrat, Lean Demo-
crat}

0.34

Ideological inconsistency ≤ -0.06 & Party identi�cation ∈ {Strong Demo-
crat} & Salience taxes ∈ {Not very important, Somewhat important,
Very important}

-0.33

Economic issue attitudes> -1.26 & Race ∈ {Hispanic/Latino, Other, White}
& Religiosity > -0.03

0.22

Republican voters
Economic issue attitudes > 0.71 & Ideological identi�cation ∈ {Some-

what liberal, Somewhat conservative, Very conservative} & Salience
immigration ∈ {Somewhat important, Very important}

-0.59

Economic issue attitudes > 0.71 & Ideological identi�cation ∈ {Moderate,
Somewhat conservative, Very conservative, DK/not sure}

-0.55

Political knowledge > -0.80 & Environmental issue attitudes > -0.54 &
Salience immigration ∈ {Somewhat important, Very important}

-0.39

Party identi�cation ∈ {Strong Republican} & Ideological identi�cation ∈
{Moderate, Somewhat conservative, Very conservative, DK/not sure}
& Race ∈ {Hispanic/Latino, Other, White}

-0.24

Ideological inconsistency ≤ 0.30 & Racial resentment > -0.58 -0.13
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Independent/DK voters
Ideological inconsistency ≤ 1.00 & Ideological identi�cation ∈ {Very lib-

eral, Somewhat liberal, Moderate, Somewhat conservative, Very con-
servative}

-0.52

Political interest ∈ {Medium, High} & Trade issue attitudes ∈ {Not sure,
Oppose increased trade}

-0.22

Trade issue attitudes ∈ {Favor increased trade} & Racial resentment> 0.10 0.14
Political interest ∈ {High} & Salience healthcare ∈ {Very important} &

Political knowledge > -1.18
-0.09

Ideological inconsistency≤ 1.00 & Trade issue attitudes∈ {Not sure, Favor
increased trade}

-0.07

Issue attitudes standardized and coded such that higher values indicate more conservative positions.
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H Descriptive statistics for swing voter predictions

Tables A.7–A.9 show the mean and variances of the swing voter scores (using survey weights)

from the learning ensemble by state, political knowledge, and ideological inconsistency (Federico

and Hunt, 2013). Tables A.10–A.11 �ip the variables and show mean political knowledge and

ideological inconsistency values by swing voter score deciles. Both are based on predictions for all

out-of-sample observations (N = 19, 599).

The results show monotonic or near-monotonic relationships between the swing voter predic-

tions and political knowledge (in a negative direction) and ideological inconsistency (in a positive

direction). They also reveal that North Dakota, Connecticut, and New Hampshire are the states

whose electorates have the largest mean swing voting propensity.5 Of course, swing states—those

most likely to switch between parties in national or subnational elections—will not necessarily be

those with the largest proportion of swing voters, as partisan balance also matters.

Table A.7: Ensemble swing voter predictions by state (sorted by weighted mean score),
2012 Cooperative Campaign Analysis Project.

State N Weighted mean SV score Weighted σ2

North Dakota 53 0.36 0.05
Connecticut 211 0.35 0.05
New Hampshire 114 0.34 0.04
West Virginia 161 0.33 0.04
Rhode Island 56 0.33 0.04
New Jersey 513 0.32 0.04
Kansas 176 0.32 0.06
Idaho 126 0.31 0.04
Arkansas 191 0.31 0.04
Pennsylvania 956 0.31 0.04
South Dakota 41 0.30 0.05
Ohio 730 0.29 0.05
Missouri 400 0.29 0.04
Indiana 390 0.29 0.04
Oklahoma 215 0.29 0.04

5In a 2012 post, Nate Silver found that Rhode Island, New Hampshire, and Maine were the most politically “elastic”
states. These states also rank high in our estimates. See Nate Silver, “Swing Voters and Elastic States,” 21 May 2012, avail-
able from: https://fivethirtyeight.com/features/swing-voters-and-elastic-states/
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Florida 1574 0.29 0.04
Tennessee 343 0.29 0.04
Oregon 329 0.28 0.05
Hawaii 62 0.28 0.03
New York 1070 0.28 0.04
Michigan 610 0.27 0.04
Massachusetts 350 0.27 0.05
Kentucky 282 0.27 0.04
Wyoming 40 0.27 0.05
Georgia 625 0.26 0.04
Maine 120 0.26 0.04
Montana 54 0.26 0.04
Virginia 479 0.26 0.03
Nevada 265 0.26 0.03
North Carolina 592 0.26 0.04
Colorado 427 0.26 0.03
Wisconsin 377 0.26 0.04
Arizona 513 0.26 0.04
Texas 1361 0.26 0.04
Mississippi 167 0.25 0.04
Minnesota 297 0.25 0.05
Maryland 387 0.25 0.03
Alabama 239 0.24 0.03
Illinois 825 0.24 0.04
California 1986 0.24 0.03
Utah 208 0.24 0.02
Louisiana 183 0.23 0.04
Nebraska 128 0.23 0.04
Iowa 172 0.23 0.04
South Carolina 307 0.22 0.03
Washington 537 0.22 0.03
New Mexico 140 0.22 0.04
Delaware 79 0.21 0.04
Vermont 37 0.19 0.04
Alaska 36 0.17 0.02
District of Columbia 65 0.16 0.02
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Table A.8: Ensemble swing voter predictions by political knowledge, 2012 Cooperative
Campaign Analysis Project.

Knowledge decile N Weighted mean SV score Weighted σ2

1: Lowest Knowledge 1264 0.43 0.04
2 1502 0.39 0.03
3 2110 0.36 0.04
4 2249 0.33 0.04
5 1970 0.30 0.04
6 1645 0.27 0.04
7 1387 0.24 0.03
8 1620 0.20 0.03
9 2141 0.16 0.02
10: Highest Knowledge 3711 0.13 0.02

Table A.9: Ensemble swing voter predictions by ideological inconsistency, 2012 Coopera-
tive Campaign Analysis Project.

Ideological inconsistency decile N Weighted mean SV score Weighted σ2

10: Most Inconsistent 2002 0.43 0.03
9 2069 0.37 0.04
8 1902 0.35 0.04
6 1944 0.33 0.04
7 1997 0.29 0.03
4 1919 0.24 0.04
5 1798 0.20 0.03
3 2119 0.19 0.03
1: Least Inconsistent 1930 0.15 0.02
2 1919 0.13 0.02
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Table A.10: Political knowledge by ensemble swing voter predictions, 2012 Cooperative
Campaign Analysis Project.

Swing voter score decile N Weighted Mean Knowledge Weighted σ2

1: Lowest SV Score 1960 8.76 3.65
2 1960 8.12 4.97
3 1960 7.22 6.20
4 1960 6.72 7.68
5 1960 5.74 7.98
6 1960 5.33 6.99
7 1961 4.95 7.38
8 1959 4.63 7.14
9 1960 4.04 5.88
10: Highest SV Score 1959 3.82 5.65

Table A.11: Ideological inconsistency by ensemble swing voter predictions, 2012 Cooper-
ative Campaign Analysis Project.

Swing Voter Score Decile N Weighted Mean Inconsistency Weighted σ2

10: Highest SV Score 1959 7.33 5.75
9 1960 7.06 5.85
8 1959 6.71 6.96
7 1961 6.19 7.20
6 1960 5.74 7.15
5 1960 5.39 7.37
4 1960 5.00 7.33
3 1960 4.35 6.39
2 1960 3.63 4.35
1: Lowest SV Score 1960 2.87 3.17
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I Uncertainty measures for the results

Following Grimmer, Messing and Westwood (2017), we do not present uncertainty estimates for

the results in the main text. Developing procedures to estimate measures of parameter uncertainty

with known asymptotic properties from supervised machine learning algorithms (particularly

regularization, tree-based, and ensemble methods) remains an ongoing area of research (see, e.g.,

Chatterjee and Lahiri, 2011; Wager, Hastie and Efron, 2014; Coyle and van der Laan, 2018; Das,

Gregory and Lahiri, 2019).

Below we present two alternative strategies to assess the stability of the model performance

metrics and feature importance estimates. Though we caution against an asymptotic interpretation

of these results, we think they are nonetheless useful ways to test the learning ensemble’s general

sensitivity to error processes.

The �rst approach is a sensitivity analysis that randomly perturbs the model predictions

(by adding random error of varying magnitude from a uniform distribution) and assesses the

dropo� in predictive performance using the four principal �t metrics (AUC-ROC, Brier skill score,

cross-entropy loss, and the Matthews correlation coe�cient). Our use of perturbation tests draws

from Altman, Gill and McDonald (2004, chap. 4) and the simulation extrapolation (SIMEX) method

of Cook and Stefanski (1994), which uses a Monte Carlo approach to simulate the in�uence of

varying levels of measurement error on coe�cient estimates (see also Carroll et al., 1996).

We proceed using the same out-of-sample validation set (N = 4, 519) from the main text. In

each of 500 stimulations, we take a random draw from a uniform distribution with set lower/upper

bounds and add it to the ensemble and GAM predictions (truncating both sets of predictions to

range between 0 and 1). We vary the lower/upper bounds of the uniform distribution between

-0.01/0.01 and -0.21/0.21, and calculate the resulting �t metrics for the learning ensemble and GAM.6

The results are presented in Figure A.12, and suggest that the ensemble continues to outperform

the original GAM predictions across error levels for all but cross-entropy loss, a metric on which
6The standard deviation of the ensemble predictions is 0.21 (σ = 0.17 for the GAM predictions). The mean

di�erence between the two sets of predictions is 0.1.
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the ensemble deteriorates more quickly and begins to overlap with the original GAM value when

the error bounds reach -0.06/0.06. However, even in this case, the ensemble is less sensitive to

random error (i.e., declines more slowly as the magnitude of the error increases) than the GAM.

Cross−entropy loss Matthews correlation coefficient (MCC)

AUC−ROC Brier skill score (BSS)

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
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Figure A.12: Sensitivity analysis of model �t metrics using out-of-sample (validation)
data. Horizontal lines indicate the original value of the �t metric from the unperturbed
predictions. Trials repeated 500 times.

The second approach involves generating uncertainty measures for the feature importance

estimates presented in Figure 3 in the main text. Ishwaran and Lu (2019) advocate use of the

delete-d jackknife (Shao and Wu, 1989) for estimating the variance of permutation-based variable

importance measures. The delete-d jackknife operates like the standard jackknife (or leave-one-out)

estimator, except that it operates on random subsamples of size (n-d). We draw 500 subsamples,

setting d =
√
n (Efron and Tibshirani, 1993, p. 149). Again using the out-of-sample validation

set, this means d = 67 (and d = 49 for Democrats, d = 41 for Republicans, and d = 21 for

independents/not sure). The results for the unconditional and conditional permutation tests (for

all respondents and by partisanship) are shown in Figures A.13-A.20.
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Figure A.13: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (all respondents, with uncertainty intervals).
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Figure A.14: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Democrats, with uncertainty intervals).
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Figure A.15: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Republicans, with uncertainty intervals).
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Figure A.16: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Independents/Not Sure, with uncertainty intervals).
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Figure A.17: Feature importance estimates from the learning ensemble using conditional
permutation tests (all respondents, with uncertainty intervals).
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Figure A.18: Feature importance estimates from the learning ensemble using conditional
permutation tests (Democrats, with uncertainty intervals).
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Figure A.19: Feature importance estimates from the learning ensemble using conditional
permutation tests (Republicans, with uncertainty intervals).
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Figure A.20: Feature importance estimates from the learning ensemble using conditional
permutation tests (Independents/Not Sure, with uncertainty intervals).
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J Results from imputed data

In the main analysis, we use 12, 914 observations from the 2012 Cooperative Campaign Analysis

Project with complete pro�les across the swing voter measure and 45 predictor variables. These

observations are split into a training set (N = 8, 395) and a validation set (N = 4, 519).

Below, we present results using observations with missing values on at least one of the 45

predictor variables. Speci�cally, we perform imputation using bagged decision trees with the

step_impute_bag function from the tidymodels package in R (Kuhn and Johnson, 2013; Kuhn

and Wickham, 2020). Because we do not impute values for the target swing voter variable, this

provides 4, 258 observations with complete pro�les after imputation on the predictors. Figure A.21

illustrates our partitioning of the data.

Figure A.21: Structure of the 2012 Cooperative Campaign Analysis Project data.

Dataset
(N = 27,994)

Complete cases
(N = 12,914)

Training set
(N = 8,395)

Validation set
(N = 4,519)

Incomplete cases
(N = 15,080)

DV observed
(N = 4,258)

DV missing
(N = 10,822)

Figure A.22 is an analogue of Figure 2 in the main text, using the 4, 258 observations from

the imputed dataset. Figures A.23–A.30 provide the results of unconditional and conditional

permutation tests (analogues of Figure 3 in the main text and the �gures in Appendix Section

D) for the imputed observations. Both analyses produce substantively similar �ndings to those

obtained with the original validation set (i.e., the results presented in the main text).
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FigureA.22: Predictive performance on additional indicators of swing voter propensity us-
ing imputed out-of-sample data. Horizontal bars show overall proportion of respondents
satisfying the corresponding indicator. Ambivalence de�ned as placing the candidates
within one point of each other on a �ve-point favorability scale. Republican presidential
support scores are calculated by estimating separate ensemble models of 2012 presiden-
tial vote choice and 2020 presidential vote intention.
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Figure A.23: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (all respondents, imputed out-of-sample data).
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Figure A.24: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Democrats, imputed out-of-sample data).
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Figure A.25: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Republicans, imputed out-of-sample data).
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Figure A.26: Feature importance estimates from the learning ensemble using uncondi-
tional permutation tests (Independents/Not Sure, imputed out-of-sample data).
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Figure A.27: Feature importance estimates from the learning ensemble using conditional
permutation tests (all respondents, imputed out-of-sample data).
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Figure A.28: Feature importance estimates from the learning ensemble using conditional
permutation tests (Democrats, imputed out-of-sample data).
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Figure A.29: Feature importance estimates from the learning ensemble using conditional
permutation tests (Republicans, imputed out-of-sample data).
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Figure A.30: Feature importance estimates from the learning ensemble using conditional
permutation tests (Independents/Not Sure, imputed out-of-sample data).
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