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(a) RMSE: True states are marked by brown circles.
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(b) WAIC: True states are marked by brown circles.

Figure 1: Simulation outcomes from 24 sets of TSCS data. (a) indicates the root mean squared
error of time-varying parameters. (b) is the Watanabe-Akaike Information Criterion. A lower score
suggests that the model good predictive accuracy.

1 Simulation Results under a Large Predictor Size

We construct 24 sets of high dimensional TSCS data with varied group sizes (n = (5, 10)),
time lengths (t = (20, 40)), predictor sizes (k = (50, 100)), and break numbers (m = (0, 1, 2))
to evaluate the validity of our proposed method under a more challenging setting.

Figure ?? shows the results of RMSE and WAIC computation using simulation outputs.
Overall, despite the large predictor size, WAIC and RMSE of the “correct” models show
low scores compared to “incorrect” models though WAIC still shows a sign of over-detection
when the planted break number is one.

Panel (a) of Figure 2 shows that HMBB successfully recovered hidden state changes in high
dimensional panel data settings. Panel (b) of Figure 2 shows that HMBB converged very
well in all simulation tests.
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Figure 2: Simulation outcomes from 24 sets of TSCS data. (a) shows recovered hidden states
(grey) over true states (black). (b) is a stabilized Gelman-Rubin statistics (Vats and Knudson,
2021). Values close to 1 indicate good convergence.
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2 BridgeChange Software

We explain how to use BridgeChange using a synthetic data set. First, download
BridgeChange from a public repository.
require(devtools)
install_github("jongheepark/BridgeChange")
require(BridgeChange)

set.seed(11199)
K <- 80
n <- 100
X <- matrix(rnorm(n*K), n, K)
sig2 <- 4
beta.true <- matrix(NA, 2, K)

beta.true[1,] <- matrix(rnorm(K, 1, 1), K, 1)*2
beta.true[2,] <- matrix(rnorm(K, -1, 1), K, 1)
mu1 <- X[1:(n/2), ]%*%beta.true[1,]
mu2 <- X[((n/2)+1):n, ]%*%beta.true[2,]
Y <- c(rnorm(n/2, mu1, sqrt(sig2)), rnorm(n/2, mu2, sqrt(sig2)))
formula <- Y ~ X
fit.cp0 <- BridgeChangeReg(formula, mcmc=G, burn=G, n.break = 0, Waic = TRUE)
fit.cp1 <- BridgeChangeReg(formula, mcmc=G, burn=G, n.break = 1, Waic = TRUE)
fit.cp2 <- BridgeChangeReg(formula, mcmc=G, burn=G, n.break = 2, Waic = TRUE)

Users must specify a formula, data, and the number of break (n.break) to fit
BridgeChangeReg.

After fitting HMBB, users can do various types of posterior analysis. For example, in order
to detect the number of break points and regime-specific parameters, we can compute WAIC,
compare parameter estimates with true values, and draw time-varying parameter movements.
Figure 3 shows each of the results.
par(mfrow=c(1,4))
## panel 1 waic
waic <- WaicCompare(list(fit.cp0, fit.cp1, fit.cp2), print = TRUE)
plotWaic(waic)

## pull out beta estimates
beta.est <- matrix(apply(fit.cp1[, grep("beta", colnames(fit.cp1))], 2, mean),

2, , byrow=TRUE)

## panel 2 regime 1 parameter estimates vs true regime 1
plot(beta.true[1,], beta.est[1,], xlab="TRUE", ylab="EST", type = "n",

main="Regime 1",

4
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Figure 3: Change-point Analysis using HMBB: T = 100 (the number of observations) and p = 80
(the number of predictors). A single break is planted at t = 50.

xlim = range(beta.est), ylim = range(beta.true), asp = 1)
abline(a=0, b=1, col="red", lty = 3, lwd = 1.5)
points(beta.true[1,], beta.est[1,], col="darkblue")

## panel 3 regime 2 parameter estimates vs true regime 2
plot(beta.true[2,], beta.est[2,], xlab="TRUE", ylab="EST", type = "n",

main="Regime 2",
xlim = range(beta.est), ylim = range(beta.true), asp = 1)

abline(a=0, b=1, col="red", lty = 3, lwd = 1.5)
points(beta.true[2,], beta.est[2,], col="darkblue")

## panel 4 time varying parameter movements
dotplotRegime(fit.cp1, hybrid=FALSE, location.bar=12, x.location="default",

text.cex=0.8, main="Time-varying Movements of All Covariates")

We can compare hidden state estimates of a single break HMBB (left) and a two-break
HMBB (right). It is clear that the single break HMBB correctly identifies the planted break
point in the middle, while the two-break HMBB has a redundant state (state 2) in the middle.
par (mar=c(3,3,2,1), mgp=c(2,.7,0), tck=-.01);
par(mfrow=c(1, 2))
MCMCpack::plotState(fit.cp1, legend.control =c(60, 0.85), main="One break")
MCMCpack::plotState(fit.cp2, legend.control =c(60, 0.85), main="Two breaks")

3 Model Diagnostics using Marginal Likelihood

We can check the model uncertainty of HMBB using Chib (1995)’s candidate estimator of
log marginal likelihoods. Chib (1995)’s candidate estimator of log marginal likelihoods is
applicable when all parameters are sampled by Gibbs sampling methods. Although the
sampling algorithm of HMBB is based on Gibbs sampling methods, it is difficult to evaluate
the posterior densities of β, Λ, and α. We approximate the log marginal likelihood of HMBB
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Figure 4: Hidden States Comparison of a single break HMBB (left) and a two-break HMBB
(right)

by treating them as latent variables. These parameters will be averaged out in the log
marginal likelihood computation. The resulting candidate estimator will be obtained from
the following formula:

log p(y|MM) ≈ log p(y|σ2∗, τ ∗,P∗,MM)︸ ︷︷ ︸
the likelihood ordinate

+ log p(σ2∗, τ ∗,P∗)︸ ︷︷ ︸
the log prior ordinate

− log p(σ2∗, τ ∗,P∗|y)︸ ︷︷ ︸
the log posterior ordinate

where ∗ indicates the posterior mean. The log posterior ordinate will be evaluated from the
following reduced Gibbs updates:

p(σ2∗, τ ∗,P∗|y) = p(τ ∗|y)p(σ2∗|y, τ ∗)p(P∗|y, σ2∗, τ ∗)

p(τ ∗|y) ≈
∫
p(τ ∗|y,β,Λ, α, σ2,P,S)dp(β,Λ, α, σ2,P,S|y)

p(σ2∗|y, τ ∗) ≈
∫
p(σ2∗|y, τ ∗,β,Λ, α,P,S)dp(β,Λ, α,P,S|y)

p(P∗|y, σ2∗, τ ∗) ≈
∫
p(τ ∗|y, σ2∗, τ ∗,β,Λ, α,S)dp(β,Λ, α,S|y).

4 Simulation of HMBB

In this section we report details of simulation tests not reported in the main text. First, we
test our method using high dimensional uncorrelated time series data with no change-point.
Second, we test our method using high dimensional correlated time series data with no
change-point. Then, we test our method using high dimensional correlated time series data
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with a change-point. The level of correlation is set at 0.7 and 0.3.

4.1 Design

Following Donoho (2005) and Donoho and Stodden (2006), simulated data vary by two
dimensions: the level of underdeterminedness (δ = n/p) and the level of sparsity (ρ = k/n)
where n is the number of observations and k is the number of non-sparse predictors. To
make interpretation simple, we fix the number of predictors (p) at 200 and vary n from 10 to
200, and k from 1 to 200 so that both the level of underdeterminedness (δ = n/p) and the
sparsity level (ρ = k/n) take 10 equidistance points on the interval [0.1, 1].

Then, we use an underlying model of y = Xβ + ε, xij ∼ N(0, 1), ε ∼ Normal(0, 42In) by
varying δ and ρ. The change point is set at the mid point, bn/2c, and coefficients are drawn
independently for each regime. Based on the value of k, regression coefficients are set as
β1:k ∼ N(0, 3) and βk+1:p = 0.1 We create 25 unique pairs of (δ, ρ) and for each pair (δ, ρ)
and simulate 20 datasets from the same underlying model. In total, the number of simulated
data sets for each test is 25 × 20 = 500. The entire test results are reported both in a
numerical summary table and in the format of “phase diagrams” used by Donoho (2005) and
Donoho and Stodden (2006).

4.2 Estimating Procedure for Benchmark Estimates

Table 1: Simulation Performance Criteria: Ic is an indicator matrix for the test set in 3 fold
cross-validation test.

Metric Formula Property

Prediction Loss Lpred(β̂;β?) = 1
n‖Xβ̂ −Xβ?‖2 in-sample model fit

Normalized Estimation Loss L2(β̂;β?) = ‖β̂−β?‖2

‖β?‖2 parameter consistency.
Cross-validation Loss LCV(ŷ;y?) = 1

|Ic|
∑

t∈Ic(yt −X>t β̂)2 out-of-sample predictive accuracy

We evaluate performance of different regularization methods using the criteria summarized
in Table 1. First, Prediction Loss is related with the persistency or risk consistency (e.g.,
see Greenshtein and Ritov, 2004) – one of the oracle properties that high-dimensional
regression estimator wishes to satisfy. Second, Normalized Estimation Loss captures parameter
consistency. Achieving high performance on Normalized Estimation Loss usually requires
stronger assumptions than those for the prediction loss. Last, Cross-validation Loss checks
out-of-sample predictive accuracy. We conduct a 2-fold cross-validation prediction to compute
the cross-validation loss.

For BridgeChange estimates, we set the correct number of break, but the location of the
break point is determined by the HMBB. The point of comparison is to see (1) whether HMBB

1We also consider cases of a correlated design matrix. Results are reported in the supplementary
information.
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Table 2: Hybrid Lasso Methods and HMBB for Change-point Simulation Test

Method Break Point Algorithm
HMM Lasso Unknown Two step estimation

1. Identify the break point by the HMM analysis of the lasso residuals.
(εt = yt −

∑p
j=1 xt,jβ̂Lasso

j )
2. Apply the lasso method to subset data for regime-specific regularization.

Oracle Lasso Known Two step estimation
1. Subset the data based on the true break point.
2. Apply the lasso method to subset data for regime-specific regularization.

HMBB Unknown One step estimation

with an unknown break point outperforms a two-step approach of Lasso-Estimate and (2)
how closely HMBB perform against Lasso-Oracle that uses the ground truth knowledge
about a break point.

Case 1: No Change-point and Uncorrelated Data

We first report simulation results from the no change-point and uncorrelated data. We
compare the performance of the Bayesian bridge estimator with that of three popular
non-Bayesian regularization methods: lasso, elastic net, and ridge. We use the 2-fold cross-
validation to obtain estimates from these popular methods using cv.glmnet in glmnet
(Friedman et al., 2010).

Table 3: Summary of the No Change-point Case with 0 Correlation: The reported numbers are
averaged from 500 simulated data sets. Data has no break. MCMC simulation for HMBB is 100
and burn-in is 100. Bayes Bridge indicates a HMBB with no break.

Prediction Loss Normalized Estimation Loss Cross-validation Loss

Method Mean SD Mean SD Mean SD

Bayes Bridge 7.683 1.983 0.677 0.276 234.590 165.139
ElasticNet 21.720 29.051 0.515 0.291 216.603 229.540
Lasso 27.810 32.055 0.513 0.301 228.641 241.369
Ridge 214.005 195.36 0.882 0.054 396.486 341.182

Table 3 reports the numerical summary of the test. Bayes Bridge has the lowest prediction
loss among the four regularization techniques, and the difference is significant. In terms
of cross-validation loss and normalized estimation loss, Bayes Bridge performs better than
Ridge, but somewhat worse than Lasso and ElasticNet, but the difference is small.

Figure 5 visualizes the performance of the four regularization techniques across two dimensions.
The x-axis (δ) increases with the size of data relative to predictors, which is set to 200 in
this simulation. The y-axis (ρ) increases with the number of sparse signals relative to data.
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The blue color indicates a smaller value of loss and the red color indicates a larger value of
loss in each graph. Panel (A) shows the striking performance of Bayes Bridge in minimizing
the prediction loss. Panel (B), which shows normalized estimation loss, shows that the
performance of Bayes Bridge depends largely on the size of data compared to predictors.
When the size of data is as large as that of predictors (0.9 < δ ≤ 1), Bayes Bridge performs
well regardless of the sparsity level. In contrast, the performance of Lasso and ElasticNet
depend on the sparsity level. However, when the size of data is extremely smaller than
that of predictors (0 < δ ≤ 0.1), we recommend not to use the Bayes bridge estimator.
Ridge performs poorly in most cases. Panel (C) demonstrates that Bayes Bridge has an
out-of-sample prediction accuracy comparable to that of Lasso and ElasticNet.

One notable fact in Panel (B) of Figure 5 is that the performance of elastic net and lasso is
clearly distinguished by the diagonal line, which corresponds to what Donoho and Stodden
(2006) call the theoretical threshold of `1-based methods.2 That is, only when n/p > k/n
(below the diagonal line), elastic net and lasso recover the true coefficient values very
successfully.

4.3 No Change-point and Correlated Data

Next, we discuss simulation results from a correlated design matrix setup without change-
point. The correlation is set at ρ = 0.7.

Table 4 reports the numerical summary of the test. As we have seen in the above, Bayes
Bridge has the lowest prediction loss among the four regularization techniques. Also, Bayes
Bridge has the lowest cross-validation loss among the four regularization techniques. In
terms of normalized estimation loss, Bayes Bridge performs better than Ridge, but somewhat
worse than Lasso and ElasticNet. Consequently, Bayes Bridge can be considered a superior
alternative when data are correlated, which is common in empirical analysis.

Table 4: Summary of the No Change-point, Correlated Case: The reported numbers are averaged
from 500 simulated data sets. Data has no break. MCMC simulation for HMBB is 100 and burn-in
is 100. Bayes Bridge indicates a HMBB with no break.

Prediction Loss Normalized Estimation Loss Cross-validation Loss

Method Mean SD Mean SD Mean SD

Bayes Bridge 6.112 1.482 0.76 0.27 73.228 53.200
ElasticNet 11.196 9.055 0.63 0.25 74.391 70.865
Lasso 11.384 9.256 0.62 0.27 77.052 74.547
Ridge 114.959 122.949 0.97 0.01 132.698 123.946

2Donoho and Stodden (2006) wrote “there is a breakdown point for standard model selection schemes,
such that model selection only works well below a certain critical complexity level” (Donoho and Stodden,
2006, 1)
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Figure 5: Panel (A): Prediction Loss, Lpred(β̂;βtrue). Panel (B): Normalized Estimation Loss,
L2(β̂;βtrue) = ‖β̂ − βtrue‖2/‖βtrue‖2. Panel (C): Cross-validation Loss, LCV(ŷtest;ytest). We fix
p = 200 and vary α and ρ between 0.1 and 1. Thus, each cell in the graph represents a data with
(N, p, k). We simulate 20 data sets from each (N, p, k) and take the median error.
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Figure 6 visualizes the performance of the four regularization techniques against correlated
data. Panel (A) shows that Bayes Bridge produces the minimum prediction loss across
different sparsity levels (vertical) and data sizes (horizontal). Panel (B) shows the same
pattern with Figure 5: the performance of Bayes Bridge depends largely on the size of
data compared to predictors, having the best performance when 0.9 < δ ≤ 1). Panel (C)
demonstrates that Bayes Bridge has the best out-of-sample prediction accuracy among the
four regularization techniques against correlated data.

4.4 A Single Change-point and Correlated Data

Last, we showed the simulation results from correlated data with a single change-point. Table
5 reports the numerical summary of the test. In this test, we compare HMBB with two
best-case scenario methods. The first method is HMM Lasso, which is a two-step method
that estimates a break point first using the Bayesian change-point residual test introduced by
Park (2012), and then applies the lasso estimator (Tibshirani, 1996) to break-partitioned data.
The second method is Oracle Lasso, which applies the lasso estimator to correctly partitioned
data. The difference of the two methods is whether the break information is obtained from
data (HMM Lasso) or known to researchers a priori (Oracle Lasso). In contrast, HMBB
assumes no knowledge about break points and incorporate break detection and parameter
estimation in one model.

Table 5 reports that in terms of in-sample fit, HMBB is comparable to HMM Lasso, and in
terms of out-of-sample prediction accuracy HMBB is comparable to Oracle Lasso. However,
HMBB’s prediction loss is large compared to the two benchmarks. The HMBB prediction
loss is greatest, as shown in the upper-left corner of the left-most Panel (A) in Figure 7.
Excluding these cases, HMBB’s performance in prediction loss is as good as HMM Lasso.
Panel (B) of Figure 7 shows that HMBB’s performance in normalized estimation loss is
comparable to HMM Lasso. Panel (C) shows that in terms of cross-validation loss, HMBB
slightly outperforms HMM Lasso.

Table 5: Summary of the No Change-point, Correlated Case: The reported numbers are averaged
from 500 simulated data sets. Data has no break. MCMC simulation for HMBB is 100 and burn-in
is 100. Bayes Bridge indicates a HMBB with no break.

Prediction Loss Normalized Estimation Loss Cross-validation Loss

Method Mean SD Mean SD Mean SD

HMBB 0.419 0.236 0.14 0.02 3.964 1.750
HMM Lasso 0.290 0.185 0.14 0.03 4.178 1.723
Oracle Lasso 0.215 0.091 0.09 0.02 2.751 1.476
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Figure 6: Results of Simulation Studies using Correlated (ρ = 0.7) Univariate Time Series Data with
No Change-point: Panel (A): Prediction Loss, Lpred(β̂;βtrue). Panel (B): Normalized Estimation
Loss, L2(β̂;βtrue) = ‖β̂ − βtrue‖2/‖βtrue‖2. Panel (C): Cross-validation Loss, LCV(ŷtest;ytest).
We fix p = 200 and vary α and ρ between 0.1 and 1. Thus, each cell in the graph represents a data
with (n, p, k). We simulate 20 data sets from each (δ, ρ) and take the median error.
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Figure 7: Results of Simulation Studies using Univariate Time Series Data with One Change-point
(Cor = 0.7): Panel (A): Prediction Loss, Lpred(β̂;βtrue). Panel (B): Normalized Estimation Loss,
L2(β̂;βtrue) = ‖β̂ − βtrue‖2/‖βtrue‖2. Panel (C): Cross-validation Loss, LCV(ŷtest;ytest). We fix
p = 200 and vary α and ρ between 0.05 and 1. Thus, each cell in the graph represents a data with
(n, p, k). We simulate 25 data sets from each (δ, ρ) and take the median error.13



5 On the Bayesian Bridge Model

A natural candidate for prior distributions of the bridge estimator β is a product of indepen-
dent exponential power priors:

p(β) ∝
p∏
j=1

exp(−|βj/τ |α), τ = ν−
1
α .

Polson et al. (2014) introduce latent variables of local shrinkage parameter Λ = (λ1, . . . , λp)
to de-link the correlation between β and τ (global shrinkage parameter). Then, using Lévy
processes and scale mixtures of normal representation discussed in Polson and Scott (2012),
a joint prior distribution of regression parameter β and local shrinkage parameter Λ are
represented as follows:

p(β,Λ) ∝
p∏
j=1

exp
(
−
β2
j

2τ 2λj

)
p(λj). (1)

p(λj) is the density of 2Sα/2 where Sα is the Lévy alpha-stable distribution. It should be noted
that the Lévy process representation is introduced because the Lévy process representation
allows us to construct joint priors for β, which provides a unifying probabilistic structure
for penalized regression and variable selection from both Bayesian and classical viewpoints
(Polson and Scott, 2012). According to Polson and Scott (2012), “all totally monotone
penalty functions that vanish at zero correspond to priors that can be represented in terms
of a subordinator”(Polson and Scott, 2012, 292).

Prior distributions of the other parameters (σ2, α, τ) are defined as usual.

σ2 ∼ Inverse-Gamma
(
a0

2 ,
b0

2

)
α ∼ Uniform (0, 1)
ν ∼ Gamma (c0, d0) .

The posterior distribution of the Bayesian bridge linear regression model is

p(β, σ2,Λ, α, ν|y,X) ∝ p(y|β, σ2)p(β,Λ)p(σ2)p(α)p(ν) (2)

∝ exp
{
− 1

2σ2 (y −Xβ)>(y −Xβ)
} p∏
j=1

exp
(
−
β2
j

2τ 2λj

)
p(λj)

×
( 1
σ2

)a0
2 +1

exp
(
− b0

2σ2

)
νc0−1 exp(−d0ν)

According to Polson et al. (2014), this fully Bayesian approach to bridge estimation has several
advantages. First, a point estimate by classical estimates or pseudo-Bayesian approaches
cannot effectively summarize a multimodal surface in high dimensional parameter space. Also,
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the LASSO estimator approximates the posterior mode of the Bayesian model with Laplacian
prior (βj ∼ λ

2 exp(−λ|βj|)). However, the posterior mode is inferior to the posterior mean in
prediction and estimation. Thus, a fully Bayesian approach is known to outperform classical
counterparts. Second, Polson et al. (2014)’s computational algorithm is more efficient than
existing Bayesian regularization methods. Existing Bayesian regularization estimators suffer
from a slow mixing largely because the number of local shrinkage variables (λj), which is
not observed, grows proportionally with the number of input variables. The poor mixing
problem is particularly worrisome to social scientists because design matrices in social science
researches tend to be highly correlated. Polson et al. (2014) recommend the Bayesian bridge
estimator using scale mixtures of normals, which we use as the baseline model, for the case
of correlated design matrices.

6 Computation Time

BridgeChange is written as a high performance R package using Rcpp package. Table 6
shows the running time of BridgeChange on the agl data set of Alvarez et al. (1991) with
n = 16, k = 6, t = 15 and n×t = 240. The testing machine is x8664−w64−mingw32/x64(64−
bit)underWindows10x64(build19044).MCMCsimulationforparameterestimationis1000andburn−
inis1000.HMBBwithnobreaktook3.8secondstorun2000MCMCsimulations.Thecomputationtimegrowslinearlywiththenumberofhiddenstates.Asinglebreakmodeltook7.6secondsandatwobreakmodeltook11secondsfor2000MCMCsimulations.

Table 6: Computation time of HMBB on the agl data set

model break number test elapsed relative user.self sys.self
1 break 0 1 3.750 1.000 3.670 0.030
2 break 1 1 7.620 2.032 7.540 0.090
3 break 2 1 11.090 2.957 11.050 0.050
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