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A.1. Identifying the ATT

Suppose the researcher’s goal is to estimate the ATT in a cross-sectional setting. Under the
Neyman-Rubin potential outcomes framework, let Y1i and Y0i be the potential outcomes for
units i = 1, 2, ..., N under the treatment and control conditions, respectively. Let Di ∈ {0, 1}
be the treatment assignment for unit i; Di = 1 when i belongs to the treatment group T
and Di = 0 when i belongs to the control group C. n1 and n0 are the numbers of treated
units and control units, respectively. Let G ∈ RJ be J pretreatment covariates. To identify
the ATT, we make the following assumptions:

Assumption 1 (Strong ignorability): The untreated potential outcome is independent of
the treatment assignment conditional on the observed covariates G, i.e., Y0i ⊥⊥ Di|Gi.

Assumption 2 (Positivity): 0 < Pr(Di = 1|Gi) < 1 for all i.

Assumption 3 (Linearity in series expansion of covariates): There exists a series expansion
of the covariates, X = f(G) and f(·) : RJ → RT , such that either the conditional expectation
of Y0i or the logit of the propensity score π(Xi) is linear in Xi, i.e., E[Y0i|Gi = g] = X

′
iθ or

logit(π(Xi)) = X
′
iθ, for some θ ∈ RT .

Define
τ̂hbal = 1

n1

∑
Di=1

Yi −
∑
Di=0

whbali Yi.

Theorem 1 in Zhao and Percival (2016) shows that τ̂hbal is consistent for the ATT when exact
balance is achieved. Essentially, this is equivalent to using entropy balance to achieve exact
balance on the serially expanded covariates.

If exact balance is infeasible,

τ̂hbal+ = 1
n1

∑
Di=1

(Yi − ĝ0(Gi))−
∑
Di=0

whbal(Yi − ĝ0(Gi)),

in which ĝ0(Gi) = X ′iβ̂, is consistent for the ATT under Assumptions 1-3.

A.2. Algorithm

A.2.1. Newton’s Method for Problem (2)

Given that the original ebal optimization problem in (1) is globally convex and twice differen-
tiable (Hainmueller, 2012), and since the added regularization term in (2) is also convex and
twice differentiable, the objective function of (2) is thus also convex and twice differentiable.
Therefore, we can proceed to solve hbal’s optimization problem by Newton’s method.
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Specifically, let A be a vector of length T such that its tth element corresponds to the
value of the tuning parameters α associated with λt. Further let M = {m1, . . . ,mT}′ be the
moments of the treated units and W = {w1, . . . , wn0}′ be a vector of weights for the control
units, where n0 denotes the number of control units. The gradient of (2) with respect to
the Lagrangian multipliers Z+ is given by δLd

δZ+ = M −X ′W + 2A ◦Z+, where ◦ denotes the
Hadamard product.A1

Furthermore, the Hessian is given by δ2Ld

δZ+δZ+ = X ′[D(W )−WW ′]X+2D(A), whereD(W )
is a n0-dimensional diagonal matrix with W in the diagonal and D(A) is a J-dimensional
diagonal matrix with A in the diagonal. Using Newton’s method, the solution Z+ is searched
iteratively by Znew = Zold − lO2

ZL
d−1OZL

d, where l is a scalar that denotes the step length.

A.2.2. Derivation of Gradient and Hessian of the Optimization Problem of (2)

Given A, X, Z+ = {λ1 . . . λT}′, M = {m1, . . . ,mT}′, and W = {w1, . . . , wn0}′, further let
Q = {q1 . . . qn0}′, we can rewrite the dual problem

min
Z+

Ld = log
(∑
i∈C

qi exp
(
−

T∑
t=1

λtXit

))
+

T∑
t=1

λtmt +
K∑
k=1

αk
L∑
l=1
‖λl‖2

as

min
Z+

Ld = log(Q′ exp(−XZ+)) +M ′Z+ + A ◦ Z+′Z+ (A1)

We can also write the equation for solution weights w∗i :

w∗i = qi exp (−∑T
t=1 λtXit)∑

i∈C qi exp
(
−∑T

t=1 λtXit

)
as

w∗i = Q exp(−XZ+)
Q′ exp(−XZ+)

Differentiating (A1) with respect to Z+ gives the gradient

A1For details on the derivation of the gradient and the Hessian, see Section A.2.2 in SM.
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δLd

δZ+ = δ

δZ+ log(Q′ exp(−XZ+)) +M ′Z+ + A ◦ Z+′Z+

= 1
Q′ exp(−XZ+)

δ

δZ+

[
Q′ exp(−XZ+)

]
+M + 2A ◦ Z+

= 1
Q′ exp(−XZ+)

δ

δZ+

(∑
i∈C

qi exp
(
−

T∑
t=1

λtXit

))
+M + 2A ◦ Z+

= 1
Q′ exp(−XZ+)



∑(Xi1qi exp
(
−∑T

t=1 λtXit

)
∑(Xi2qi exp

(
−∑T

t=1 λtXit

)
...∑(XiT qi exp
(
−∑T

t=1 λtXit

)

+M + 2A ◦ Z+

= 1
Q′ exp(−XZ+)

(
−X ′(Q exp(−XZ+))

)
+M + 2A ◦ Z+

= M −X ′W + 2A ◦ Z+.

Given the gradient, we can derive the Hessian by the following:

δ2Ld

(δZ+)2 = δ

δZ+′

(
M −X ′W + 2A ◦ Z+

)
= − δ

δZ+′ (X
′W ) + 2D(A)

= − δ

δZ+′

(
X ′

Q exp(−XZ+)
Q′ exp(−XZ+)

)
+ 2D(A)

= − δ

δZ+′


c11q1exp(−∑T

t=1 λtX1t)+...cn01qn0exp(−
∑T

t=1 λtXn0t)∑
i∈C qi exp (−∑T

t=1 λtXit)
...

c1T q1exp(−∑T

t=1 λtX1t)+...cn0T qn0exp(−
∑T

t=1 λtXn0t)∑
i∈C qi exp (−∑T

t=1 λtXit)

+ 2D(A)

= X ′


w1

. . .
wn0

X −X ′

w1
...
wn0

 [w1 . . . wn0

]
X + 2D(A)

= X ′[D(W )−WW ′]X + 2D(A).

Note that wi = qiexp(−∑T

t=1 λtXn0t)∑
i∈C qi exp (−∑T

t=1 λtXit) and where
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δ

δZ+′


c11q1exp(−∑T

t=1 λtX1t)+...cn01qn0exp(−
∑T

t=1 λtXn0t)∑
i∈C qi exp (−∑T

t=1 λtXit)
...

c1T q1exp(−∑T

t=1 λtX1t)+...cn0T qn0exp(−
∑T

t=1 λtXn0t)∑
i∈C qi exp (−∑T

t=1 λtXit)



=



∑
c2

i1q1exp(−∑T

t=1 λtX1t)∑
i∈C qi exp (−∑T

t=1 λtXit) . . .
∑

ci1ciT q1exp(−∑T

t=1 λtX1t)∑
i∈C qi exp (−∑T

t=1 λtXit)
... . . . ...∑

ciT ci1q1exp(−∑T

t=1 λtX1t)∑
i∈C qi exp (−∑T

t=1 λtXit) . . .
∑

c2
iT q1exp(−∑T

t=1 λtX1t)∑
i∈C qi exp (−∑T

t=1 λtXit)

−


[∑ ci1q1exp(−∑T

t=1 λtX1t)]2

[∑i∈C qi exp (−∑T

t=1 λtXit)]2 . . .
[∑ ci1q1exp(−∑T

t=1 λtX1t)][∑ ciT q1exp(−∑T

t=1 λtX1t)]
[∑i∈C qi exp (−∑T

t=1 λtXit)]2

... . . . ...
[∑ ciT q1exp(−∑T

t=1 λtX1t)][∑ ci1q1exp(−∑T

t=1 λtX1t)]
[∑i∈C qi exp (−∑T

t=1 λtXit)]2 . . .
∑

c2
iT q1exp(−∑T

t=1 λtX1t)
[∑i∈C qi exp (−∑T

t=1 λtXit)]2

 .

A.2.3. Alternative Distance Metrics

Here we consider two alternative distance metrics to Kullback (1959) entropy divergence. In
particular, we consider empirical likelihood (EL), defined as log(w), and chi-square distance
(CD), defined as (w−q)2

q
for base weights q. Both metrics have received much scholarly

attention as a measure of distance between the estimated and the ideal weights (See e.g.
Owen 1988; Deville and Särndal 1992; Qin and Lawless 1994). Although these distance
metrics are asymptotically equivalent (Little and Wu, 1991; Imbens, Johnson and Spady,
1995), we use simulations to consider their finite sample performance in our case.

For EL, the objective function is changed to

min
Z+

Ld =
∑
Di=0

log(wi) +
T∑
t=1

λt

∑
Di=0

wiXi −mt

+
K∑
k=1

αkrk (A2)

with the solution weights given by w = 1
XZ+ , for covariate matrixX and vector of Lagrangian

multipliers Z+

For CD, the objective function is changed to

min
Z+

Ld =
∑
Di=0

(wi − qi)2

qi
+

T∑
t=1

λt

∑
Di=0

wiXi −mt

+
K∑
k=1

αkrk (A3)
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with the solution weights given by w = Q(1 +XZ+).
Same as hbal, we derive the first and second derivatives of equations A2 and A3 and use

Newton’s method to obtain the solution weights. Through simulations (Table A1), we find
that both EL and CD are less robust than entropy distance in finite samples. In particular,
CD may yield negative weights (500 out of 500 simulations) and EL are prone to convergence
failure (177 out of 500 simulations), when the number of constraints is large (as is our case).
Both phenomena have been pointed out by prior work (for robustness of EL, see Imbens,
Johnson and Spady (1995); for negative weights in CD, see Deville and Särndal (1992)).

TABLE A1. COMPARISON OF hbal WITH ALTERNATIVE DISTANCE
METRICS

CD CD+ EL EL+ hbal hbal+

Outcome Design 1
Bias -33.0 - -1.6 -0.9 -1.3 -1.4
MSE 3178.1 - 9.3 1.5 1.2 1.5

Outcome Design 2
Bias -205.7 - 0.4 -0.9 0.1 -1.4
MSE 102888.1 - 29.5 1.5 2.6 1.5

Outcome Design 3
Bias 62.5 - -5.0 -2.8 -2.7 -1.2
MSE 38645.9 - 37.2 2.4 2.0 2.3

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. CD+, EL+ stand for CD and EL coupled with
a linear outcome model respectively. Because CD produced negative weights for all of the simulations and
doubly robust estimators do not support negative weights, there are no entries for CD+.

A.2.4. L1 Regularization

We also consider using the L1 instead of L2 norm of the Lagrangian multipliers as the penalty
term in the objective function. Because L1 norm is not differentiable at zero, we resort to a
derivative-free optimization scheme (Powell, 1994) in both cross-validation and obtaining the
solutions weights. In simulations, we find that using L1 penalty causes the algorithm to take
up about 28x computation time than L2 penalty. Additionally, results obtained from using
L1 penalty have larger bias and variance than those from using L2 penalty, likely because
solutions from the derivative-free optimization scheme are less accurate.
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TABLE A2. COMPARISON OF hbal WITH L1 REGULARIZATION

hbal-L1 hbal-L1+ hbal hbal+

Outcome Design 1
Bias -11.0 -0.7 -0.8 -0.6
MSE 5.2 1.4 1.1 1.4

Outcome Design 2
Bias -10.9 -0.7 1.1 -0.6
MSE 4.3 1.4 2.3 1.4

Outcome Design 3
Bias -9.6 -2.8 -2.1 -0.6
MSE 2.9 2.2 2.1 2.3

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. hbal-L1 and hbal-L1+ stand for hbal with l1
regularization and hbal+ with l1 regularization respectively.

A.3. Implementation Details

A.3.1. Series Expansion: An Example

Here we provide a toy example to illustrate the series expansion and penalty-searching
steps in Section 2. Consider two continuous covariates G1 and G2 (for binary variables,
we only consider linear terms and interactions). To balance higher moments and inter-
action of these covariates, we simply include their higher-order terms and interaction as
additional covariates. For up to the third order polynomials, we have the new covariate set
{G1, G2, G

2
1, G

2
2, G1G2, G

3
1, G

3
2, G

2
1G2, G1G

2
2}. Now we break the expanded covariate set into

groups. We have linear terms k1 = {G1, G2}; two-way interaction term k2 = {G1G2}; square
terms k3 = {G2

1, G
2
2}; interaction between linear and square terms k4 = {G2

1G2, G1G
2
2}; and

cubic terms k5 = {G3
1, G

3
2}.

We keep balance constraints on the linear terms k1 unpenalized, setting α1 = 0. To search
for optimal penalties on k2, k3, k4, k5, we use grid search over a set of α values and V-fold
cross-validation to search for the α values that minimize out-of-sample covariate imbalance.
Specifically, given four fixed folds and for each set of {α2, α3, α4, α5} values, we calculate
the mean absolute error (MAE) between the first covariate moments of the held-out treated
units and those of the reweighted held-out control units. The set of α values with the lowest
MAE are then selected to calculate the final solution weights. The optimization procedure
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is implemented in R with the nloptr package, using the constrained optimization by linear
approximations algorithm (Powell, 1994).

A.3.2. Parameter Sharing

To speed up computation of the algorithm, we use the solution Lagrangian multipliers from
the previous round of cross-validation as the starting values for the next round of cross-
validation. We also use the solution Lagrangian multipliers for the previous α value as
the starting point in the first round of cross-validation for the current α value. In our
experiment, compared with initializing Lagrangian multipliers values as zero or random, the
parameter-sharing scheme significantly speeds up convergence and thus substantially reduces
computation time.

A.3.3. Selecting Tuning Parameters

To search for tuning parameters α, we combine grid search with a V -fold cross-validation pro-
cedure that minimizes mean absolute error (MAE) of covariate balance between the held-out
sample of the control units and the treated units. In other words, we select tuning parameters
that minimize the mean absolute differences across covariates (including their higher-order
terms and interactions) between the weighted control units from the held-out sample and
the treated units. The intuition for this cross-validation scheme is that, for a given set of
tuning parameters, if the resulting coefficients (Lagrangian multipliers) closely approximate
the true coefficients, then we should be able to use these coefficients to achieve good covariate
balance on the held-out sample (because it comes from the same data generating process).

Specifically, we first subset the control group into V subsamples. We then use (V − 1)
samples to find solution Lagrangian multipliers based on the objective function in Problem
(2). With these Lagrangian multipliers, we construct a set of weights on the held-out V th

sample, and assess the out-of-sample covariate balance between the treatment group and
the reweighted V th sample. This process is then repeated for different values of the tuning
parameters. The tuning parameters with the smallest MAE on the held-out sample is chosen.
A graphical representation of the procedure for four-fold cross-validation is shown in Figure
A1. Obtaining the penalties following this procedure thus avoids overfitting, i.e., to achieve
exact balance on features that differ between the treatment and control groups only because
of random noises in the data.

In order to use MAE as the metric to select tuning parameters α using cross-validation,
we need to make sure that all covariates are on the same scale so that their imbalance
(balance) has equal weight on the choice of α. To achieve this, we standardize all covariates
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Figure A1. Tuning Parameter Selection Scheme

by subtracting their respective mean and diving by their respective standard deviation, before
running hbal. We then balance on the standardized moments while using cross-validation to
select the optimal α.

A.3.4. Prescreening Moment Conditions

When the number of covariates is large, a series expansion (e.g., to the third order) will
produce an enormous number of additional variables, which makes approximate balancing
a challenging task. For example, in an application with 10 continuous covariates, a full
series expansion to the third order will create close to 300 covariates. Moreover, many of
these variables may be irrelevant for treatment assignment or predicting the outcome. To
further reduce the dimensionality of the optimization problem and improve efficiency, we
provide an option to prescreen the expanded covariates using the double-selection method
(Belloni, Chernozhukov and Hansen, 2014). Specifically, we first fit two lasso regressions
on the outcome and the treatment variables respectively using the expanded covariates and
then select the union of the selected covariates from the two lasso regressions. In addition,
when a higher-order term is selected, we make sure to include its lower-order compositions
even if they are not selected.

A.3.5. A Summary of the Procedure

We provide a sketch of the full procedure below.
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Procedure: Hierarchically Regularized Entropy Balancing

1. Perform a series expansion of the covariates (e.g., up to the third degree);

2. Select the tuning parameters using a cross-validation method;

3. Reweight control units to achieve approximate covariate balance using hierarchical
regularization;

4. Obtain an ATT estimate.
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A.4. Additional Simulation Results

A.4.1. Full Monte Carlo Results - Point Estimation

TABLE A3. CONTROL TO TREATMENT 1:1
N = 600 N = 900 N = 1200 N = 1500

Bias MSE Time Bias MSE Time Bias MSE Time Bias MSE Time
Outcome Design 1

Raw -14.04 5.75 0.00 -12.24 3.90 0.00 -14.95 4.01 0.00 -13.94 3.34 0.00
CBPS 5.68 1.17 0.26 6.65 1.08 0.36 5.38 0.73 0.44 5.59 0.68 0.56
PSW 0.02 1.14 0.00 0.18 0.88 0.00 -0.72 0.58 0.00 -0.64 0.50 0.00
CEM -2.81 11.03 0.01 0.90 4.18 0.02 -2.15 3.65 0.02 -1.69 1.98 0.03
ebal 0.18 0.80 0.00 0.59 0.58 0.00 -0.46 0.42 0.00 -0.39 0.35 0.00
ebal* -11.28 5.16 0.02 -10.52 4.41 0.03 -10.38 4.53 0.04 -9.99 3.70 0.05
kbal -1.89 4.80 2.72 -2.99 4.27 5.24 -1.74 3.21 9.12 -2.90 2.30 14.36
hbal -2.28 1.88 0.45 -2.30 1.39 0.55 -3.16 1.19 0.64 -2.19 0.95 0.72
hbal+ -0.06 1.33 0.48 0.38 0.91 0.59 -0.59 0.72 0.68 -0.54 0.57 0.77

Outcome Design 2
Raw -16.56 5.34 0.00 -13.73 3.97 0.00 -16.13 3.87 0.00 -15.45 3.63 0.00
CBPS 6.30 2.61 0.26 7.91 2.40 0.36 6.11 1.42 0.44 6.19 1.48 0.56
PSW 4.95 2.43 0.00 6.53 2.15 0.00 4.80 1.22 0.00 4.74 1.29 0.00
CEM -2.77 11.30 0.01 -0.32 4.12 0.02 -2.12 3.71 0.02 -2.00 1.98 0.03
ebal 8.90 3.28 0.00 10.10 2.99 0.00 8.24 1.85 0.00 8.09 1.89 0.00
ebal* -2.44 3.76 0.02 -1.25 3.50 0.03 -2.60 3.51 0.04 -3.42 2.77 0.05
kbal -8.95 5.87 2.72 -10.29 5.31 5.24 -9.80 4.60 9.12 -11.40 3.84 14.36
hbal 0.32 2.97 0.45 -0.31 2.41 0.55 -2.13 1.74 0.64 -1.45 1.39 0.72
hbal+ -0.06 1.33 0.48 0.38 0.91 0.59 -0.59 0.72 0.68 -0.54 0.57 0.77

Outcome Design 3
Raw -8.24 2.24 0.00 -7.94 1.65 0.00 -8.61 1.51 0.00 -8.90 1.49 0.00
CBPS -6.98 2.19 0.26 -6.29 1.52 0.36 -7.24 1.37 0.44 -7.55 1.35 0.56
PSW -6.74 2.29 0.00 -6.11 1.57 0.00 -7.08 1.40 0.00 -7.42 1.37 0.00
CEM -3.00 11.82 0.01 0.64 4.75 0.02 -1.68 3.51 0.02 -1.09 2.18 0.03
ebal -6.36 2.32 0.00 -5.72 1.59 0.00 -6.87 1.41 0.00 -7.01 1.36 0.00
ebal* -5.55 4.64 0.02 -7.35 4.93 0.03 -7.13 4.96 0.04 -6.87 3.97 0.05
kbal 1.63 6.46 2.72 0.82 5.20 5.24 1.07 4.46 9.12 -0.22 3.06 14.36
hbal -3.89 2.30 0.45 -2.59 1.76 0.55 -2.43 1.32 0.64 -2.13 1.25 0.72
hbal+ 0.28 2.03 0.48 0.97 1.47 0.59 0.16 1.09 0.68 -0.18 0.90 0.77

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. Time is measured in seconds. Raw, CBPS, PSW,
CEM stand for difference in means, covariate balancing propensity score, inverse propensity score weighting,
and coarsened exact matching, respectively. ebal ebal*, kbal, hbal, hbal+ stand for entropy balancing on the
first moments of the covariates, entropy balancing on the serially expanded covariate set, kernel balancing,
hierarchically regularized entropy balancing, and hierarchically regularized entropy balancing coupled with
an outcome model, respectively.
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TABLE A4. CONTROL TO TREATMENT 3:1
N = 600 N = 900 N = 1200 N = 1500

Bias MSE Time Bias MSE Time Bias MSE Time Bias MSE Time
Outcome Design 1

Raw -14.98 7.48 0.00 -14.68 5.76 0.00 -14.02 4.51 0.00 -13.25 3.92 0.00
CBPS 1.87 1.14 0.20 2.00 0.75 0.27 2.18 0.62 0.35 2.34 0.49 0.43
PSW 0.91 1.39 0.00 1.31 0.89 0.00 1.34 0.69 0.00 1.61 0.57 0.00
CEM 0.16 16.03 0.01 -1.85 6.85 0.02 -0.81 5.51 0.02 -0.52 3.04 0.03
ebal -0.43 1.08 0.00 0.05 0.65 0.00 0.21 0.56 0.00 0.27 0.43 0.00
ebal* -12.01 6.12 0.03 -10.14 4.47 0.04 -8.37 4.13 0.05 -5.93 3.55 0.07
kbal -2.39 4.87 4.33 -3.10 3.60 8.64 -1.78 2.88 14.08 -1.54 2.03 21.08
hbal -1.34 1.47 0.61 -0.79 1.01 0.71 -0.37 0.72 0.83 0.02 0.59 0.98
hbal+ -0.95 1.71 0.64 -0.36 1.08 0.75 0.32 0.97 0.88 0.14 0.64 1.03

Outcome Design 2
Raw -15.94 6.05 0.00 -15.36 4.77 0.00 -14.11 3.78 0.00 -14.49 3.56 0.00
CBPS 6.75 3.46 0.20 8.53 2.97 0.27 8.91 2.43 0.35 8.57 2.07 0.43
PSW 5.49 3.15 0.00 7.03 2.64 0.00 7.43 2.08 0.00 7.07 1.76 0.00
CEM -0.27 15.98 0.01 -1.79 6.73 0.02 -0.91 5.33 0.02 -0.63 3.10 0.03
ebal 7.43 3.55 0.00 9.29 3.09 0.00 9.61 2.56 0.00 9.22 2.19 0.00
ebal* -2.66 4.82 0.03 -1.59 3.80 0.04 -1.30 3.38 0.05 -0.93 3.21 0.07
kbal -12.02 6.72 4.33 -13.68 5.35 8.64 -12.69 4.60 14.08 -13.02 3.78 21.08
hbal 0.75 2.86 0.61 1.58 2.11 0.71 1.18 1.48 0.83 0.99 1.15 0.98
hbal+ -0.95 1.71 0.64 -0.36 1.08 0.75 0.32 0.97 0.88 0.14 0.64 1.03

Outcome Design 3
Raw -8.72 3.15 0.00 -8.50 2.03 0.00 -8.67 1.86 0.00 -8.43 1.58 0.00
CBPS -6.70 3.03 0.20 -6.80 1.89 0.27 -6.85 1.73 0.35 -6.59 1.37 0.43
PSW -6.75 3.05 0.00 -6.84 1.89 0.00 -6.91 1.73 0.00 -6.71 1.39 0.00
CEM -1.41 17.35 0.01 -0.33 6.93 0.02 -0.37 6.08 0.02 -0.44 3.36 0.03
ebal -6.50 3.07 0.00 -6.64 1.90 0.00 -6.69 1.75 0.00 -6.41 1.37 0.00
ebal* -6.02 5.61 0.03 -5.38 4.80 0.04 -4.93 4.77 0.05 -4.63 4.49 0.07
kbal 4.14 6.87 4.33 2.58 4.43 8.64 2.03 3.71 14.08 1.44 2.80 21.08
hbal -3.39 2.64 0.61 -2.14 1.45 0.71 -1.36 1.20 0.83 -0.91 0.97 0.98
hbal+ -1.04 2.63 0.64 -0.28 1.83 0.75 0.68 1.40 0.88 0.26 0.96 1.03

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. Time is measured in seconds. Raw, CBPS, PSW,
CEM stand for difference in means, covariate balancing propensity score, inverse propensity score weighting,
and coarsened exact matching, respectively. ebal ebal*, kbal, hbal, hbal+ stand for entropy balancing on the
first moments of the covariates, entropy balancing on the serially expanded covariate set, kernel balancing,
hierarchically regularized entropy balancing, and hierarchically regularized entropy balancing coupled with
an outcome model, respectively.
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TABLE A5. CONTROL TO TREATMENT 5:1
N = 600 N = 900 N = 1200 N = 1500

Bias MSE Time Bias MSE Time Bias MSE Time Bias MSE Time
Outcome Design 1

Raw -14.40 8.52 0.00 -13.68 6.54 0.00 -13.23 5.65 0.00 -13.62 4.42 0.00
CBPS 0.01 1.26 0.20 0.42 0.85 0.26 0.52 0.66 0.34 -0.25 0.53 0.42
PSW 1.37 1.51 0.00 1.56 1.00 0.00 1.53 0.78 0.00 1.08 0.58 0.00
CEM -0.26 26.64 0.01 -2.69 9.96 0.02 -1.80 7.07 0.02 -0.78 4.46 0.03
ebal -0.52 1.23 0.00 0.10 0.86 0.00 0.17 0.65 0.00 -0.53 0.53 0.00
ebal* -12.29 7.29 0.03 -9.43 5.13 0.04 -8.96 4.64 0.06 -7.64 3.91 0.08
kbal -4.26 5.25 4.98 -3.21 3.80 10.02 -1.67 2.66 16.05 -3.23 2.32 24.34
hbal -0.77 1.47 0.77 -0.63 1.23 0.84 0.00 0.75 1.01 -0.78 0.64 1.17
hbal+ -1.27 2.04 0.80 0.22 1.51 0.88 0.03 1.07 1.05 -0.66 0.90 1.22

Outcome Design 2
Raw -16.75 7.56 0.00 -15.14 5.29 0.00 -14.12 4.39 0.00 -16.31 4.58 0.00
CBPS 6.15 4.63 0.20 8.23 3.35 0.26 9.07 2.78 0.34 6.65 2.14 0.42
PSW 5.00 4.38 0.00 6.91 3.05 0.00 7.78 2.50 0.00 5.38 1.90 0.00
CEM -2.55 26.83 0.01 -3.19 9.83 0.02 -3.33 7.13 0.02 -0.80 4.47 0.03
ebal 6.51 4.70 0.00 8.57 3.41 0.00 9.42 2.86 0.00 6.98 2.19 0.00
ebal* -3.73 5.71 0.03 -2.40 3.91 0.04 -3.28 3.96 0.06 -3.25 3.39 0.08
kbal -14.86 7.55 4.98 -14.43 5.79 10.02 -13.60 4.81 16.05 -15.50 4.88 24.34
hbal 1.16 3.68 0.77 1.21 2.33 0.84 1.70 1.76 1.01 -1.01 1.38 1.17
hbal+ -1.27 2.04 0.80 0.22 1.51 0.88 0.03 1.07 1.05 -0.66 0.90 1.22

Outcome Design 3
Raw -8.10 3.53 0.00 -8.80 2.52 0.00 -8.65 2.24 0.00 -8.65 1.82 0.00
CBPS -5.66 3.54 0.20 -6.67 2.43 0.26 -6.67 2.01 0.34 -6.66 1.63 0.42
PSW -5.66 3.49 0.00 -6.81 2.43 0.00 -6.83 2.02 0.00 -6.78 1.64 0.00
CEM -1.98 26.33 0.01 -2.85 11.34 0.02 -1.84 7.55 0.02 0.11 4.67 0.03
ebal -5.54 3.56 0.00 -6.60 2.44 0.00 -6.59 2.01 0.00 -6.57 1.63 0.00
ebal* -5.58 6.56 0.03 -4.83 5.58 0.04 -6.06 5.25 0.06 -5.93 4.81 0.08
kbal 3.50 6.80 4.98 3.17 4.52 10.02 2.72 3.50 16.05 0.39 2.84 24.34
hbal -2.05 3.15 0.77 -2.04 1.93 0.84 -1.25 1.52 1.01 -1.06 1.08 1.17
hbal+ -0.72 3.49 0.80 0.28 2.30 0.88 0.16 1.76 1.05 -0.45 1.24 1.22

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. Time is measured in seconds. Raw, CBPS, PSW,
CEM stand for difference in means, covariate balancing propensity score, inverse propensity score weighting,
and coarsened exact matching, respectively. ebal ebal*, kbal, hbal, hbal+ stand for entropy balancing on the
first moments of the covariates, entropy balancing on the serially expanded covariate set, kernel balancing,
hierarchically regularized entropy balancing, and hierarchically regularized entropy balancing coupled with
an outcome model, respectively.
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A.4.2. Additional Result: Hierarchical vs. Nonhierarchical Regularization

We show the advantage of hierarchical regularization by comparing hbal and ebal with non-
hierarchical regularization. For nonhierarchical regularization, we simply treat all higher-
order terms as one group and use the same search scheme to select the tuning parameter
α. We use the same data-generating process as in the main simulation with sample size of
900 and control to treatment ratio of 5 : 1. Results below are averaged from 500 random
samples.

As Table A6 shows, for nonlinear outcome designs 2 and 3, hbal is able to achieve lower
bias than ebal with nonhierarchical regularization. By checking the penalties assigned to each
group of covariates as shown in Figure A2, we can see that nonhierarchical regularization
assigns a uniform penalty of 13.43 for all higher-order terms while hbal assigns the smallest
penalty for the two-way interactions (k = 2) that are important for treatment assignment
and larger penalties for other higher-order terms.

TABLE A6. COMPARISON OF hbal WITH NON-HIERARCHICAL
REGULARIZATION

nonh-ierarchical hbal hbal+

Outcome Design 1
Bias -0.6 -0.8 -0.6
MSE 0.9 1.1 1.4

Outcome Design 2
Bias 4.0 1.1 -0.6
MSE 2.7 2.3 1.4

Outcome Design 3
Bias -4.2 -2.1 -0.6
MSE 2.3 2.1 2.3

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation.
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Figure A2. Penalties for different groups of covariates

Note: linear terms (k = 1); two-way interactions (k = 2), squared terms (k = 3), three-way interactions
(k = 4), interactions between square and level terms (k = 5), and cubic terms (k = 6). Penalties averaged
across 500 simulations.

A.4.3. Additional Result: Additional Comparisons

In addition to the methods used in the simulation section of the main text, here we include
hbal’s comparison with additional methods. In particular, we consider augmented inverse
propensity score weighting with an outcome model using level terms (IPWDR1) and seri-
ally expanded covariates (IPWDR2), as well as ridge regression (with no shrinkage on the
treatment variable) with optimal cross-validated penalty (ridge1) and largest penalty that
results in one standard deviation of the minimum cross-validation error (ridge2).

Across outcome designs, we can see in Table A7 that hbal and hbal+ generally are on par
with or achieve the best results in comparison with the other methods.
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TABLE A7. COMPARISON OF hbal WITH ADDTIONAL METHODS
IPWDR1 IPWDR2 ridge1 ridge2 hbal hbal+

Outcome Design 1
Bias 0.1 -2.7 -2.6 -4.7 -0.5 -0.3
MSE 1.2 14.1 1.2 1.4 1.1 1.3

Outcome Design 2
Bias 13.3 -2.8 -1.5 -2.8 1.5 -0.3
MSE 6.1 14.1 1.2 1.3 2.5 1.3

Outcome Design 3
Bias -5.7 2.2 -2.3 -4.2 -1.6 0.2
MSE 3.0 19.3 1.6 1.7 1.9 2.0

Note: MSE stands for mean squared error, i.e., 1
n

∑n
i=1(Yi−Ŷi)2. Results are averaged over 500 simulations.

Results for bias and MSE are ×100 for better presentation. IPWDR1 and IPWDR2 stand for augmented
inverse propensity score weighting with an outcome model using level terms and serially expanded covariates
respectively. ridge1 and ridge2 stand for ridge regression (with no shrinkage on the treatment variable) with
optimal cross-validated penalty and largest penalty that results in one standard deviation of the minimum
cross-validation error respectively.

A.4.4. Simulation Results: Standard Errors

We also study the finite sample properties of the variance estimator via simulations. We
simulate samples of size 900 with outcome design 1 and the treatment assignment mechanism
described earlier in the paper. Following Arkhangelsky et al. (2018) and Liu, Wang and Xu
(2020), we plot the quantiles of the distribution for the standardized errors of the ATT
estimates, i.e., (ÂTT −ATT )/(V̂ AR(ÂTT ))1/2, based on 100 simulated samples against the
quantiles of the standard normal distribution—a QQ plot—using three inferential methods:
(1) fixed-weight standard errors; (2) bootstrapped standard errors; and (3) jackknife standard
errors. If the ATT estimator is consistent and asymptotically normal and the chosen variance
estimator precisely estimates its variance, the QQ plot should be very close to a 45-degree
line.

Figure A3 presents the result. The first row shows the QQ plots of the three inferential
methods when the ratio of the control to treated units is 1, the second row shows the result
when the control to treatment ratio is 3 and the third row for when the ratio is 5. Across
different control to treatment ratios, the fixed weights variance estimator is well calibrated,
as the points are almost exactly on the 45-degree lines. This suggests that using the fixed-
weight standard errors as returned by hbal is valid for variance estimation.
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Figure A3. Standard Gaussian QQ Plots of the Standardized Errors
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A.4.5. Additional Runtime Comparison

Figure A4 reports runtime comparisons when the ratio of the number of control units to the
number of treated units is 1:1 and 3:1. Results are similar to the runtime comparison result
reported in the main text. Across sample sizes and control to treatment ratios, hbal finds its
solution weights at a fraction of kbal’s runtime.

Figure A4. Additional Runtime Comparison
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A.4.6. Correlations with Inverse Propensity Scores

Figure A5. Correlation between IPW, ebal, ebal∗, and hbal Weights

Note: Points are from 10 simulations with sample size = 900 and control to treatment ratio = 5:1. logit(e) =

log( π(x)
1− π(x) ), where π(x) are the true propensity scores. ebal weights are obtained from mean balancing on

the level terms while ebal* and hbal weights are obtained from balancing on the serially expanded covariates.
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A.5. Additional Information on Black and Owens (2016)

A.5.1. Summary Statistics

TABLE A8. SUMMARY STATISTICS FOR CONTENDING JUDGES
Mean Median St Dev Min Max

Vacancy Period
Outcome: Ideological Vote with President 0.62 1.00 0.48 0.00 1.00
JCS Score 0.16 0.22 0.33 -0.70 0.58
Ideological Distance with President 0.17 0.12 0.18 0.00 1.04
Ideoloogical Composition of Panel 0.34 0.29 0.25 0.00 1.15
Median JCS (Circuit) 0.14 0.14 0.25 -0.60 0.69
Median JCS (Supreme Court) 0.01 -0.05 0.21 -0.36 0.41
Decision Reversal 0.28 0.00 0.45 0.00 1.00
Publication Status 0.61 1.00 0.49 0.00 1.00

Non-Vacancy Period
Outcome: Ideological Vote with President 0.52 1.00 0.49 0.00 1.00
JCS Score 0.07 0.15 0.49 -0.70 0.58
Ideological Distance with President 0.45 0.44 0.49 0.00 1.18
Ideoloogical Composition of Panel 0.29 0.22 0.49 0.00 1.16
Median JCS (Circuit) 0.00 0.01 0.49 -0.69 0.69
Median JCS (Supreme Court) 0.03 0.06 0.49 -0.38 0.47
Decision Reversal 0.31 0.00 0.49 0.00 1.00
Publication Status 0.84 1.00 0.49 0.00 1.00

TABLE A9. SUMMARY STATISTICS FOR NON-CONTENDING JUDGES
Mean Median St Dev Min Max

Vacancy Period
Outcome: Ideological Vote with President 0.53 1.00 0.50 0.00 1.00
JCS Score -0.07 -0.11 0.35 -0.69 0.61
Ideological Distance with President 0.53 0.50 0.34 0.00 1.33
Ideoloogical Composition of Panel 0.32 0.28 0.23 0.00 1.16
Median JCS (Circuit) -0.05 -0.03 0.27 -0.69 0.58
Median JCS (Supreme Court) -0.05 0.06 0.20 -0.36 0.23
Decision Reversal 0.34 0.00 0.47 0.00 1.00

Non-Vacancy Period
Outcome: Ideological Vote with President 0.50 1.00 0.47 0.00 1.00
JCS Score -0.05 -0.10 0.47 -0.69 0.61
Ideological Distance with President 0.47 0.44 0.47 0.00 1.33
Ideological Composition of Panel 0.31 0.27 0.47 0.00 1.16
Median JCS (Circuit) -0.05 -0.07 0.47 -0.69 0.58
Median JCS (Supreme Court) 0.00 0.06 0.47 -0.38 0.23
Decision Reversal 0.34 0.00 0.47 0.00 1.00
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A.5.2. Covariate Balance

Figure A6. Covariate Balance for Contending Judges pre- and
post-weighting
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Figure A7. Covariate Balance for Non-Contending Judges pre- and
post-weighting

A.5.3. Results From ebal and hbal

In contrast to the results in the main text, here we report ATT estimates and confidence
intervals from ebal and hbal without using an outcome model. Similar to the results in the
main text, ebal and hbal yield similar estimates for the contending judges while ebal gives
higher estimate than hbal for the non-contending judges. Because we do not use an outcome
model, the confidence intervals for the contending judges are wider, resulting in estimates
from both ebal and hbal being statistically insignificant. For non-contending judges, we get
the same conclusion as the main text - ebal’s estimate suggests non-contending judges tend
to be more likely to rule in line with the president during a vacancy period, while hbal’s
estimate shows no significant difference between the vacancy and non-vacancy periods.
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Figure A8. Results Without Outcome Models

A.5.4. Comparison with the Original Results

In Black and Owens (2016), coarsened exact matching (CEM) (Iacus, King and Porro,
2012) was used to match circuit judges between vacancy and non-vacancy periods. Here
we compare the estimates from CEM with those from ebal and hbal+. To enable direct
comparison, we use a linear model with CEM weights, instead of the logistic model used in
the original paper. In addition, we also report estimates using a linear regression with CEM
weights and clustered, robust standard errors (cem*). For ebal+ and hbal+, we also use
clustered, robust standard errors. Point estimates with their confidence intervals are shown
in Figure A9.
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Figure A9. Comparison with Original Results

Note: cem uses standard OLS regression using the same specification as in Black and Owens (2016). cem*,
ebal+, habl+ use linear regression with clustered, robust standard errors.

As was reported in Black and Owens (2016), estimates from the matched data using
CEM (cem) show that contending judges are significantly more likely to vote in line with
the president’s ideology during a vacancy period than a non-vacancy period. In contrast,
the hypothesis of no difference is not rejected for the non-contending judges. However, when
we take heteroskedasticity and clustering into account by using clustered, robust standard
errors, the CEM estimate (cem*) for the contending judges is no longer significant at the
0.05 level. The uncertainties associated with CEM estimates are comparably larger than
those of ebal+ and hbal+, as for both contending and non-contending judge datasets, the
CEM-matched datasets drop more than 80% of the observations.
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A.6. The LaLonde Data

We also apply our method the canonical example of the LaLonde (1986) dataset. The
experimental estimate of the effect of a job training program, the National Supported Work
(NSW) program, is widely used as a benchmark for matching and weighting methods. Here
we use Dehejia and Wahba (1999) subset of the experimental sample from LaLonde (1986)
as the treated sample.

Following LaLonde (1986), the treated sample from the experimental study is compared
to a control sample drawn from a separate, observational sample. The two commonly used
control samples are from the Current Population Survey-Social Security Administration file
(CPS-1) and the Panel Study of Income Dynamics (PSID-1). Since ebal has been shown
to recover the experimental estimate well using data from CPS-1 as the control sample
(Hainmueller, 2012), here we use the alternative PSID-1 data as the control sample and
compare the performance of ebal and hbal.

Figure A10. Effect of Training Program on Income ($)

The treated sample from Dehejia and Wahba (1999) contains 185 NSW participants and
the control sample from PSID-1 contains 2,490 nonparticipants. The outcome of interest is
the post-treatment earnings in 1978. The experimental estimate of the effect of the NSW
program on the treated units is $1,794, which is computed by difference-in-means in the
original experimental data with the 185 treated units. Both the treated and control samples
contain 10 pretreatment covariates that are used to control for selection into the training
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program. These include age, education, real earnings in 1974 and 1975, and six indicator
variables: Black, Hispanic, married, high school degree, and unemployment status in 1974
and 1975. To compare ebal and hbal, we use two specifications. For specification 1, we serially
expand the 10 Raw covariates up the second degree. This includes the covariates’ pairwise
interactions, as well as square terms for the continuous variables–age, years of education,
and real earnings in 1974 and 1975. For specification 2, we serially expand the 10 Raw
covariates up the third degree. We drop all nonsensical (such as Black ∗Hispanic) terms.
Overall, specification 1 includes 56 covariate combinations and specification 2 includes 184
covariate combinations. As linear regression runs inro rank deficiency issues, we instead use
the solution weights to estimate a weighted difference in means.

Figure A10 reports the results from the two specifications, with estimates from using
only the original covariates as reference. Across the two specifications, hbal recovers the
experimental estimate fairly well. Estimate of the effect of the job training program is
$2,402 with a standard error of $901 for specification 1 and $2,381 with a standard error of
$905 for specification 2. Estimates from ebal vary much more widely. For specification 1,
the estimated effect is -$1,826 and for specification 2, the estimated effect is -$15,205. The
respective standard errors are $1,531 and $657.

A closer look at ebal’s optimization reveals that, for both specifications, it fails to find
a set of solution weights that reduce the loss function below the specified tolerance level
(0.001). For specification 1, the value of the loss function hovers around 0.27, with little
improvement after 10 iterations. Similarly for specification 2, ebal fails to reduce the loss
function below 123.89 after 200 iterations. The large losses in both specifications means
that there is still substantial imbalance between the treated and the control sample after
applying ebal. This results in the poor estimated effect from ebal. As is often the case when
the covariate space is large and the sample size limited, ebal may not find a solution that
satisfies the specified tolerance. Researchers are then left to either drop covariates until the
tolerance can be met or accept the imbalance after preprocessing as is.

In contrast, hbal, by applying a hierarchical penalty to the covariates, keeps the imbalance
of variables to a minimum while optimally choosing a penalty level. This not only reduces the
variance of the estimator but also induces numerical stability that enables entropy balancing
to more often find a solution when the covariate space is large and the sample size limited.
As shown in Figure 2, hbal produces estimates close to the experimental benchmark and is
fairly stable across specifications, even when the conditions are unfavorable to entropy-based
methods.
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