## Online Supplement

"Taking Distributions Seriously: On the Interpretation of the Estimates of Interactive Nonlinear Models"

Appendix A. Relevant Articles in the Top Three Journals (January 2006 - January 2020)

| Journal | AJPS | APSR | JOP | Cumulative |
| :---: | :---: | :---: | :---: | :---: |
| Articles with Non-linear Models |  |  |  |  |
| Total | 303 | 166 | 430 | 899 |
| w/ interaction | 139 | 66 | 203 | 408 (45\% of above) |
| w/ interaction between continuous variables | 43 | 20 | 70 | 133 (33\% of above) |
| Articles with Some Form of Logistic or Probit Regression |  |  |  |  |
| Total | 257 | 143 | 356 | 756 |
| w/ interaction | 119 | 58 | 174 | 351 (46\% of above) |
| w/ interaction between continuous variables | 34 | 18 | 58 | 110 (31\% of above) |
| $\mathrm{w} / \mathrm{a}$ graphical interpretation of the interaction | 31 | 14 | 49 | 94 (86\% of above) |
| Plots $M E M_{x}(z)$ | 3 | 6 | 16 | 25 (27\% of above) |

## Appendix B. When Does the Statistical Significance of a Marginal Effect Depend on $X$ ?

## No Non-linear Functions of $X$ in the Linear Component of the Model

For a model with the prediction

$$
h(x, z)=f\left(\hat{\beta}_{0}+\hat{\beta}_{1} x+\hat{\beta}_{2} z+\hat{\beta}_{3} x z\right)
$$

the estimate of the marginal effect of $x$ at $(x, z)$ is

$$
h_{X}(x, z, \hat{\boldsymbol{\beta}})=\left(\hat{\beta}_{1}+\hat{\beta}_{3} z\right) f^{\prime}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x+\hat{\beta}_{2} z+\hat{\beta}_{3} x z\right)
$$

Since for any inverse link function $f^{\prime}()>0, h_{X}(x, z, \hat{\boldsymbol{\beta}})=0$ if and only if $\hat{\beta}_{1}+\hat{\beta}_{3} z=0$.
Thus, if $h_{X}(\bar{x}, z, \widehat{\boldsymbol{\beta}})=0$ then $h_{X}(\tilde{x}, z, \widehat{\boldsymbol{\beta}})=0$ for any $\tilde{x}$.

## The Linear Component of the Model Includes a Non-linear Function of $X$

Accordingly, if the linear component of the model specification includes a non-linear function of $X$, e.g., a cubic polynomial, the statistical significance of the marginal effect may depend on $X$. For the following model:

$$
h(x, z)=f\left(\hat{\beta}_{0}+\hat{\beta}_{1} s(X)+\hat{\beta}_{2} Z+\hat{\beta}_{3} s(X) Z\right)
$$

the estimate of the marginal effect of $x$ at $(x, z)$ is

$$
h_{X}(x, z, \hat{\boldsymbol{\beta}})=\left(\hat{\beta}_{1} s^{\prime}(x)+\hat{\beta}_{3} s^{\prime}(x) z\right) f^{\prime}\left(\hat{\beta}_{0}+\hat{\beta}_{1} s(x)+\hat{\beta}_{2} z+\hat{\beta}_{3} s(x) z\right)
$$

which has the same sign as $\left(\hat{\beta}_{1} s^{\prime}(x)+\hat{\beta}_{3} s^{\prime}(x) z\right)$.

In this case, $h_{X}(\bar{x}, z, \widehat{\boldsymbol{\beta}})=0$ does not guarantee that $h_{X}(\tilde{x}, z, \widehat{\boldsymbol{\beta}})=0$ for some $\tilde{x} \neq \bar{x}$.

## Appendix C. Using Bins of $Z$ to Identify Heterogeneity of the Effect of $X$

Figure C.1. The Effect of Election Proximity on Party Discipline


Data source: Arceneaux, K., M. Johnson, R. Lindstädt, and R. J. Vander Wielen. 2016. "The Influence of News Media on Political Elites: Investigating Strategic Responsiveness in Congress." American Journal of Political Science 60 (1): 5-29.

## Appendix D. Marginal Effects Formulas for Most Popular Link Functions

In what follows, $m$ denotes the linear component of the respective model. In models with an interaction of $X$ and $Z$ - those including $\beta_{(X)} X+\beta_{(Z)} Z+\beta_{X Z} X Z$ - it is:

$$
m=\hat{\beta}_{0}+\hat{\beta}_{(X)} x+\hat{\beta}_{(Z)} z+\hat{\beta}_{(X Z)} x z+\hat{\beta}_{\left(W_{1}\right)} w_{1}+\hat{\beta}_{\left(W_{2}\right)} w_{2}+\cdots,
$$

where $W_{1}, W_{2}, \ldots$ are all covariates other than $X$ and $Z$.
In models with an interaction of $Z$ and a quadratic polynomial of $X$-those including $\beta_{(X)} X+$ $\beta_{\left(X^{2}\right)} X^{2}+\beta_{(Z)} Z+\beta_{(X Z)} X Z+\beta_{\left(X^{2} Z\right)} X^{2} Z$ - it is:

$$
m=\hat{\beta}_{0}+\hat{\beta}_{(X)} x+\hat{\beta}_{\left(X^{2}\right)} x^{2}+\hat{\beta}_{(Z)} z+\hat{\beta}_{(X Z)} x z+\hat{\beta}_{\left(X^{2} Z\right)} x^{2} z+\hat{\beta}_{\left(W_{1}\right)} w_{1}+\hat{\beta}_{\left(W_{2}\right)} w_{2}+\cdots
$$

## Link Function: logit (in logistic regressions)

- Expected value of the dependent variable:

$$
h(m)=\operatorname{logit}^{-1}(m)=\frac{1}{1+\exp (-m)}=\frac{\exp (m)}{1+\exp (m)}
$$

$\operatorname{logit}^{-1}(m)$ can be computed using the plogis() function in R and logistic() function in Stata

- Marginal effect of $X$ in models with an interaction of $X$ and $Z$ :

$$
\begin{aligned}
\operatorname{ME}_{X}(x, z, m) & =\left(\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z\right) \frac{\exp (m)}{(1+\exp (m))^{2}} \\
& =\left(\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z\right) \cdot \operatorname{logit}^{-1}(m) \cdot\left(1-\operatorname{logit}^{-1}(m)\right)
\end{aligned}
$$

$\operatorname{logit}^{-1}(m)$ can be computed using the plogis() function in R and logistic() function in Stata • Marginal effect of $X$ in models with an interaction of $Z$ and a quadratic polynomial
of $X$ :

$$
\begin{aligned}
\operatorname{ME}_{X}(x, z, m) & =\left(\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z\right) \frac{\exp (m)}{(1+\exp (m))^{2}} \\
& =\left(\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z\right) \cdot \operatorname{logit}^{-1}(m) \cdot\left(1-\operatorname{logit}^{-1}(m)\right)
\end{aligned}
$$

$\operatorname{logit}^{-1}(m)$ can be computed using the plogis() function in R and logistic() function in Stata

## Link Function: probit (in probit regressions)

- Expected value of the dependent variable:

$$
h(m)=\Phi(m)=(2 \pi)^{-0.5} \int_{-\infty}^{m} \exp \left(-0.5 u^{2}\right) d u
$$

$\Phi(m)$ can be computed using the pnorm() function in R and normal() function in Stata

- Marginal effect of $X$ in models with an interaction of $X$ and $Z$ :

$$
\begin{aligned}
\operatorname{ME}_{X}(x, z, m) & =\left(\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z\right) \phi(m) \\
& =\left(\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z\right)(2 \pi)^{-0.5} \exp \left(-0.5 m^{2}\right)
\end{aligned}
$$

$\phi(m)$ can be computed using the dnorm() function in R and normalden() function in Stata

- Marginal effect of $X$ in models with an interaction of $Z$ and a quadratic polynomial of $X$ :

$$
\begin{aligned}
\operatorname{ME}_{X}(x, z, m) & =\left(\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z\right) \phi(m) \\
& =\left(\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z\right)(2 \pi)^{-0.5} \exp \left(-0.5 m^{2}\right)
\end{aligned}
$$

$\phi(m)$ can be computed using the dnorm() function in R and normalden() function in Stata

Link Function: log (in Poisson, negative binomial, and gamma GLMs)

- Expected value of the dependent variable:

$$
h(m)=\exp (m)
$$

- Marginal effect of $X$ in models with an interaction of $X$ and $Z$ :

$$
\operatorname{ME}_{X}(x, z, m)=\left(\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z\right) \exp (m)
$$

- Marginal effect of $X$ in models with an interaction of $Z$ and a quadratic polynomial of $X$ :

$$
\operatorname{ME}_{X}(x, z, m)=\left(\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z\right) \exp (m)
$$

## Link function: linear/identity (as in Gaussian models)

- Expected value of the dependent variable:

$$
h(m)=m
$$

- Marginal effect of $X$ in models with an interaction of $X$ and $Z$ :

$$
\operatorname{ME}_{X}(x, z, m)=\hat{\beta}_{(X)}+\hat{\beta}_{(X Z)} z
$$

- Marginal effect of $X$ in models with an interaction of $Z$ and a quadratic polynomial of $X$ :

$$
\operatorname{ME}_{X}(x, z, m)=\hat{\beta}_{(X)}+\hat{\beta}_{\left(X^{2}\right)} x+\hat{\beta}_{(X Z)} z+\hat{\beta}_{\left(X^{2} Z\right)} x z
$$

## Appendix E. The effect of a Binary Variable

Figure E.1. The Effect of Increasing FDI Inflows on the Probability of Strikes at Different Levels of Polity Score


Data source: Robertson, G. B., and E. Teitelbaum. 2011. "Foreign Direct Investment, Regime Type, and Labor Protest in Developing Countries." American Journal of Political Science 55 (3): 665-677.

