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A Literature Review

A.1 Papers in APSR and AJPS

We conduct a review of the literature to assess current practices of the difference-in-differences
(DID) design. Specifically, we search articles published in American Political Science Review and
American Journal of Political Science from 2015 to 2019. Some of the papers we reviewed were
accepted in 2019 and were officially published in 2020. Using Google Scholar, we find articles that
contains any of the following keywords: “two-way fixed effect”, “two-way fixed effects”, “difference in
difference” or “difference in differences.” We then manually select articles from the list that uses the
basic DID design and the staggered adoption design (see the main text for details about the first
two design). This procedure left us with a total of 25 articles, 11 from APSR and 14 from AJPS.
Table A1 and A2 show the articles in the list published in APSR and AJPS, respectively.

To determine the number of pre-treatment periods, we manually assess the listed articles. Among
the 25 articles, 20 articles use the basic DID design, and 5 articles use the staggered adoption design.
When a paper uses the basic DID design, we can determine the length of the pre-treatment periods
from the data description and the time of the treatment assignment. On the other hand, the pre-
treatment periods for the staggered adoption and the general design are set to the total number of
time-periods available in the data, as the length of pre-treatment periods varies across units.

We found that most DID applications have less than 10 pre-treatment periods. The median
number of pre-treatment periods is 3.5 and, the mean number of pre-treatment periods is about 6

after removing one unique study that has more than 100 pre-treatment periods.

A.2 Examples of Two Common Approaches

As we wrote in Section 1, there are several different popular ways to analyze the DID design
with multiple pre-treatment periods. One common approach is to apply the two-way fixed effects
regression to the entire time periods, and supplement it with alternative model specifications by
including time-trends or leads of the treatment variable to assess possible violations of the parallel
trends assumption. Examples include Dube et al. (2013); Truex (2014); Earle and Gehlbach (2015);
Hall (2016); Larreguy and Marshall (2017). Another is to stick with the two-time-period DID and
limit the use of additional pre-treatment periods only to the assessment of pre-treatment trends.
Examples include Ladd and Lenz (2009); Bechtel and Hainmueller (2011); Bullock and Clinton
(2011); Keele and Minozzi (2013); Garfias (2018). Note that we list exemplary papers here and
thus, we also include papers from journals other than APSR and AJPS.

3



Authors Year Title

O’brien, D. Z., & Rickne J. 2016 Gender Quotas And Women’s Political Leadership
Garfias, F. 2018 Elite Competition and State Capacity Development:

Theory and Evidence From Post-Revolutionary Mex-
ico.

Martin, G. J., & Mccrain, J. 2019 Local News And National Politics
Blom-Hansen, J., Houlberg, K.,
Serritzlew, S., & Treisman, D.

2016 Jurisdiction Size and Local Government Policy Ex-
penditure: Assessing The Effect of Municipal Amal-
gamation

Clinton, J. D., & Sances, M. W. 2018 The Politics of Policy: The Initial Mass Political Ef-
fects of Medicaid Expansion in The States

Malesky, E. J. , Nguyen, C. V.,
& Tran, A.

2014 The Impact of Recentralization on Public Services: A
Difference-in-Differences Analysis of the Abolition of
Elected Councils in Vietnam.

Larsen, M. V., Hjorth, F.,
Dinesen, P. T.,
& Sønderskov, K. M.

2019 When Do Citizens Respond Politically to The Local
Economy? Evidence From Registry Data on Local
Housing Markets

Becher, M., & González, I. M. 2019 Electoral Reform and Trade-Offs in Representation
Selb, P., & Munzert, S. 2018 Examining A Most Likely Case for Strong Campaign

Effects
Enos, R. D., Kaufman, A. R.,
& Sands, M. L.

2019 Can Violent Protest Change Local Policy Support?

Vasiliki Fouka 2019 How Do Immigrants Respond to Discrimination?

Table A1: DID papers on APSR.
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Authors Year Title

Bechtel, M. M., Hangartner, D.,
& Schmid, L.

2016 Does compulsory voting increase support for leftist
policy?

Bisgaard, M., & Slothuus, R. 2018 Partisan elites as culprits? How party cues shape
partisan perceptual gaps.

Bischof, D., & Wagner, M. 2019 Do voters polarize when radical parties enter parlia-
ment?

Dewan, T., Meriläinen, J.,
& Tukiainen, J.

2020 Victorian voting: The origins of party orientation
and class alignment.

Earle, J. S., & Gehlbach, S. 2015 The Productivity Consequences of Political
Turnover: Firm-Level Evidence from Ukraine’s
Orange Revolution.

Enos, R. D. 2016 What the demolition of public housing teaches us
about the impact of racial threat on political behav-
ior.

Gingerich, D. W. 2019 Ballot Reform as Suffrage Restriction: Evidence
from Brazil’s Second Republic.

Hainmueller, J, & Hangartner, D. 2019 Does direct democracy hurt immigrant minorities?
Evidence from naturalization decisions in Switzer-
land.

Holbein, J. B., & Hillygus, D. S. 2016 Making young voters: the impact of preregistration
on youth turnout.

Jäger, K. 2020 When Do Campaign Effects Persist for Years? Evi-
dence from a Natural Experiment.

Lindgren, K. O., Oskarsson, S.,
& Dawes, C. T.

2017 Can Political Inequalities Be Educated Away? Evi-
dence from a Large-Scale Reform.

Lopes da Fonseca, M. 2017 Identifying the source of incumbency advantage
through a constitutional reform.

Paglayan, AS. 2019 Public-Sector Unions and the Size of Government
Pardos-Prado, S., & Xena, C. 2019 Skill specificity and attitudes toward immigration.

Table A2: DID papers on AJPS.
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B Comparison with Three Existing Methods
This section clarifies relationships between our proposed double DID and three existing methods:
the two-way fixed effects estimator, the sequential DID estimator, and synthetic control methods.

B.1 Relationship with Two-Way Fixed Effects Estimator

While we contrast the double DID with the two-way fixed effects estimator throughout the paper, we
summarize our discussion here. First, in the basic DID design, the two-way fixed effects estimator
is a special case of the double DID with a specific choice of the weight matrix W (see Table 1).
Therefore, whenever the two-way fixed effects estimator is consistent for the ATT, the double DID
is a more efficient, consistent estimator of the ATT. This is because the double DID can choose the
optimal weight matrix via the GMM, while the two-way fixed effects uses the pre-determined equal
weights over time. Second, in the SA design, a large number of recent papers show that the widely-
used two-way fixed effects estimator are in general inconsistent for the ATT due to treatment effect
heterogeneity and implicit parametric assumptions (Strezhnev, 2018; Athey and Imbens, 2021; Imai
and Kim, 2021; Sun and Abraham, 2020). In contrast, the proposed double DID in the SA design
generalizes nonparametric DID estimators to allow for treatment effect heterogeneity, and thus, it
does not suffer from the same problem.

B.2 Relationship with Sequential DID Estimator

Our double DID estimator contains the sequential DID estimator (e.g., Lee, 2016; Mora and Reggio,
2019) as a special case. Our proposed double DID improves over the sequential DID estimator in
two ways. First, when the parallel trends assumption holds, the double DID optimally combine the
standard DID and the sequential DID to improve efficiency, and it is not equal to the sequential
DID. Therefore, it avoids a dilemma of the sequential DID — it is consistent under the parallel
trends-in-trends assumption (weaker than the parallel trends assumption), but is less efficient when
the parallel trends assumption holds. Second, while the sequential DID estimator has only been
available for the basic DID design where treatment assignment happens only once, we generalize it
to the staggered adoption design and further incorporate it into our staggered-adoption double DID
estimator (Section 4).

B.3 Relationship with Synthetic Control Methods

Another relevant popular class of methods is the synthetic control methods. While the method was
originally designed to estimate the causal effect on a single treated unit, recent extensions allow
for multiple treated units and the staggered adoption design (e.g., Xu, 2017; Ben-Michael et al.,
2018; Hazlett and Xu, 2018; Athey et al., 2021). Despite a wide variety of innovative extensions,
they all share the same core feature: they require long pre-treatment periods to accurately estimate
a pre-treatment trajectory of the treated units. For example, Xu (2017) recommends collecting
more than ten pre-treatment periods. In contrast, the proposed double DID can be applied as long
as there are more than one pre-treatment periods, and is better suited when there are a small to
moderate number of pre-treatment periods.
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When there are a large number of pre-treatment periods (i.e., long enough to apply the synthetic
control methods), we recommend to apply both the synthetic control methods and proposed double
DID, and evaluate robustness across those approaches. This is important because they rely on
different identification assumptions. In fact, we show in Section H.2, the double DID can recover
credible estimates similar to more flexible variants of synthetic control methods even when there
are a large number of pre-treatment periods. This robustness provides researchers with additional
credibility for their causal estimates and underlying assumptions.
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C Nonparametric Equivalence to Regression Estimators
In this section, we provide results on the nonparametric connection between regression estimators
and the three DID estimators we discussed in the paper. This section provides methodological
foundations for our main methodological contributions, which we prove in Sections E.2 and E.3.

C.1 Standard DID

In practice, we can compute the DID estimator via a linear regression. We regress the outcome
Yit on an intercept, treatment group indicator Gi, time indicator It (equal to 1 if post-treatment
and 0 otherwise) and the interaction between the treatment group indicator and the time indicator
Gi × It.

Yit ∼ α+ θGi + γIt + β(Gi × It), (A.2)

where (α, θ, γ, β) are corresponding coefficients. In this case, a coefficient of the interaction term
β is numerically equal to the DID estimator, τ̂DID. Importantly, the linear regression is used here
only to compute the nonparametric DID estimator (equation (3)), and thus it does not require any
parametric modeling assumption such as constant treatment effects. Furthermore, when we analyze
panel data in which the same units are observed repeatedly over time, we obtain exactly the same
estimate via a linear regression with unit and time fixed effects. This numerical equivalence in
the two-time-period case is often the justification of the two-way fixed effects regression as the DID
design (Angrist and Pischke, 2008). The above equivalence is formally shown below for completeness.

C.1.1 Repeated Cross-Sectional Data

For the later use in this Appendix, we report the well-known result that the standard DID estimator
τ̂DID (equation (3)) is equivalent to coefficient β̂ in the regression estimator (equation (A.2)) (Abadie,
2005).

We define Oit to be an indicator variable taking the value 1 when individual i is observed in
time period t. Using this notation, we prove the following result.

Result 1 (Nonparametric Equivalence of the Standard DID and Regression Estimator)
We write the linear regression estimator (equation (A.2)) as a solution to the following least squares
problem.

(α̂, θ̂, γ̂, β̂) = argmin

n∑
i=1

2∑
t=1

Oit

{
Yit − α− θGi − γIt − β(Gi × It)

}2
.

Then, τ̂DID = β̂.

Proof. By solving the least squares problem, we obtain the following solutions:

α̂ =

∑
i : Gi=0 Yi1

n01

θ̂ =

∑
i : Gi=1 Yi1

n11
−
∑

i : Gi=0 Yi1

n01

γ̂ =

∑
i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01
8



β̂ =

(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)
,

which completes the proof. 2

C.1.2 Panel Data

Again, for the later use in the Appendix, we report the well-known result that the standard DID
estimator τ̂DID (equation (3)) is equivalent to coefficient β̂ in the two-way fixed effects regression
estimator in the panel data setting (Abadie, 2005).

Result 2 (Nonparametric Equivalence of the Standard DID and Two-way Fixed Effects
Regression Estimator)

We can write the two-way fixed effects regression estimator as a solution to the following least
squares problem.

(α̂, δ̂, β̂) = argmin

n∑
i=1

2∑
t=1

(Yit − αi − δt − βDit)
2.

Then, τ̂DID = β̂.

Proof. First we define the demeaned treatment and outcome variables, Y i =
∑2

t=1 Yit/2, Y t =∑n
i=1 Yit/n, Y =

∑n
i=1

∑2
t=1 Yit/2n,Di =

∑2
t=1Dit/2,Dt =

∑n
i=1Dit/n, andD =

∑n
i=1

∑2
t=1Dit/2n.

Given these transformed variables, we can transform the least squares problem into a well-known
demeaned form.

β̂ = argmin
β

n∑
i=1

2∑
t=1

(Ỹit − βD̃it)
2

where Ỹit = Yit − Y i − Y t + Y and D̃it = Dit −Di −Dt +D. Using this notation, we can express
β̂ as

β̂ =

∑n
i=1

∑2
t=1 D̃itỸit∑n

i=1

∑2
t=1 D̃

2
it

where D̃it takes the following form,

D̃it =



1/2 · n0/n if Gi = 1, t = 2

−(1/2) · n0/n if Gi = 1, t = 1

−(1/2) · n1/n if Gi = 0, t = 2

1/2 · n1/n if Gi = 0, t = 1,

where n1 =
∑n

i=1Gi and n0 =
∑n

i=1(1−Gi). Then, the numerator can be written as

n∑
i=1

2∑
t=1

D̃itỸit =
n0
2n

{ n∑
i=1

GiỸi2 −
n∑
i=1

GiỸi1

}
− n1

2n

{ n∑
i=1

(1−Gi)Ỹi2 −
n∑
i=1

(1−Gi)Ỹi1
}

9



and the denominator is given as

n∑
i=1

2∑
t=1

D̃2
it = 2n1

(
n0
2n

)2

+ 2n0

(
n1
2n

)2

=
n1n0
2n

.

Combining both terms, we get

β̂ =

∑n
i=1

∑2
t=1 D̃itỸit∑n

i=1

∑2
t=1 D̃

2
it

=
1

n1

{ n∑
i=1

GiỸi2 −
n∑
i=1

GiỸi1

}
− 1

n0

{ n∑
i=1

(1−Gi)Ỹi2 −
n∑
i=1

(1−Gi)Ỹi1
}

=
1

n1

n∑
i=1

Gi(Yi2 − Yi1)−
1

n0

n∑
i=1

(1−Gi)(Yi2 − Yi1)

= τ̂DID,

which concludes the proof. 2

C.2 Extended DID

C.2.1 Repeated Cross-Sectional Data

We consider a case in which there are two pre-treatment periods t = {0, 1} and one post-treatment
period t = 2. Using this notation, we report the following result.

Result 3 (Nonparametric Equivalence of the Extended DID and Regression Estima-
tor) We focus on a linear regression estimator that is a solution to the following least squares
problem.

(θ̂, γ̂, β̂) = argmin
n∑
i=1

2∑
t=0

Oit (Yit − θGi − γt − βDit)
2 .

Then, β̂ = λτ̂DID + (1− λ)τ̂DID(2,0) where

λ =
n11n01(n10 + n00)

n11n01(n10 + n00) + n10n00(n11 + n01)
,

1− λ =
n10n00(n11 + n01)

n11n01(n10 + n00) + n10n00(n11 + n01)
.

When the sample size of each group is fixed over time, i.e., n11 = n10 and n01 = n00, λ = 1/2 and
therefore, β̂ is equivalent to the extended DID estimator of equal weights in equation (8).

Proof. By solving the least squares problem, we obtain

θ̂ = λ

(∑
i : Gi=1 Yi1

n11
−
∑

i : Gi=0 Yi1

n01

)
+ (1− λ)

(∑
i : Gi=1 Yi0

n10
−
∑

i : Gi=0 Yi0

n00

)
γ̂2 =

∑
i : Gi=0 Yi2

n02
10



γ̂1 =

∑
i : Gi=1 Yi1 +

∑
i : Gi=0 Yi1

n11 + n01
− n11
n11 + n01

θ̂

γ̂0 =

∑
i : Gi=1 Yi0 +

∑
i : Gi=0 Yi0

n10 + n00
− n10
n10 + n00

θ̂

β̂ = λ

{(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)}
+ (1− λ)

{(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi0

n00

)}
,

which completes the proof. 2

C.2.2 Panel Data

We report that the extended DID estimator τ̂e-DID (equation (8)) (equal weights: λ = 1/2) is
equivalent to the estimated coefficient β̂ in the two-way fixed effects regression estimator in the
panel data setting with t = {0, 1, 2}.

Result 4 (Nonparametric Equivalence of the Extended DID and Two-way Fixed Effects
Regression Estimator) We can write the two-way fixed effects regression estimator as a solution
to the following least squares problem.

(α̂, δ̂, β̂) = argmin
n∑
i=1

2∑
t=0

(Yit − αi − δt − βDit)
2.

Then, τ̂e-DID = β̂.

Proof. First we define Y i =
∑2

t=0 Yit/3, Y t =
∑n

i=1 Yit/n, Y =
∑n

i=1

∑2
t=0 Yit/3n, Di =∑2

t=0Dit/3, Dt =
∑n

i=1Dit/n, and D =
∑n

i=1

∑2
t=0Dit/3n. Then, we can write the two-way

fixed effects estimator as a two-way demeaned estimator,

β̂ = argmin
β

n∑
i=1

2∑
t=0

(Ỹit − βD̃it)
2 =

∑n
i=1

∑2
t=0 D̃itỸit∑n

i=1

∑2
t=0 D̃

2
it

,

as in Result 2, where Ỹit = Yit− Y i− Y t + Y and D̃it = Dit−Di−Dt +D. Importantly, D̃it takes
the following form:

D̃it =



2/3 · n0/n if Gi = 1, t = 2

−1/3 · n0/n if Gi = 1, t = 0, 1

−2/3 · n1/n if Gi = 0, t = 2

1/3 · n1/n if Gi = 0, t = 0, 1,

where n1 =
∑n

i=1Gi and n0 =
∑n

i=1(1−Gi). Then, the numerator can be written as

n∑
i=1

2∑
t=0

D̃itỸit

11



=

n∑
i=1

Gi

(
2n0
3n

)
Ỹi2 −

n∑
i=1

1∑
t=0

Gi

(
n0
3n

)
Ỹit +

n∑
i=1

(1−Gi)
(
−2n1

3n

)
Ỹi2 +

n∑
i=1

1∑
t=0

(1−Gi)
(
n1
3n

)
Ỹit

=

n∑
i=1

Gi

(
n0
3n

)
{Ỹi2 − Ỹi1}+

n∑
i=1

Gi

(
n0
3n

)
{Ỹi2 − Ỹi0}

−

{
n∑
i=1

(1−Gi)
(
n1
3n

)
{Ỹi2 − Ỹi1}+

n∑
i=1

(1−Gi)
(
n1
3n

)
{Ỹi2 − Ỹi0}

}

=
n0
3n

{
n∑
i=1

Gi{Yi2 − Yi1}+
n∑
i=1

Gi{Yi2 − Yi0}

}
− n1

3n

{
n∑
i=1

(1−Gi){Yi2 − Yi1}+
n∑
i=1

(1−Gi){Yi2 − Yi0}

}
.

The denominator can be written as

n∑
i=1

2∑
t=0

D̃2
it =

n0n1
n
· 2

3
.

Combining the two terms, we have

β̂ =
1

2n1

{
n∑
i=1

Gi{Yi2 − Yi1}+
n∑
i=1

Gi{Yi2 − Yi0}

}

− 1

2n0

{
n∑
i=1

(1−Gi){Yi2 − Yi1}+
n∑
i=1

(1−Gi){Yi2 − Yi0}

}

=
1

2

{
1

n1

n∑
i=1

Gi{Yi2 − Yi1} −
1

n0

n∑
i=1

(1−Gi){Yi2 − Yi1}

}

+
1

2

{
1

n1

n∑
i=1

Gi{Yi2 − Yi0} −
1

n0

n∑
i=1

(1−Gi){Yi2 − Yi0}

}

=
1

2
τ̂DID +

1

2
τ̂DID(2,0).

By solving the least squares problem, we also obtain

α̂i = Y i − Y − Y t=0 + β̂(D −Dt=0)

δ̂t = Y t − Y t=0 + β̂(Dt=0 −Dt)

2

C.3 Sequential DID

The sequential DID estimator is connected to a widely used regression estimator. In particular, the
sequential DID estimator (equation (10)) can be computed as a linear regression in which we replace
the outcome Yit with a transformed outcome. In panel data, we replace the original outcome with
its first difference Yit − Yi,t−1 so that we use changes instead of levels. In repeated cross-sectional
data, we use the following linear regression.

∆Yit ∼ αs + θsGi + γsIt + βs(Gi × It), (A.3)

12



where ∆Yit = Yit − (
∑

i : Gi=1 Yi,t−1)/n1,t−1 if Gi = 1 and ∆Yit = Yit − (
∑

i : Gi=0 Yi,t−1)/n0,t−1

if Gi = 0. Coefficients are denoted by (αs, θs, γs, βs). In this case, a coefficient in front of the
interaction term βs is numerically identical to the sequential DID estimator. We provide the proof
of this equivalence for both panel and repeated cross-sectional data settings below.

C.3.1 Repeated Cross-Sectional Data

We clarify that the sequential DID estimator τ̂s-DID (equation (10)) is equivalent to a coefficient in
a regression estimator with transformed outcomes.

Result 5 (Nonparametric Equivalence of the Sequential DID and Regression Estima-
tor) We focus on a linear regression estimator with a transformed outcome.

(α̂, θ̂, γ̂, β̂) = argmin

n∑
i=1

2∑
t=1

Oit

{
∆Yit − α− θGi − γIt − β(Gi × It)

}2
,

where

∆Yit =



Yi2 −
∑

i : Gi=1 Yi1

n11
if Gi = 1, t = 2

Yi1 −
∑

i : Gi=1 Yi0

n10
if Gi = 1, t = 1

Yi2 −
∑

i : Gi=0 Yi1

n01
if Gi = 0, t = 2

Yi1 −
∑

i : Gi=0 Yi0

n00
if Gi = 0, t = 1.

Then, τ̂s-DID = β̂.

Proof. Using Result 1, we obtain

β̂ =

(∑
i : Gi=1 ∆Yi2

n12
−
∑

i : Gi=1 ∆Yi1

n11

)
−
(∑

i : Gi=0 ∆Yi2

n02
−
∑

i : Gi=0 ∆Yi1

n01

)
=

{(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)}
−
{(∑

i : Gi=1 Yi1

n11
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi1

n01
−
∑

i : Gi=0 Yi0

n00

)}
,

which completes the proof. 2

Next, we clarify that the sequential DID estimator τ̂s-DID (equation (10)) is also equivalent to a
coefficient in a regression estimator with group-specific time trends. Mora and Reggio (2019) derive
similar results by making the parametric assumption of the conditional expectations. We prove
nonparametric equivalence without making any assumptions about conditional expectations.

Result 6 (Nonparametric Equivalence of the Sequential DID and Regression Estimator
with Group-Specific Time Trends) We focus on a linear regression estimator with group-specific
time trends.

(θ̂, γ̂, β̂) = argmin
n∑
i=1

2∑
t=0

Oit

{
Yit − θ0Gi − θ1(Gi × t)− γt − βDit

}2
.

Then, τ̂s-DID = β̂.

13



Proof. By solving the least squares problem, we obtain

θ̂0 =

∑
i : Gi=1 Yi0

n10
−
∑

i : Gi=0 Yi0

n00

θ̂1 =

(∑
i : Gi=1 Yi1

n11
−
∑

i : Gi=0 Yi1

n01

)
−
(∑

i : Gi=1 Yi0

n10
−
∑

i : Gi=0 Yi0

n00

)
γ̂2 =

∑
i : Gi=0 Yi2

n02
, γ̂1 =

∑
i : Gi=0 Yi1

n01
, γ̂0 =

∑
i : Gi=0 Yi0

n00

β̂ =

{(∑
i : Gi=1 Yi2

n12
−
∑

i : Gi=1 Yi1

n11

)
−
(∑

i : Gi=0 Yi2

n02
−
∑

i : Gi=0 Yi1

n01

)}
−
{(∑

i : Gi=1 Yi1

n11
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi1

n01
−
∑

i : Gi=0 Yi0

n00

)}
,

which completes the proof. 2

C.3.2 Panel Data

We clarify that the sequential DID estimator τ̂s-DID (equation (10)) is equivalent to a coefficient in
the two-way fixed effects regression estimator with transformed outcomes.

Result 7 (Nonparametric Equivalence of the Sequential DID and Two-way Fixed Ef-
fects Regression Estimator) We focus on the two-way fixed effects regression estimator with
transformed outcomes.

(α̂, δ̂, β̂) = argmin

n∑
i=1

2∑
t=1

(∆Yit − αi − δt − βDit)
2,

where ∆Yit = Yit − Yi,t−1. Then, τ̂s-DID = β̂.

Proof. As in Result 2, we can focus on the demeaned form.

β̂ = argmin
n∑
i=1

2∑
t=1

(∆̃Y it − βD̃it)
2,

where ∆̃Y it = ∆Yit − ∆Y i − ∆Y t + ∆Y , ∆Y i =
∑2

t=1 ∆Yit/2, ∆Y t =
∑n

i=1 ∆Yit/n, and ∆Y =∑n
i=1

∑2
t=1 ∆Yit/2n. Similarly, D̃it = Dit−Di−Dt +D, Di =

∑2
t=1Dit/2, Dt =

∑n
i=1Dit/n, and

D =
∑n

i=1

∑2
t=1Dit/2n. Using Result 2,

β̂ =
1

n1

n∑
i=1

Gi(∆Yi2 −∆Yi1)−
1

n0

n∑
i=1

(1−Gi)(∆Yi2 −∆Yi1)

=

{
1

n1

n∑
i=1

Gi(Yi2 − Yi1)−
1

n0

n∑
i=1

(1−Gi)(Yi2 − Yi1)
}

−
{

1

n1

n∑
i=1

Gi(Yi1 − Yi0)−
1

n0

n∑
i=1

(1−Gi)(Yi1 − Yi0)
}

≡ τ̂s-DID,
14



which concludes the proof. 2

Next, we clarify that the sequential DID estimator τ̂s-DID (equation (10)) is also equivalent to a
coefficient in the two-way fixed effects regression estimator with individual-specific time trends.

Result 8 (Nonparametric Equivalence of the Sequential DID and Two-way Fixed Effects
Regression Estimator with Individual-Specific Time Trends) We focus on the two-way fixed
effects regression estimator with individual-specific time trends

(α̂, ξ̂, δ̂, β̂) = argmin

n∑
i=1

2∑
t=0

(Yit − αi − (ξi × t)− δt − βDit)
2.

Then, τ̂s-DID = β̂.

Proof. By solving the least squares problem, we obtain that∑
i : Gi=1

Yi2 = (β̂ + γ̂2)n1 +
∑

i : Gi=1̂

αi + 2
∑

i : Gi=1̂

ξi,
∑

i : Gi=0

Yi2 = γ̂2n0 +
∑

i : Gi=0̂

αi + 2
∑

i : Gi=0̂

ξi∑
i : Gi=1

Yi1 = γ̂1n1 +
∑

i : Gi=1̂

αi +
∑

i : Gi=1̂

ξi,
∑

i : Gi=0

Yi1 = γ̂1n0 +
∑

i : Gi=0̂

αi +
∑

i : Gi=0̂

ξi∑
i : Gi=1

Yi0 = γ̂0n1 +
∑

i : Gi=1̂

αi,
∑

i : Gi=0

Yi0 = γ̂0n0 +
∑

i : Gi=0̂

αi.

Therefore, we get

β̂ =

{(∑
i : Gi=1 Yi2

n1
−
∑

i : Gi=1 Yi1

n1

)
−
(∑

i : Gi=0 Yi2

n0
−
∑

i : Gi=0 Yi1

n0

)}
−
{(∑

i : Gi=1 Yi1

n1
−
∑

i : Gi=1 Yi0

n1

)
−
(∑

i : Gi=0 Yi1

n0
−
∑

i : Gi=0 Yi0

n0

)}
,

which completes the proof. 2

C.3.3 Alternative Interpretation of Parallel Trends-in-Trends Assumption

We emphasize an alternative way to interpret the parallel trends-in-trends assumption. Unlike the
parallel trends assumption that assumes the time-invariant unmeasured confounding, the parallel
trends-in-trends assumption can account for linear time-varying unmeasured confounding — un-
observed confounding increases or decreases over time but with some constant rate. For example,
researchers might be worried that some treated communes have higher motivation for reforms, which
is not measured, and the infrastructure qualities differ between treated and control communes due
to this unobserved motivation. The parallel trends assumption means that the difference in the
infrastructure qualities due to this unobserved confounder does not grow or decline over time. In
contrast, the parallel trends-in-trends assumption accommodates a simple yet important case in
which the unobserved difference in the infrastructure qualities does grow or decline with some fixed
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rate, which analysts do not need to specify. This interpretation comes from the following equivalent
representation of the parallel trends-in-trends assumption.

{E[Yi2(0) | Gi = 1]− E[Yi2(0) | Gi = 0]}︸ ︷︷ ︸
Bias at t = 2

−{E[Yi1(0) | Gi = 1]− E[Yi1(0) | Gi = 0]}︸ ︷︷ ︸
Bias at t = 1

= {E[Yi1(0) | Gi = 1]− E[Yi1(0) | Gi = 0]}︸ ︷︷ ︸
Bias at t = 1

−{E[Yi0(0) | Gi = 1]− E[Yi0(0) | Gi = 0]}︸ ︷︷ ︸
Bias at t = 0

. (A.4)

The difference between the mean potential outcome Yit(0) for the treated and control group at time
t, E[Yit(0) | Gi = 1] − E[Yit(0) | Gi = 0], is often called bias (or selection bias) in the literature
(e.g., Heckman et al., 1998; Cunningham, 2021). Equation (A.4) shows that the parallel trends-in-
trends assumption allows for a linear change in bias over time, whereas the bias is assumed to be
constant over time in the extended parallel trends assumption. This representation is useful when
we generalize our results to K pre-treatment periods where K > 2. Importantly, equation (11) and
equation (A.4) are equivalent, and therefore, researchers can choose whichever interpretation easy
for them to evaluate in each application.

C.4 Connection to the Leads Test

Here we formally prove the connection between the test of pre-treatment periods discussed in Sec-
tion 2.2 and the well known leads test (Angrist and Pischke, 2008). The leads test includes Di,t+1

into a linear regression and check whether a coefficient of Di,t+1 is zero.

C.4.1 Repeated Cross-Sectional Data

In the repeated cross-sectional data setting, the leads test considers the following linear regression.

(θ̂, γ̂, β̂, ζ̂) = argmin

n∑
i=1

1∑
t=0

Oit (Yit − θGi − γt − βDit − ζDi,t+1)
2 .

Then, because Dit = 0 for all units in t = {0, 1}, this least squares problem is the same as

(θ̂, γ̂, ζ̂) = argmin

n∑
i=1

1∑
t=0

Oit (Yit − θGi − γt − ζDi,t+1)
2 .

Finally, using Result 1, we have

ζ̂ =

(∑
i : Gi=1 Yi1

n11
−
∑

i : Gi=1 Yi0

n10

)
−
(∑

i : Gi=0 Yi1

n01
−
∑

i : Gi=0 Yi0

n00

)
,

which is the standard DID estimator to the pre-treatment periods t = 0, 1. 2

C.4.2 Panel Data

In the panel data setting, the leads test considers the following two-way fixed effects regression.

(α̂, δ̂, β̂, ζ̂) = argmin
n∑
i=1

1∑
t=0

(Yit − αi − δt − βDit − ζDi,t+1)
2.
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Again, this least squares problem is the same as

(α̂, δ̂, ζ̂) = argmin
n∑
i=1

1∑
t=0

(Yit − αi − δt − ζDi,t+1)
2.

Then, using Result 2, we have

ζ̂ =

(∑
i : Gi=1 Yi1

n1
−
∑

i : Gi=1 Yi0

n1

)
−
(∑

i : Gi=0 Yi1

n0
−
∑

i : Gi=0 Yi0

n0

)
,

which is the standard DID estimator to the pre-treatment periods t = 0, 1. 2
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D Details of Double DID Estimator

D.1 Properties of Double DID Estimator

Here, we prove several important properties of the double DID estimator based on the GMM theory
(Hansen, 1982).

Theorem 1 When the extended parallel trends assumption (Assumption 2) holds, the double DID
estimator with the optimal weight matrix (equation (13) in the main paper) is consistent, and its
asymptotic variance is smaller than or equal to that of the standard, extended, and sequential DID
estimators, i.e., Var(τ̂d-DID) ≤ min(Var(τ̂DID),Var(τ̂s-DID),Var(τ̂e-DID)).

Proof.

Suppose we define a moment function mi(τ) as

mi(τ) =

(
τ − τ̂DID(i)
τ − τ̂s-DID(i)

)
where

τ̂DID(i) =

(
n

n12
GiYi2 −

n

n11
GiYi1

)
−
(
n

n02
(1−Gi)Yi2 −

n

n01
(1−Gi)Yi1

)
τ̂s-DID(i) =

{(
n

n12
GiYi2 −

n

n11
GiYi1

)
−
(
n

n02
(1−Gi)Yi2 −

n

n01
(1−Gi)Yi1

)}
−
{(

n

n11
GiYi1 −

n

n10
GiYi0

)
−
(
n

n01
(1−Gi)Yi1 −

n

n00
(1−Gi)Yi0

)}
for the repeated cross-sectional setting. They can be similarly defined in the panel data setting.
Then, we can write the double DID estimator as the GMM estimator:

τ̂d-DID(W) = argmin
τ

(
1

n

n∑
i=1

mi(τ)

)>
W

(
1

n

n∑
i=1

mi(τ)

)
(A.2)

where we index the double DID estimator by W, which is a weight matrix of dimension 2× 2.
In general, the variance of the GMM estimator is given by

Var(τ̂d-DID(W)) = (M>WM)−1M>WΩW>M(M>WM)−1.

where M = 1
n

∑n
i=1 E

{
∂
∂τmi(τ)

}
, and

Ω =

(
Var(τ̂DID) Cov(τ̂DID, τ̂s-DID)

Cov(τ̂DID, τ̂s-DID) Var(τ̂s-DID)

)
.

Hansen (1982) showed in general that Var(τ̂d-DID(W)) is minimized when W is set to Ω−1.We define
this optimal weight as W∗

W∗ = Ω−1 =

(
Var(τ̂DID) Cov(τ̂DID, τ̂s-DID)

Cov(τ̂DID, τ̂s-DID) Var(τ̂s-DID)

)−1
.
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In general, the asymptotic variance of this optimal GMM estimator is given by

Var(τ̂d-DID(W
∗)) = (M>W∗M)−1.

Because M = 1, the asymptotic variance of Var(τ̂d-DID(W
∗)) can be explicitly written as

Var(τ̂d-DID(W
∗)) = (1>W∗1)−1 =

Var(τ̂DID) ·Var(τ̂s-DID)− Cov(τ̂DID, τ̂s-DID)
2

Var(τ̂DID) + Var(τ̂s-DID)− 2Cov(τ̂DID, τ̂s-DID)
.

Finally, the standard, sequential, and extended DID estimators are all special cases of the double
DID with a specific choice of the weight matrix as described in Table 1 of the main paper. Because
for any W, Var(τ̂d-DID(W

∗)) ≤ Var(τ̂d-DID(W)), it implies that

Var(τ̂d-DID(W
∗)) ≤ min(Var(τ̂DID),Var(τ̂s-DID),Var(τ̂e-DID)).

Now, we can show the consistency of the estimator and its variance estimator. The optimal
weight matrix W∗ can be estimated by its sample analog:

Ŵ =

(
V̂ar(τ̂DID) Ĉov(τ̂DID, τ̂s-DID)

Ĉov(τ̂DID, τ̂s-DID) V̂ar(τ̂s-DID)

)−1
.

which is a consistent estimator of W∗ under the standard regularity conditions. Therefore, by
solving the GMM optimization problem (equation (A.2)), we can explicitly write the double DID
as

τ̂d-DID(Ŵ) = ŵ1τ̂DID + ŵ2τ̂s-DID

where ŵ1 + ŵ2 = 1, and

ŵ1 =
V̂ar(τ̂s-DID)− Ĉov(τ̂DID, τ̂s-DID)

V̂ar(τ̂DID) + V̂ar(τ̂s-DID)− 2Ĉov(τ̂DID, τ̂s-DID)
,

ŵ2 =
V̂ar(τ̂DID)− Ĉov(τ̂DID, τ̂s-DID)

V̂ar(τ̂DID) + V̂ar(τ̂s-DID)− 2Ĉov(τ̂DID, τ̂s-DID)
.

Under the extended parallel trends assumption (Assumption 2), both the standard DID and the
sequential DID estimator are consistent to the ATT. Therefore, by the continuous mapping theorem
and law of large numbers, we have

τ̂d-DID(Ŵ)
p→ τ

and
V̂ar(τ̂d-DID(Ŵ))

p→ Var(τ̂d-DID(W
∗)),

which complets the proof. 2
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D.2 Standard Error Estimation

As described in Section 3.1.2, we use the block bootstrap.

1. Estimate {τ̂ (b)DID, τ̂
(b)
s-DID}Bb=1 where B indicates the total number of bootstrap iterations. We

recommend the block-bootstrap where the block is taken at the level of treatment assignment.

2. Estimate the optimal weight matrix via computing the variance-covariance matrix:

V̂ar(τ̂DID) =
1

B

B∑
b=1

(τ̂
(b)
DID − τ̂ DID)2

V̂ar(τ̂s-DID) =
1

B

B∑
b=1

(τ̂
(b)
s-DID − τ̂ s-DID)2

Ĉov(τ̂DID, τ̂s-DID) =
1

B

B∑
b=1

(τ̂
(b)
DID − τ̂ DID)(τ̂

(b)
s-DID − τ̂ s-DID)

where τ̂ DID =
∑B

b=1 τ̂
(b)
DID/B, and τ̂ s-DID =

∑B
b=1 τ̂

(b)
s-DID/B are empirical average of two estimators.

Finally, we obtain the estimate of the weight matrix by inverting the variance-covariance
matrix (equation (13) in the main text),

Ŵ =

(
V̂ar(τ̂DID) Ĉov(τ̂DID, τ̂s-DID)

Ĉov(τ̂DID, τ̂s-DID) V̂ar(τ̂s-DID)

)−1

3. The double DID estimator is given by equation (14) in the main paper.

4. The variance of double DID estimator is then obtained via the standard efficient GMM variance
formula

V̂ar(τ̂d-DID) = (1>Ŵ1)−1.
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E Extensions of Double DID

E.1 Double DID Regression

Like other DID estimators, the double DID estimator has a nice connection to a widely-used re-
gression approach. Using this double DID regression, researchers can include other pre-treatment
covariates Xit to make the DID design more robust and efficient. We provide technical details in
Appendix

To introduce the regression-based double DID estimator, we begin with the basic DID. As
discussed in Appendix C.1, the basic DID estimator is equivalent to a coefficient in the linear
regression of equation (A.2). Inspired by this connection, researchers often adjust for additional
pre-treatment covariates as:

Yit ∼ α+ θGi + γIt + β(Gi × It) + X>itρ, (A.3)

where we adjust for the additional pre-treatment covariates Xit. A coefficient of the interaction
term β̂ is a consistent estimator for the ATT when the conditional parallel trends assumption holds
and the parametric model is correctly specified. Here, we make the parallel trends assumption
conditional on covariates Xit. The idea is that even when the parallel trends assumption might not
hold without controlling for any covariates, trends of the two groups might be parallel conditionally
after adjusting for observed covariates. For example, the conditional parallel trends assumption
means that treatment and control groups have the same trends of the infrastructure quality after
controlling for population and GDP per capita.

The sequential DID estimator is extended similarly. Based on the connection to the linear
regression of equation (A.3), we can adjust for additional pre-treatment covariates as:

∆Yit ∼ αs + θsGi + γsIt + βs(Gi × It) + X>itρs, (A.4)

where ∆Yit = Yit − (
∑

i : Gi=1 Yi,t−1)/n1,t−1 if Gi = 1 and ∆Yit = Yit − (
∑

i : Gi=0 Yi,t−1)/n0,t−1

if Gi = 0. The estimated coefficient β̂s is consistent for the ATT under the conditional parallel
trends-in-trends assumption and the conventional assumption of correct specification.

The double DID regression combines the two regression estimators via the GMM:

β̂d-DID = argmin
βd

(
βd − β̂
βd − β̂s

)>
W

(
βd − β̂
βd − β̂s

)
(A.5)

where W is a weighting matrix of dimension 2× 2.
Thus, as the double DID estimator with no covariates, the double DID regression has two steps.

The first step is to assess the underlying assumptions. Here, instead of using the standard DID
estimator, we use the standard DID regression on pre-treatment periods to assess the conditional
extended parallel trends assumption. The second step is to estimate the ATT, while adjusting
for pre-treatment covariates. Instead of using the double DID estimator without covariates, we
implement the regression-based double DID estimator (equation (A.5)).
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E.2 Generalized K-DID

In this section, we propose the generalized K-DID, which extends the double DID in Section 3 to
arbitrary number of pre- and post-treatment periods in the basic DID setting. We consider the
staggered adoption design in Section 4.

E.2.1 The Setup and Causal Quantities of Interest

We first extend the setup to account for arbitrary number of pre- and post-treatment periods.
Suppose we observe outcome Yit for i ∈ {1, . . . , n} and t ∈ {0, 1, . . . , T}. We define the binary
treatment variable to be Dit ∈ {0, 1}. The treatment is assigned right before time period T ∗, and
thus, time periods t ∈ {T ∗, . . . , T} are the post-treatment periods and time periods t ∈ {0, . . . , T ∗−
1} are the pre-treatment periods. As in Section 2, we denote the treatment group as Gi = 1 and
Gi = 0 otherwise. Note that Dit = 0 for t ∈ {1, . . . , T ∗} for all units.

We are interested in the causal effect at post-treatment time T ∗ + s where s ≥ 0. When s = 0,
this corresponds to the contemporaneous treatment effect. By specifying different values of s > 0,

researchers can study a variety of long-term causal effects of the treatment. Formally, our quantity
of interest is the average treatment effect on the treated (ATT) at post-treatment time T ∗ + s.

τ(s) ≡ E[Yi,T ∗+s(1)− Yi,T ∗+s(0) | Gi = 1].

For example, when s = 3, this could mean the causal effect of the policy after three years from
its initial introduction. This definition is a generalization of the standard ATT: when s = 0, this
quantity is equal to the ATT defined in equation (1).

E.2.2 Generalize Parallel Trends Assumptions

What assumptions do we need to identify the ATT at post-treatment time T ∗+s? Here, we provide
a generalization of the parallel trends assumption, which incorporates both the standard parallel
trends assumption and the parallel trends-in-trends assumption.

Assumption A1 (k-th Order Parallel Trends) For some integer k such that 1 ≤ k ≤ T ∗,

∆k
s (E[Yi,T ∗+s(0) | Gi = 1]) = ∆k

s (E[Yi,T ∗+s(0) | Gi = 0]) ,

where ∆k
s is the k-th order difference operator defined recursively as follows. For g ∈ {0, 1},

∆1
s (E[Yi,T ∗+s(0) | Gi = g]) ≡ E[Yi,T ∗+s(0) | Gi = g]− E[Yi,T ∗−1(0) | Gi = g],

when k = 1 and, in general,

∆k
s (E[Yi,T ∗+s(0) | Gi = g])

≡ ∆k−1
s (E[Yi,T ∗+s(0) | Gi = g])−Mk

s ∆k−1 (E[Yi,T ∗−1(0) | Gi = g]) ,

= E[Yi,T ∗+s(0) | Gi = g]− E[Yi,T ∗−1(0) | Gi = g]−
k−1∑
j=1

M j+1
s ∆j (E[Yi,T ∗−1(0) | Gi = g]) ,
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where M `
s =

∏`−1
j=1(s + j)/

∏`−1
j=1 j for ` ≥ 2. ∆k (E[Yi,T ∗−1(0) | Gi = g]) is also recursively defined

as ∆k (E[Yi,T ∗−1(0) | Gi = g]) ≡ ∆k−1 (E[Yi,T ∗−1(0) | Gi = g])−∆k−1 (E[Yi,T ∗−2(0) | Gi = g]) , and
∆1 (E[Yi,T ∗−m(0) | Gi = g]) = E[Yi,T ∗−m(0) | Gi = g]−E[Yi,T ∗−m−1(0) | Gi = g] form = {1, 2}. The
standard parallel trends assumption and the parallel-trends-in-trends assumption are both special
cases of this assumption. The k-th order parallel trends assumption reduces to the standard parallel
trends assumption (Assumption 1) when s = 1 and k = 1, and to the parallel-trends-in-trends
assumption (Assumption 3) when s = 1 and k = 2.

To further clarify the meaning of Assumption A1, we can consider a simpler but stronger con-
dition. In particular, the k-th order parallel trends assumption (Assumption A1) is implied by the
following p-th degree polynomial model of confounding.

E[Yit(0) | Gi = 1]− E[Yit(0) | Gi = 0] = α+
k−1∑
p=1

Γpt
p,

with unknown parameters α and Γ. Here, the left hand side of the equality captures the difference
between the two groups (treatment and control) in terms of the mean of potential outcomes under
the control condition. This representation shows that the standard parallel trends assumption (As-
sumption 1) is implied by the time-invariant confounding; the parallel trends-in-trends assumption
(Assumption 3) is implied by the linear time-varying confounding; and in general, the k-th order
parallel trends assumption is implied by the k-th order polynomial confounding.

E.2.3 Estimate ATT with Multiple Pre- and Post-Treatment Periods

We consider the identification and estimation of the ATT at post-treatment time T ∗+s. Under the
k-th order parallel trends assumption (Assumption A1), the ATT is identified as follows.

τ(s) = ∆k
s (E[Yi,T ∗+s | Gi = 1])−∆k

s (E[Yi,T ∗+s | Gi = 0]) .

Because each conditional expectation can be consistently estimated via its sample analogue,

τ̂k(s) = ∆k
s

(∑
i : Gi=1 Yi,T ∗+s

n1,T ∗+s

)
−∆k

s

(∑
i : Gi=0 Yi,T ∗+s

n0,T ∗+s

)
is a consistent estimator for the ATT at time T ∗+s under the k-th order parallel trends assumption.
When s = 0 and k = 1, this estimator corresponds to the standard DID estimator (equation (3)).
When s = 0 and k = 2, this is equal to the sequential DID estimator (equation (10)). While existing
approaches (e.g., Angrist and Pischke, 2008; Mora and Reggio, 2012; Lee, 2016; Mora and Reggio,
2019) consider each estimator separately, we propose combining multiple DID estimators within the
GMM framework.

In general, the generalized double DID combines K moment conditions where K is the number
of pre-treatment periods researchers use. When there are more than two pre-treatment periods, we
can naturally combine more than two DID estimators, improving upon the double DID in Section 3.
Formally, the generalized double DID is defined as,

τ̂(s) = argmin
τ

g(τ)>Ŵg(τ)
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where g(τ) = (τ − τ̂1(s), . . . , τ − τ̂K(s))>. Based on the theory of the efficient GMM (Hansen,
1982), the optimal weight matrix is Ŵ = Var(τ̂(1:K)(s))

−1 where Var(·) is the variance-covariance
matrix and τ̂(1:K)(s) = (τ̂1(s), . . . , τ̂K(s))>. When T ∗ = 2, this converges to the standard DID
estimator (equation (3)). When T ∗ = 3, this corresponds to the basic form of the double DID
estimator (equation (12)). Within the GMM framework, we can select moment conditions using the
J-statistics (Hansen, 1982). We can similarly generalize the double DID regression.

To assess the extended parallel trends assumption, we can apply the generalized double DID to
pre-treatment periods t ∈ {1, . . . , T ∗ − 1} as if the last pre-treatment period T ∗ − 1 is the target

time period. Moments are g(τ) = (τ− τ̂1(0), . . . , τ− τ̂K(0))> where τ̂k(0) = ∆k
s

(∑
i : Gi=1 Yi,T∗−1

n1,T∗−1

)
−

∆k
s

(∑
i : Gi=0 Yi,T∗−1

n0,T∗−1

)
. Similarly, to assess the extended parallel trends-in-trends assumption, we can

apply the generalized double DID to pre-treatment periods with moments g(τ) = (τ− τ̂2(0), . . . , τ−
τ̂K(0))>.

E.3 Generalized K-DID for Staggered Adoption Design

Combining the setup introduced in Section E.2.1 and the one in Section 4.1, we propose the gen-
eralized K-DID for the SA design, which allows researchers to estimate long-term causal effects in
the SA design. We focus on the SA-ATT at post-treatment time t+ s where t is the timing of the
treatment assignment and s ≥ 0 represents how far in the future we want estimate the ATT for.
We first redefine the group indicator G to estimate the long-term SA-ATT at post-treatment time
t+ s. In particular, we define

Gits =


1 if Ai = t

0 if Ai > t+ s

−1 otherwise

where Gits = 1 represents units who receive the treatment at time t, and Gits = 0 indicates units
who do not receive the treatment by time t + s. Gits = −1 includes other units who receive the
treatment before time t or receive the treatment between t+1 and t+s.When s = 0, this definition
corresponds to the group indicator in equation (15).

Formally, our first quantity of interest is the staggered-adoption average treatment effect on the
treated (SA-ATT) at post-treatment time t+ s.

τSA(s, t) ≡ E[Yi,t+s(1)− Yi,t+s(0) | Gits = 1].

By averaging over time, we can also define the time-average staggered-adoption average treatment
effect on the treated (time-average SA-ATT) at s periods after treatment onset.

τSA(s) ≡
∑
t∈T

πtτ
SA(s, t),

where T represents a set of the time periods for which researchers want to estimate the ATT. The
SA-ATT in period t, τSA(t), is weighted by the proportion of units who receive the treatment at
time t: πt =

∑n
i=1 1{Ai = t}/

∑n
i=1 1{Ai ∈ T }.
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Here, we provide a generalization of the parallel trends assumption, which incorporates both the
standard parallel trends assumption and the parallel trends-in-trends assumption.

Assumption A2 (k-th Order Parallel Trends for Staggered Adoption Design) For some
integer k such that 1 ≤ k ≤ T, and for k ≤ t ≤ T − s,

∆k
s (E[Yi,t+s(0) | Gits = 1]) = ∆k

s (E[Yi,t+s(0) | Gits = 0]) ,

where ∆k
s is the k-th order difference operator defined in Assumption A1.

Under Assumption A2, the SA-ATT at post-treatment time t+ s is identified as follows.

τSA(s, t) = ∆k
s (E[Yi,t+s | Gits = 1])−∆k

s (E[Yi,t+s | Gits = 0]) .

Since conditional expectations can be consistently estimated via the sample analogue,

τ̂SA
k (s, t) = ∆k

s

(∑
i : Gits=1 Yi,t+s

n1,t+s

)
−∆k

s

(∑
i : Gits=0 Yi,t+s

n0,t+s

)
is a consistent estimator for the SA-ATT at post-treatment time t+ s under Assumption A2.

In general, we combine K DID estimators to obtain the generalized K-DID for the SA-ATT at
post-treatment time t+ s as follows.

τ̂SA(s, t) = argmin
τSA

g(τSA)>Ŵg(τSA)

where g(τSA) = (τSA−τ̂SA
1 (s), . . . , τSA−τ̂SA

K (s))>. The optimal weight matrix is Ŵ = Var(τ̂SA
(1:K)(s))

−1

where τ̂SA
(1:K)(s) = (τ̂SA

1 (s), . . . , τ̂SA
K (s))>.

To estimate the time-average SA-ATT, we first define the time-average k-th order time-average
DID estimator as,

τ̂
SA
k (s) =

∑
t∈T

πtτ̂
SA
k (s, t).

Finally, the generalized K-DID combines K moment conditions as follows.

τ̂
SA

(s) = argmin
τSA

g(τSA)>Ŵg(τSA)

where g(τSA) = (τSA−τ̂SA
1 (s), . . . , τSA−τ̂SA

K (s))>. The optimal weight matrix is Ŵ = Var(τ̂
SA
(1:K)(s))

−1

where τ̂
SA
(1:K)(s) = (τ̂

SA
1 (s), . . . , τ̂

SA
K (s))>.
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E.4 Double DID Regression for Staggered Adoption Design

We now extend the double DID regression to the SA design setting. We first extend the standard
DID regression (Appendix E.1) to the SA design. In particular, to estimate the SA-ATT at time t,
we can fit the following regression for units who are not yet treated at time t−1, that is, {i : Git ≥ 0}.

Yiv ∼ α+ θGit + γIv + βSA(t)(Git × Iv) + X>ivρ,

where v ∈ {t− 1, t} and the time indicator Iv (equal to 1 if v = t and 0 if v = t− 1). Note that Git
defines the treatment and control group at time t, and thus, it does not depend on time index v.
The estimated coefficient β̂SA(t) is consistent for the SA-ATT under the conditional parallel trends
assumption.

Similarly, we can extend the sequential DID regression to the SA design. Using the connection
to the linear regression of equation (A.3), we can adjust for additional pre-treatment covariates as:

∆Yiv ∼ αs + θsGit + γsIv + βSA
s (t)(Git × Iv) + X>ivρs,

where v ∈ {t − 1, t} and ∆Yiv = Yiv − (
∑

i : Git=1 Yi,v−1)/n1,v−1 if Git = 1 and ∆Yiv = Yiv −
(
∑

i : Git=0 Yi,v−1)/n0,v−1 if Git = 0. The estimated coefficient β̂SA
s (t) is consistent for the SA-ATT

under the conditional parallel trends-in-trends assumption.
Therefore, the double DID regression for the SA design combines the two regression estimators

via the GMM:

β̂SA
d-DID(t) = argmin

βSA
d (t)

(
βSA
d (t)− β̂SA(t)
βSA
d (t)− β̂SA

s (t)

)>
W(t)

(
βSA
d (t)− β̂SA(t)

βSA
d (t)− β̂SA

s (t).

)
where the choice of the weight matrix follows the same two-step procedure as Section 4.2. We also
provide further details in Appendix E.3. The optimal weight matrix W(t) is equal to Var(β̂SA

(1:2)(t))
−1

where β̂SA
(1:2)(t) = (β̂SA(t), β̂SA

s (t))>.

To estimate the time-average SA-ATT, we extend the double DID regression as follows.

β̂
SA

d-DID = argmin
β

SA
d

(
β

SA
d − β̂

SA

β
SA
d − β̂

SA

s

)>
W

(
β

SA
d − β̂

SA

β
SA
d − β̂

SA

s

)

where
β̂

SA
=
∑
t∈T

πtβ̂
SA(t), and β̂

SA

s =
∑
t∈T

πtβ̂
SA
s (t).

The optimal weight matrix W is equal to Var(β̂
SA

(1:2))
−1 where β̂

SA

(1:2) = (β̂
SA
, β̂

SA

s )>.
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F Equivalence Approach
Here, we provide technical details on the equivalence approach we introduced in Section 3.1. In the
standard hypothesis testing, researchers usually evaluate the two-sided null hypothesis H0 : δ = 0

where δ = {E[Yi1(0) | Gi = 1]−E[Yi0(0) | Gi = 1]}− {E[Yi1(0) | Gi = 0]−E[Yi0(0) | Gi = 0]} when
we are conducting the pre-treament-trends test. However, this approach has a risk of conflating
evidence for parallel trends and statistical inefficiency. For example, when sample size is small, even
if pre-treatment trends of the treatment and control groups differ (i.e., the null hypothesis is false), a
test of the difference might not be statistically significant due to large standard error. And, analysts
might “pass” the pre-treatment-trends test by not finding enough evidence for the difference.

The equivalence approach can mitigate this concern by flipping the null hypothesis, so that the
rejection of the null can be the evidence for parallel trends. In particular, we consider two one-sided
tests:

H0 : θ ≥ γU , or θ ≤ γL

where (γU , γL) is a user-specified equivalence range. By rejecting this null hypothesis, researchers
can provide statistical evidence for the alternative hypothesis:

H0 : γL < θ < γU ,

which means that θ (i.e., the difference in pre-treament-trends across treatment and control groups)
are within an interval [γL, γU ].

One difficulty of the equivalence approach is that researchers have to choose this equivalence
range (γU , γL), which might not be straightforward in practice. To overcome this challenge, we
follow Hartman and Hidalgo (2018) to estimate the 95% equivalence confidence interval, which is
the smallest equivalence range supported by the observed data. Suppose we obtain [−c, c] as the
symmetric 95% equivalence confidence interval where c > 0 is some positive constant. Then, this
means that if researchers think the absolute value of θ smaller than c is substantively negligible,
the 5% equivalence test would reject the null hypothesis and provide the evidence for the parallel
pre-treatment-trends. In contrast, if researchers think the absolute value of θ being c is substan-
tively too large as bias in practice, the 5% equivalence test would fail to reject the null hypothesis
and cannot provide the evidence for the parallel pre-treatment-trends. In sum, by estimating the
equivalence confidence interval, readers of the analysis can decide how much evidence for the paral-
lel pre-treatment-trends exists in the observed data. Researchers can estimate the 95% equivalence
confidence interval by the following general two steps. First, estimate 90% confidence interval, which
we denote by [bL, bU ]. Second, we can obtain the symmetric 95% equivalence confidence interval as
[−b, b] where we define b = max{|bL|, |bU |}. See Wellek (2010); Hartman and Hidalgo (2018) for
more details.
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Figure A1: Figure 1 from Hartman and Hidalgo (2018) on the difference between the standard
hypothesis testing and the equivalence testing.
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G Simulation Study
We conduct a simulation study to compare the performance of the various DID estimators discussed
in this paper. We demonstrate two key results. First, the double DID is unbiased under the extended
parallel trends assumption or under the parallel trends-in-trends assumption. Second, the double
DID has the smallest standard errors among unbiased DID estimators. In particular, standard
errors of the double DID are smaller than those of the extended DID (i.e., the two-way fixed effects
estimator) even under the extended parallel trends assumption.

We compare three DID estimators — the double DID, the extended DID, and the sequential DID
— using two scenarios. In the first scenario, the extended parallel trends assumption (Assumption 2)
holds where the difference between potential outcomes under control E[Yit(0) | Gi = 1]− E[Yit(0) |
Gi = 0] is constant over time. This corresponds to time-invariant unmeasured confounding, and we
expect that all the DID estimators are unbiased in this scenario. The second scenario represents
the parallel-trends-in-trends assumption (Assumption 3) where unmeasured confounding varies over
time linearly. Here, we expect that the double DID and the sequential DID are unbiased, whereas
the extended DID is biased.

For each of the two scenarios, we consider the balanced panel data with n units and five-time
periods where treatments are assigned at the last time period. We vary the number of units (n)

from 100 to 1000 and evaluate the quality of estimators by absolute bias and standard errors over
2000 Monte Carlo simulations. We describe the details of the simulation setup next.

G.1 Simulation Design

We consider the balanced panel data with T = 5 (t = {0, 1, 2, 3, 4}) where the last period (t = 4)
is treated as the post-treatment period. We vary the number of units at each time period as
n ∈ {100, 250, 500, 1000}. Thus, the total number of observations are nT ∈ {500, 1250, 2500, 5000}.
We compare three estimators: the double DID, the extended DID, and the sequential DID.

Note that we consider four pre-treatment periods here, and thus the generalized double DID
is not equal to the sequential DID even under the parallel trends-in-trends assumption because
it combines two other moments and optimally weight them (see Appendix E.2). The equivalence
between the sequential DID and the double DID holds only when there are two pre-treatment
periods. We see below that the generalized double DID improves upon the sequential DID even
under the parallel trends-in-trends assumption as they optimally weight observations from different
time periods.

We study two scenarios: one under the extended parallel trends assumption (Assumption 2)
and the other under the parallel-trends-in-trends assumption (Assumption 3). In the first scenario,
the difference between potential outcomes under control E[Yit(0) | Gi = 1] − E[Yit(0) | Gi = 0] is
constant over time. In particular, we set

E[Yit(0) | Gi = g] = αt + 0.05× g (A.6)

where (α0, α1, α2, α3, α4) = (1, 2, 3, 4, 5). In the second scenario, we allow for linear time-varying
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confounding. In particular, we set

E[Yit(0) | Gi = g] = αt + 0.1× g × (t+ 1) (A.7)

where (α0, α1, α2, α3, α4) = (1, 2, 3, 4, 5).

Then, potential outcomes under control are drawn as follows. Yit(0) = E[Yit(0) | Gi] + εit where
εit follows the AR(1) process with autocorrelation parameter ρ. That is,

εit = ρεi,t−1 + ξit,

εi0 = N (0, 3/(1− ρ2)),

ξit = N (0, 3).

The causal effect is denoted by τ and thus, Yit(1) = τ + Yit(0) where we set τ = 0.2. Finally,
Yit = Yit(0) for t ≤ 3 (pre-treatment periods) and Yit = GiYit(1) + (1 − Gi)Yit(0) for t = 4 (post-
treatment period). The half of the samples are in the treatment group (Gi = 1) and the other half
is in the control group (Gi = 0).

In Figure A2, we set the autocorrelation parameter ρ = 0.6. This value is similar to the
autocorrelation parameter used in famous simulation studies in Bertrand et al. (2004) (ρ = 0.8).
We pick a smaller value to make our simulations harder as we see below. In Figure A3, we also
provide additional results where we consider a full range of the autocorrelation parameters ρ ∈
{0, 0.2, 0.4, 0.6, 0.8} (the same positive autocorrelation values considered in Bertrand et al. (2004)).
Both figures show the absolute bias and the standard errors which are defined as

absolute bias =

∣∣∣∣ 1

M

M∑
m=1

(τ̂m − τ)

∣∣∣∣ and standard error =

√√√√ 1

M

M∑
m=1

(τ̂m − τ)2,

where M is the total number of Monte Carlo iterations. Note that this standard error is a true
standard error over the sampling distribution.

G.2 Results

Figure A2 shows the results when the autocorrelation parameter ρ = 0.6. To begin with the absolute
bias, visualized in the first row, all estimators have little bias under the extended parallel trends
assumption (Scenario 1), as expected from theoretical results. In contrast, under the parallel-trends-
in-trends assumption (Scenario 2), the extended DID (white circle with dotted line) is biased, while
the double DID (black circle with solid line) and the sequential DID (white triangle with dotted
line) are unbiased.

The second row represents the standard errors of each estimator. Under the extended parallel
trends assumption (the first column), the double DID estimator has the smallest standard error,
smaller than the extended DID estimator (i.e., the two-way fixed effects estimator). This efficiency
gain comes from the fact that the double DID uses the GMM framework to optimally weight
observations from different time periods, although the two-way fixed effects estimator uses equal
weights to all pre-treatment periods.
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Figure A2: Comparing DID estimators in terms of the absolute bias and the standard errors. The
first row shows that the double DID estimator (black circle with solid line) is unbiased under both
scenarios. The second row demonstrates that the double DID has the smallest standard errors
among unbiased DID estimators.

Under the parallel trends-in-trends assumption (the second row; the second column), the double
DID has almost the same standard error as the sequential DID. This shows that the double DID
changes weights according to scenarios and solves a practical dilemma of the sequential DID — it is
unbiased under the weaker assumption of the parallel trends-in-trends, but not efficient under the
extended parallel trends.

In Figure A3, we provide additional results where we consider a full range of the autocorrelation
parameters ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} (the same positive autocorrelation values considered in Bertrand
et al. (2004)). We find that when the autocorrelation of errors is small, standard errors of the
double DID are smaller than those of the sequential DID even under the parallel trends-in-trends
assumption.

The first row of Figure A3 shows that our results on the (absolute) bias do not change regardless
of the autocorrelation of errors. In particular, the double DID is unbiased under the extended parallel
trends assumption (the first column) or under the parallel trends-in-trends assumption (the second
column). In terms of the standard errors (the second row), two results are important. First, under
the extended parallel trends assumption (the first column), the standard errors of the double DID
is the smallest for all the values of ρ and the efficiency gain relative to the extended DID (i.e.,
two-way fixed effects estimator) is large when the there is high auto-correlations (i.e., ρ is large).
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Figure A3: Comparing DID estimators in terms of the absolute bias and the standard errors ac-
cording to the autocorrelation of errors. Note: The first row shows that the double DID estimator
(black circle with solid line) is unbiased under both scenarios. The second row demonstrates that
the double DID has the smallest standard errors among unbiased DID estimators. Under the ex-
tended parallel trends assumption (the first column), the efficiency gain relative to the extended
DID (i.e., two-way fixed effects estimator) is large when the autocorrelation parameter ρ is large.
Under the parallel trends-in-trends assumption (the second column), the efficiency gain relative to
the sequential DID is large when ρ is small.

Second, under the parallel trends-in-trends assumption (the second column), the standard errors of
the double DID is the smallest among unbiased DID estimators (the extended DID is biased). The
efficiency gain relative to the sequential DID is large when ρ is small.
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H Empirical Application

H.1 Malesky, Nguyen, and Tran (2014): DID Design

In Section 3.4, we have focused on three outcomes to illustrate the advantage of the double DID
estimator. Each outcome is defined as follows. “Education and Cultural Program” (binary): This
variable takes one if there is a program that invests in culture and education in the commune.
“Tap Water” (binary): What is the main source of drinking /cooking water for most people in
this commune? “Agricultural Center” (binary): Is there any agriculture extension center in a given
commune? Please see Malesky et al. (2014) for further details.

In this section, we provide results for all thirty outcomes analyzed in the original paper. To
assess the underlying parallel trends assumptions, we combine visualization and formal tests, as
recommended in the main text. The assessment suggests that we can make the extended parallel
trends assumption for fifteen outcomes. Specifically, for those fifteen outcomes, p-values for the null
of pre-treatment parallel trends are above 0.10 (i.e., fail to reject the null at the conventional level),
and the 95% standardize equivalence confidence interval is contained in the interval [−0.2, 0.2]. This
means that the deviation from the parallel trends in the pre-treatment periods are less than 0.2
standard deviation of the control mean in 2006.

Figure A4 shows estimated treatment effects under the extended parallel trends assumption.
As in Section 3.4, the double DID estimates are similar to those from the standard DID, and yet,
standard errors are smaller because the double DID effectively uses pre-treatment periods within
the GMM. Here, we only have two pre-treatment periods, but when there are more pre-treatment
periods, the efficiency gain of the double DID can be even larger.

We rely on the parallel trends-in-trends assumption for eight outcomes out of the fifteen re-
maining outcomes. These outcomes have the 95% standardized equivalence confidence interval
wider than [−0.20, 0.20], but show that treatment and control groups’ pre-treatment trends have
the same sign. The same sign of the pre-treatment trends suggests that parallel trends-in-trends
assumption, which can account for the linear time-varying unmeasured confounder, can be plausible
for these outcomes, even though the stronger parallel trends assumption is possibly violated.

Figure A5 shows results under the parallel trends-in-trends assumption. As in Section 3.4, the
double DID estimates are often different from those of the standard DID because the extended
parallel trends assumption is implausible for these outcomes. Importantly, standard errors of the
double DID are often larger than the standard DID. This is because the double DID needs to adjust
for biases in the standard DID by using pre-treatment trends.

For the remaining seven outcomes of which treatment and control groups’ pre-treatment trends
have the opposite sign, it is difficult to justify either the extended parallel trends or parallel trends-
in-trends assumption without additional information. Thus, there is no credible estimator for the
ATT without making stronger assumptions. When there are more than two pre-treatment periods,
researchers can apply the sequential DID estimator to pre-treatment periods in order to formally
assess the extended parallel trends-in-trends assumption. We emphasize that, although we use the
equivalence range of [−0.20, 0.20] as a cutoff for an illustration, it is recommended to base this
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Figure A4: Comparing Standard DID and Double DID under Extended Parallel Trends Assumption.
The double DID estimates are similar to those from the standard DID, and yet, standard errors are
smaller because the double DID effectively uses pre-treatment periods within the GMM.

decision on substantive domain knowledge whenever possible in practice.

H.2 Paglayan (2019): Staggered Adoption Design

In this section, we apply the proposed double DID estimator to revisit Paglayan (2019), which
uses the staggered adoption (SA) design to study the effect of granting collective bargaining rights
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Figure A5: Comparing Standard DID and Double DID under Parallel Trends-in-Trends Assumption.
The double DID estimates are often different from those of the standard DID because the extended
parallel trends assumption is implausible for these outcomes.

to teacher’s union on educational expenditures and teacher’s salary. Paglayan (2019) applies the
standard two-way fixed effect models to estimate the effect of the introduction of the mandatory
bargaining law in the US states on the two outcome. The original author exploits the variation
induced by the different introduction timing of the law: A few states introduced the law as early as
in the mid 1960’s, while some states, such as Arizona or Kentucky, never introduced the mandate.
Among the states that granted the bargaining rights, the introduction timing varies from the mid
1960’s to the mid 1980’s (Nebraska was the last state that adopted the law).

H.2.1 Assessing Underlying Assumptions

We apply the proposed double DID for the SA design to the panel data consists of state-year
observations. A state is treated at a particular year, if the state passes the law or has already
passed the law of mandatory bargaining. Following the original study, we study two outcome: Per-
pupil expenditure and annual teacher salary, both are on a log scale. There are 2,058 observations,
containing 49 states (excluding Washington DC and Wisconsin, due to the short availability of the
pre-treatment outcomes) and spanning from 1959 through 2000.

Figure A6 shows the variation of the treatment across states and over time. Cells in gray indicate
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Figure A6: Treatment Variation Plot. Note: Cells in gray are state-year observations that are not
treated (i.e., the mandatory bargaining law is not implemented), while cells in blue are observations
that are under the treatment condition. Rows are sorted such that states that adopt the policy at
earlier years are shown near the top, while states that never adopt the policy are shown near the
bottom. The figure indicates that there are variations across states in adoption timings, and that
some states never adopt the policy.

state-year observations that are not treated and blue cells indicate the treated observations. We
can observe that there are 14 unique treatment timings (the earliest is 1965 and the latest is 1987)
where the number of states at each treatment timing varies from one to six (the average number of
states at a treatment timing is 2.3). We can also see that there is no reversal of a treatment status
in that once a state adopts the policy, the state has never abolished it during the sample period.

We assess the underlying parallel trends assumption for the SA design by utilizing the pre-
treatment outcome. As in the pre-treatment-trends test in the basic DID design, we apply the
standard DID estimator for the SA design to pre-treatment periods. For example, to test the pre-
treatment trends from t − 1 to t for units who receive the treatment at time t, we estimate the
SA-ATT using the outcome from t − 2 and t − 1 (See Section 4.2 for more details). To further
facilitate interpretation, we standardize the outcome by the mean and standard deviation of the
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Figure A7: Assessing Underlying Assumptions Using the Pre-treatment Outcomes (Left: logged
expenditure; Right: logged teacher salary). Note: We report the 95% standardized equivalence
confidence intervals.

baseline control group, so that the effect can be interpreted relative to the control group.
Figure A7 shows 95% standardized equivalence confidence intervals for the two outcomes of

interest (See Section 3.1 for details on the standardization procedure). It shows that for both
outcomes, the equivalence confidence intervals are within 0.2 standard deviation from the means of
the baseline control groups through t− 5 to t− 1. This suggests that the extended parallel trends
assumption is plausible for both outcomes.

H.2.2 Estimating Causal Effects

We apply the double DID for the SA design as described in Section 4. The standard errors are
computed by conducting the block bootstrap where the block is taken at the state level and we take
2000 bootstrap iterations. Analyses for the two outcomes are conducted separately. In addition to
the proposed method, we apply two existing variants of synthetic control methods that can handle
the staggered adoption design: the generalized synthetic control method, gsynth (Xu, 2017), and
the augmented synthetic control method, augsynth (Ben-Michael et al., 2019). While the proposed
double DID is better suited for settings where there are a small to moderate number of pre-treatment
periods, we evaluate, in the setting of long pre-treatment periods, whether it can achieve comparable
performance to these variants of synthetic control methods that are primarily designed to deal with
long pre-treatment periods (see more discussions in Section B.3).

Figure A8 shows the estimates of the treatment on the per-pupil expenditure (the first row)
and the teacher’s salary (the second row), where both effects are on a log scale. We estimated
the average treatment effect on the two outcomes ` periods after the treatment assignment where
` = {0, 1, . . . , 9}. Note that ` = 0 corresponds to the contemporaneous effect. Each column cor-
responds to different estimators. The first column shows the proposed double DID estimator for
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Figure A8: Plot of the Average Treatment Effect on the Treated on Two Outcomes. Note: We com-
pare estimates from the double DID, the generalized synthetic control method, and the augmented
synthetic control method. The causal estimates are similar across methods for both outcomes and
treatment effects are not statistically significant at the conventional 5% level for most of the time
periods.

the staggered adoption design, whereas the second (third) column shows estimates based on the
generalized synthetic control method (the augmented synthetic control method). We can see that
estimates are similar across methods for both outcomes and treatment effects are not statistically
significant at the 5% level for most of the time periods. This result is consistent with the original
finding of Paglayan (2019) that the granting collective bargaining rights did not increase the level
of resources devoted to education.

As in this example, when there are a large number of pre-treatment periods, it is important
to apply both synthetic control methods and the proposed double DID, and evaluate robustness
across those approaches. This is critical because they rely on different identification assumptions.
We found such robustness in this application, which provides us with additional credibility.
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